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Abstract: The bicentric n-gons with incircle and those with excircle are in
the focus of our interest. Remodeled and extended results are presented con-
cerning Fuss’ relations and geometrical configurations with incircle and those
with excircle. These results are companion to ones exposed in [10]. Several
new conjectures are also posed and discussed.

1. Introduction

A polygon which is both chordal and tangential is shortly called
bicentric polygon. The relation (condition) that an n-sided polygon be a
bicentric one is called Fuss’ relation for bicentric n-gons and denoted by
Fn(R, r, d) = 0 in honor to Swiss mathematician Nicolaus Fuss who first
found the relation for bicentric quadrilateral. This relation is given by

(R2 − d2)2 − 2r2(R2 + d2) = 0,

where R and r are radii of circumcircle and incircle, respectively, and d
is distance between centers of circumcircle and incircle, see [3]. Fuss also
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found relations for bicentric n-gons where 5 ≤ n ≤ 8, [4].
The main and key result in theory of bicentric polygons is Poncelet’s

celebrated closure theorem which can be stated as follows [5]:

Let C and D be two nested conics such that there is an n-sided
polygon inscribed in D and circumscribed around C. Then for
every point X on D there is an n-sided polygon inscribed in
D and circumscribed around C such that the point X is one
of its vertices. Hence, for every starting point X there is a
polygon with the same n-periodicity.

Berger, Cayley, Dörrie, Jacobi and others have worked on number
of problems related to this inspiring result. The problem of establishing
Fuss’ relation for bicentric quadrilateral is listed in [2, pp. 188–192] as
one of the 100 great problems of elementary mathematics; however, we
point out that the case n ≥ 3 has been solved only recently (see [6] for
odd n and [11] for n being even).

In the following we shall restrict ourselves to the case when conics
are circles and deal with properties of the functions given in [10]. Some
frequently used notation and used in sequel are three positive real num-
bers R0, r0, d0 which satisfy R0 > r0 + d0 and Fn(R0, r0, d0) = 0. Let C1
and C2 be circles in the same plane so that

R0 = radius of C1, r0 = radius of C2,
d0 = distance between the centers of C1 and C2.

By the Poncelet closure theorem, since Fn(R0, r0, d0) = 0, there is for
any point X of C1 a bicentric n-gon inscribed in C1 and circumscribed
about C2 with X one of its vertices. This fact will be shortly said that
(R0, r0, d0) has n-closure.

The class of all bicentric n-gons inscribed in C1 and circumscribed
about C2 will be denoted by C(R0, r0, d0). According to [10, Definition
1]:

Let (R0, r0, d0) be positive real numbers and R0 > r0 + d0.
Then (R̃0, r̃0, d̃0) is a triple obtained from the triple (R0, r0, d0)
such that R0 and d0 are mutually interchanged, that is

(1.1) (R̃0, r̃0, d̃0) = (d0, r0, R0).

This kind of triples will be called dual triples. Thus,
(d0, r0, R0) is dual to the triple (R0, r0, d0) and vice versa.
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Concerning to this definition we give the following extension:

Let (R0, r0, d0) be as in the previous definition. Then the
triples (1, r0/R0, d0/R0) and (1, r0/d0, R0/d0) will be called re-
lational dual triples.

The first part of these definitions refers to bicentric polygons with
incircle and the second is connected to bicentric polygons with excircle.

Next, let R, r, d > 0 consist the triple (R, r, d). Then it will be
frequently said that (R, r, d) is positive or to write (R, r, d) ∈ R3

+. Now
we recall

Definition 1.1. [8, Definition 1] Let S be the set given by
S =

{
(R, r, d) ∈ R3

+ : R > r + d
}
.

Let f1, f2 : S → S be functions on the set S defined as follows. Let
(R0, r0, d0) ∈ S. Then

(1.2) f1(R0, r0, d0) = (R1, r1, d1),

where

(1.3)


R2

1 = R0

(
R0 + r0 +

√
(R0 + r0)2 − d2

0

)
,

r2
1 = (R0 + r0)

2 − d2
0,

d2
1 = R0

(
R0 + r0 −

√
(R0 + r0)2 − d2

0

)
,

and

(1.4) f2(R0, r0, d0) = (R2, r2, d2),

where

(1.5)


R2

2 = R0

(
R0 − r0 +

√
(R0 − r0)2 − d2

0

)
,

r2
2 = (R0 − r0)2 − d2

0,

d2
2 = R0

(
R0 − r0 −

√
(R0 − r0)2 − d2

0

)
.
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In [7, 8] are proved the following findings. Let (Ri, ri, di), i = 1, 2
and f1, f2 be as in the last definition. Then

(1.6)



R1 > r1 + d1, R2 > r2 + d2,

R1d1 = R2d2 = R0d0,

R2
1 + d2

1 − r2
1 = R2

2 + d2
2 − r2

2 = R2
0 + d2

0 − r2
0,

R2
1 − d2

1

2r1
=
R2

2 − d2
2

2r2
= R0,

2R1r1d1

R2
1 − d2

1

=
2R2r2d2

R2
2 − d2

2

= d0,

and

−
(
R2

1 + d2
1 − r2

1

)
+

(
R2

1 − d2
1

2r1

)2

+

(
2R1r1d1

R2
1 − d2

1

)2

= −
(
R2

2 + d2
2 − r2

2

)
+

(
R2

2 − d2
2

2r2

)2

+

(
2R2r2d2

R2
2 − d2

2

)2

= r2
0.(1.7)

Let K denote the set given by
K =

{
(R, r, d) ∈ S : (R2 − d2)2 − 2r2(R2 + d2) = 0

}
,

that is K denotes the set of all (positive) solutions of Fuss’ relations for
bicentric quadrilaterals.

Moreover, in [8, Theorem 2] we have established the following result:
Let (R, r, d) be a triple of the set S \K and let g be function on the

set S \K given by g(R, r, d) = (R̂, r̂, d̂), where

(1.8)


R̂ =

R2 − d2

2r
, d̂ =

2Rdr

R2 − d2

r̂ =

√
− (R2 + d2 − r2) +

(
R2 − d2

2r

)2

+

(
2Rdr

R2 − d2

)2

.

Then S \K is maximal subset of S such that

(1.9) (R̂, r̂, d̂) ∈ S \K =⇒ (R, r, d) ∈ S \K.

Notice 1.2. In [8, Theorem 2] it is shown that in the case when
(R0, r0, d0) ∈ K then r̂0 = 0.
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Definition 1.3. Let (R0, r0, d0) ∈ R3
+ be a solution of Fuss’ relation

Fn(R, r, d) = 0. Let C1, C2 be circles such that C2 is completely inside of
C1. Let A1 · · ·An be a bicentric n-gon from the class C(R0, r0, d0) and let
T1, · · · , Tn be touching points of its sides (segments) A1A2, · · · , AnA1 and
circle C2, respectively. Then |AiTi| , i = 1, · · · , n, are so-called tangent
lengths of the n-gon A1 · · ·An. If

n∑
i=1

arctan
|AiTi|
r0

= kπ,

where k ∈ N then n-gon A1 · · ·An is k-circumscribed and k is rotation
number for n.

If n-gons from the class C(R0, r0, d0) are k-circumscribed, then
Fuss’ relation for this class of the n-gons is denoted by F (k)

n (R, r, d) = 0.

The term cycle will be also used in the following. Let (Rk1 , rk1 , dk1) ∈
R3

+ be a solution of Fuss’ relation Fn(R, r, d) = 0, where n ≥ 3 is an odd
integer. Then there is an integer m ≥ 1 such that

gm (Rk1 , rk1 , dk1) = (Rk1 , rk1 , dk1) ,

where k1, · · · , km are rotation numbers for n. Then (k1, . . . , km) is called
a cycle for n. For example, the cycles for n = 3, 5, 7, 9 are (1), (1, 2),
(1,2,3), (1,2,4), respectively.

The following conjecture [8, Conjecture 2] is also of importance.
Let (Rk, rk, dk) be a solution of Fuss’ relation Fn(R, r, d) = 0, where
n ≥ 3 is an odd integer. Let

(1.10a) g(Rk, rk, dk) = (Rl, rl, dl),

where k and l are rotation numbers for n. Then

(1.10b) f1(Rl, rl, dl) = (Rk, rk, dk), if l is even,

(1.10c) f2(Rl, rl, dl) = (Rk, rk, dk), if l is odd.

From (1.9) follow the following two assertions:

Assertion 1.4. Let (R0, r0, d0) ∈ S \ K. Then the solutions of the
system (R̂, r̂, d̂) = (R0, r0, d0) are (Ri, ri, di), i = 1, 2, described by (1.2)
and (1.4).
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In turn, g is a left inverse of f1, f2, that is gfj(R0, r0, d0) = (R0, r0, d0), j =
1, 2.

Assertion 1.5. Let (R0, r0, d0) ∈ S. Then there are two triples in S
which g maps onto (R0, r0, d0); these are f1(R0, r0, d0) and f2(R0, r0, d0).

Now let (R0, r0, d0) ∈ S and i1, . . . , in ∈ {1, 2} and n ∈ N. Then by
definition

(Ri1...in , ri1...in , di1...in) = fin . . . fi1(R0, r0, d0),

compare to Figure 1. It can be shown that

(1.11a)
R2

i1...in + d2
i1...in − r

2
i1...in

2Ri1...indi1...in

=
R2

0 + d2
0 − r2

0

2R0d0

= I, i1, . . . , in ∈ {1, 2},

where I is the invariant of the above described corresponding pencil.
Indeed, it is sufficient to show that

R2
1 + d2

1 − r2
1

2R1d1

=
R2

2 + d2
2 − r2

2

2R2d2

=
R2

0 + d2
0 − r2

0

2R0d0

,

since the analogy is complete.

Figure 1: The arrow + refers to f1(Ri, ri, di),
the arrow - refers to f2(Ri, ri, di).

It is often convenient the use of the triple (1, ρ, δ), normalized with
respect to R, instead of (R, r, d), writing ρ = r

R
, δ = d

R
, see e.g. [1]. So

R2
0 + d2

0 − r2
0

2R0d0

= I ⇒ 1 + δ2
0 − ρ2

0

2δ0
= I,

where

(1.11b) ρ2
0 = 1− 2Iδ0 + δ2

0.
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Supposing that (R0, r0, d0) is not from K and using the relations given
by (1.8), it is easy to show that

(R̂0)
2 + (d̂0

2
)− (r̂0)

2

2R̂0d̂0

= I or
1 + (

4
δ0)

2 − (
4
ρ0)

2

2
4
δ0

= I

from which follows

(1.11c) (
4
ρ0)

2 = 1− 2I
4
δ0 +(

4
δ0)

2.

where
4
δ0= d̂0/R̂0,

4
ρ0= r̂0/R̂0.

Let (R0, r0, d0) be any given triple from S \K. Then the triples
(R0, r0, d0), (d0, r0, R0), (R̂0, r̂0, d̂0), (d̂0, r̂0, R̂0)

belong to the same pencil since
R2

0 + d2
0 − r2

0

2R0d0

=
d2

0 +R2
0 − r2

0

2d0R0

=
R̂2

0 + d̂2
0 − r̂2

0

2R̂0d̂0

=
d̂2

0 + R̂2
0 − r̂2

0

2d̂0R̂0

= I,

where I is invariant of the corresponding pencil. The above equalities
can be written as

1 + δ2
0 − ρ2

0

2δ0
=

1 + (
∗
δ0)

2 − (
∗
ρ0)

2

2
∗
δ0

=
1 + (

4
δ0)

2 − (
4
ρ0)

2

2
4
δ0

=

=
1 + (

�
δ0)

2 − (
�
ρ0)

2

2
�
δ0

= I,

(1.11d)

where

δ0 =
d0

R0

,
∗
δ0=

R0

d0

,
4
δ0=

d̂0

R̂0

,
�
δ0=

R̂0

d̂0

,

ρ0 =
r0
R0

,
∗
ρ0=

r0
d0

,
4
ρ0=

r̂0

R̂0

,
�
ρ0=

r̂0

d̂0

and from the equalities (1.11d) it follows

ρ2
0 = 1− 2Iδ0 + (δ0)

2, (
∗
ρ0)

2 = 1− 2I
∗
δ0 +(

∗
δ0)

2, (
4
ρ0)

2

= 1− 2I
4
δ0 +(

4
δ0)

2, (
�
ρ0)

2 = 1− 2I
�
δ0 +(

�
δ0)

2.(1.11e)
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Now, using the above relations will be about some functions which
play key role in research of bicentric polygons where conics are circles.

Let (R0, r0, d0) ∈ S \K. The relation given by

(1.12a)
d̂0

R̂0

=
4δ0(1− 2Iδ0 + δ2

0)

(1− δ2
0)2

will be important in the sequel; one obtains from

d̂0 =
2R0r0d0

R2
0 − d2

0

such that the both sides of this relation be divided by R̂0, that is by
R2

0 − d2
0

2r0
. Since R̂0 =

R2
0 − d2

0

2r0
we can write

d̂0

R̂0

=
2R0r0d0

R2
0 − d2

0

:
R2

0 − d2
0

2r0
=

4R0r
2
0d0 : R4

0

(R2
0 − d2

0)
2 : R4

0

=
4ρ2

0δ0
(1− δ2

0)2
.

Thus

(1.12b)
4
δ0=

4δ0ρ
2
0

(1− δ2
0)2

,

where
4
δ0= d̂0/R̂0 and ρ2

0 = 1− 2Iδ0 + δ2
0, compare (1.11b) and (1.11e).

Using computer algebra it can be found that Eq. (1.12a) has four
solutions in δ0:

(1.12c)

(δ0)1 =
1+

4
ρ0 −

√
2(1− I

4
δ0 +

4
ρ0)

4
δ0

,

(δ0)2 =
1− 4

ρ0 −

√
2(1− I

4
δ0 −

4
ρ0)

4
δ0

,

(δ0)3 =
1+

4
ρ0 +

√
2(1− I

4
δ0 +

4
ρ0)

4
δ0

,

(δ0)4 =
1− 4

ρ0 +

√
2(1− I

4
δ0 −

4
ρ0)

4
δ0

,
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where
4
ρ0= r̂0/R̂0 and I denotes the invariant of the corresponding pencil.

Conjecture 1.6. [10] There exist functions γi, ϕi, i = 1, 2 defined by

γ1

(
4
δ0

)
= (δ0)1, γ2

(
4
δ0

)
= (δ0)2, ϕ1

(
4
δ0

)
= (δ0)3, ϕ2

(
4
δ0

)
= (δ0)4 ,

and

(1.13)

γ1(
4
δ0) =

1+
4
ρ0 −

√
2(1− I

4
δ0 +

4
ρ0)

4
δ0

,

γ2(
4
δ0) =

1− 4
ρ0 −

√
2(1− I

4
δ0 −

4
ρ0)

4
δ0

,

ϕ1(
4
δ0) =

1+
4
ρ0 +

√
2(1− I

4
δ0 +

4
ρ0)

4
δ0

,

ϕ2(
4
δ0) =

1− 4
ρ0 +

√
2(1− I

4
δ0 −

4
ρ0)

4
δ0

.

Now we formulate notation which will be used in defining functions
σi, τi, i = 1, 2.

Let (R̂0, r̂0, d̂0) be given by Eq. (1.8). Then the dual of the triple
(R̂0, r̂0, d̂0) is
(1.14)

(d̂0, r̂0, R̂0) =

=

(
2R0r0d0

R2
0−d2

0
,

√
−(R2

0 + d2
0 − r2

0) +
(

R2
0−d2

0

2r0

)2

+
(

2R0r0d0

R2
0−d2

0

)2

,
R2

0−d2
0

2r0

)
.

Thus, instead of the triple (R̂0, r̂0, d̂0) used in obtaining (1.12b) we apply
the dual triple (d̂0, r̂0, R̂0). So, we conclude

(1.15)
�
δ0=

(1− δ2
0)2

4δ0 (1− 2δ0I + δ2
0)

or
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�
δ0=

(1− δ2
0)

2

4δ0ρ2
0

,

where
�
δ0= R̂0/d̂0 and the last relation follows from R̂0 = R2

0 − d2
0/2r0

dividing both sides with d̂0, that is by 2R0r0d0/(R
2
0 − d2

0), consult (1.14)

and Cf. with (1.8) recalling that
4
δ0 in (1.12) equals d̂0/R̂0 < 1 and in

(1.15) is
�
δ0= R̂0/d̂0 > 1. So we have the following equality

4
δ0 ·

�
δ0=

d̂0

R̂0

· R̂0

d̂0

=
4δ0ρ

2
0

(1− δ2
0)2
· (1− δ2

0)2

4δ0ρ2
0

= 1.

The equation in δ0 given by (1.15) has the following four solutions

(δ0)1 =
�
δ0 +

�
ρ0 −

√
2
�
δ0

(
�
δ0 +

�
ρ0 −I

)
,

(δ0)2 =
�
δ0 −

�
ρ0 −

√
2
�
δ0

(
�
δ0 −

�
ρ0 −I

)
,

(δ0)3 =
�
δ0 +

�
ρ0 +

√
2
�
δ0

(
�
δ0 +

�
ρ0 −I

)
,

(δ0)4 =
�
δ0 −

�
ρ0 +

√
2
�
δ0

(
�
δ0 −

�
ρ0 −I

)
,

where �ρ0= r̂0/d̂0 and I remain the same as in (1.12).

Conjecture 1.7. [10] There exist functions σi, τi, i = 1, 2 defined as

(1.16)

σ1

(R̂0

d̂0

)
=
�
δ0 +

�
ρ0 −

√
2
�
δ0

(
�
δ0 +

�
ρ0 −I

)
,

σ2

(R̂0

d̂0

)
=
�
δ0 −

�
ρ0 −

√
2
�
δ0

(
�
δ0 −

�
ρ0 −I

)
,

τ1

(R̂0

d̂0

)
=
�
δ0 +

�
ρ0 +

√
2
�
δ0

(
�
δ0 +

�
ρ0 −I

)
,

τ2

(R̂0

d̂0

)
=
�
δ0 −

�
ρ0 +

√
2
�
δ0

(
�
δ0 −

�
ρ0 −I

)
.
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It is worth to mention that the functions given by (1.13) refer to
bicentric polygons with incircle and the functions given by (1.16) are
associated with the excircle. Also we already mentioned that for each
triple from S \K we get relations like those established for (R0, r0, d0) ∈
S\K. Accordingly for any equality like (1.12b) we arrive at four solutions
in the form of (1.12c). This shows that the definition of γi, ϕi, i = 12, is
correct. The same holds true for σi, τi, i = 1, 2.

In turn, with these argumentation the Conjectures 1.6, 1.7 have
been proved.

2. Properties of the functions γi, ϕi, σi, τi, i = 1, 2

The article primarily deals with connections between bicentric poly-
gons with incircle and those with excircle. The connection is precisely
established and cornerstone relations were inferred for bicentric polygons
where conics are circles. Firstly, we express γi, ϕi, σi, τi, i = 1, 2 in a
more appropriate form. Namely, using (1.11d) for invariant I and writ-

ing d̂0/R̂0, r̂0/R̂0, R̂0/d̂0, r̂0/d̂0 instead of
4
δ0,
4
ρ0,

�
δ0,

�
ρ0 respectively, we get

γ1

(
d̂0

R̂0

)
=
R̂0 + r̂0 −

√
(R̂0 + r̂0)2 − (d̂0)2

d̂0

,(2.1a)

γ2

(
d̂0

R̂0

)
=
R̂0 − r̂0 −

√
(R̂0 − r̂0)2 − (d̂0)2

d̂0

,(2.1b)

ϕ1

(
d̂0

R̂0

)
=
R̂0 + r̂0 +

√
(R̂0 + r̂0)2 − (d̂0)2

d̂0

,(2.1c)

ϕ2

(
d̂0

R̂0

)
=
R̂0 − r̂0 +

√
(R̂0 − r̂0)2 − (d̂0)2

d̂0

,(2.1d)

σ1

(
R̂0

d̂0

)
=
R̂0 + r̂0 −

√
(R̂0 + r̂0)2 − (d̂0)2

d̂0

,(2.1e)
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σ2

(
R̂0

d̂0

)
=
R̂0 − r̂0 −

√
(R̂0 − r̂0)2 − (d̂0)2

d̂0

,(2.1f)

τ1

(
R̂0

d̂0

)
=
R̂0 + r̂0 +

√
(R̂0 + r̂0)2 − (d̂0)2

d̂0

,(2.1g)

τ2

(
R̂0

d̂0

)
=
R̂0 − r̂0 +

√
(R̂0 − r̂0)2 − (d̂0)2

d̂0

,(2.1h)

where

γi

(
d̂0

R̂0

)
· ϕi

(
d̂0

R̂0

)
= 1, i = 1, 2, τi

(
R̂0

d̂0

)
· σi

(
R̂0

d̂0

)
= 1, i = 1, 2.

Also, let us remark that from (2.1) it follows:

γ1

(
d̂0

R̂0

)
= σ1

(
R̂0

d̂0

)
, γ2

(
d̂0

R̂0

)
= σ2

(
R̂0

d̂0

)
,

ϕ1

(
d̂0

R̂0

)
= τ1

(
R̂0

d̂0

)
, ϕ2

(
d̂0

R̂0

)
= τ2

(
R̂0

d̂0

)
.

So the functions γi, ϕi refer to bicentric polygons with incircle and the
functions σi, τi refer to bicentric polygons with excircle being throughout
i = 1, 2.

Theorem 2.1. Let (R0, r0, d0) be a triple from the set S \ K and let
Fn(R0, r0, d0) = 0. Then

(2.2) either γ1

(
d̂0

R̂0

)
=
d0

R0

or γ2

(
d̂0

R̂0

)
=
d0

R0

,

where γ1

(
d̂0

R̂0

)
and γ2

(
d̂0

R̂0

)
stand on the right hand sides of (2.1a) and

(2.1b) respectively.

Proof. First we consider the following equation in s:

(2.3) γ1

(
d̂0

R̂0

)
= s,
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where R̂0, r̂0, d̂0 are given by

R̂0 =
R2

0 − d2
0

2r0
, r̂0 =

√
−(R2

0 + d2
0 − r2

0) + (R̂0)2 + (d̂0)2,

d̂0 =
2R0r0d0

R2
0 − d2

0

.

(2.4)

After rationalization and factorization (2.3) becomes

(d0s−R0) · (d0 −R0s)·
·(d4

0s− d2
0r

2
0s− 2d2

0R
2
0s− d0r

2
0R0s

2 − d0r
2
0R0 − r2

0R
2
0s+R4

0s) = 0,

which solutions are

(2.5) s1 =
d0

R0

, s2 =
R0

d0

,

s3 = −−d
4
0 + d2

0r
2
0 + 2d2

0R
2
0 + r2

0R
2
0 −R4

0

2d0r2
0R0

+

+
(d2

0 −R2
0)
√

((d0 − r0)2 −R2
0)((d0 + r0)2 −R2

0)

2d0r2
0R0

,

s4 = −−d
4
0 + d2

0r
2
0 + 2d2

0R
2
0 + r2

0R
2
0 −R4

0

2d0r2
0R0

−

− (d2
0 −R2

0)
√

((d0 − r0)2 −R2
0)((d0 + r0)2 −R2

0)

2d0r2
0R0

.

It is worth to notice that s1s2 = s3s4 = 1. ♦

The same solutions, obtained in the same way, have the equation
γ2

(
d̂0

R̂0

)
= s. It turns out that

s1s3 = γ1

(
d̂0

R̂0

)
· γ2

(
d̂0

R̂0

)
,(2.6a)

s2s4 = τ1

(
R̂0

d̂0

)
· τ2

(
R̂0

d̂0

)
,(2.6b)

where τ1
(

R̂0

d̂0

)
and τ2

(
R̂0

d̂0

)
are described in (2.1g), (2.1h) respectively.

Thus s1 and s3 refer to bicentric n-gons with incircle and s2 and
s4 refer to bicentric n-gons with excircle. So, establishing the equality
related to (2.6a) we mutually obtain the equality related to (2.6b).
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Corollary 2.2. Let (R0, r0, d0) be as in Theorem 2.1. Then
either γ1(R̂0, r̂0, d̂0) = (R0, r0, d0) or γ2(R̂0, r̂0, d̂0) = (R0, r0, d0).

The proof of the next result contains the same lines as the proof of
the previous Theorem 2.1.

Theorem 2.3. Let (R0, r0, d0) be as in Theorem 2.1. Then

(2.7) either τ1

(
R̂0

d̂0

)
=
R0

d0

or τ2

(
R̂0

d̂0

)
=
R0

d0

.

Corollary 2.4. It holds
either τ1(d̂0, r̂0, R̂0) = (d0, r0, R0) orτ2(d̂0, r̂0, R̂0) = (d0, r0,R0).

So the relation (2.6a) refers to bicentric n-gon with incircle, while
(2.6b) is associated to bicentric n-gon with excircle.

Theorem 2.5. Let (R0, r0, d0) be as in Theorem 2.1. Then

(2.8) either ϕ1

(
d̂0

R̂0

)
=
R0

d0

or ϕ2

(
d̂0

R̂0

)
=
R0

d0

.

Proof. Since the right hand sides of the relations

ϕ1

(
d̂0

R̂0

)
=
R̂0 + r̂0 +

√
(R̂0 + r̂0)2 − (d̂0)2

d̂0

,

ϕ2

(
d̂0

R̂0

)
=
R̂0 − r̂0 +

√
(R̂0 − r̂0)2 − (d̂0)2

d̂0

are the same as the right hand sides of the relations (2.1g) and (2.1h),
the solutions of ϕ1

(
d̂0

R̂0

)
= s and ϕ2

(
d̂0

R̂0

)
= s coincide with the solutions

of τ1
(

R̂0

d̂0

)
= s and τ2

(
R̂0

d̂0

)
= s. ♦

Corollary 2.6. There holds
either ϕ1(R̂0, r̂0, d̂0) = (d0, r0, R0) or ϕ2(R̂0, r̂0, d̂0) = (d0, r0, R0).
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Theorem 2.7. Let (R0, r0, d0) be as in Theorem 2.1. Then

(2.9) either σ1

(
R̂0

d̂0

)
=
d0

R0

or σ2

(
R̂0

d̂0

)
=
d0

R0

.

Proof. Comparing the right hand sides of (2.1e) and (2.1f) and (2.1a)
and (2.1b), we deduce that σ1

(
R̂0

d̂0

)
= s, σ2

(
R̂0

d̂0

)
= s have the same

solutions as γ1

(
d̂0

R̂0

)
= s, γ2

(
d̂0

R̂0

)
= s. ♦

Corollary 2.8. It holds
either σ1(d̂0, r̂0, R̂0) = (R0, r0, d0) or σ2(d̂0, r̂0, R̂0) = (R0, r0, d0).

Theorem 2.9. Let (R0, r0, d0) be as in Theorem 2.1 and let
N
Ri,

N
ri,
N
di, i =

1, 2 be defined as(
N
R1

)2

= R̂0

(
R̂0 + r̂0 +

√
(R̂0 + r̂0)2 − (d̂0)2

)
,(2.10a) (

N
r1

)2

= (R̂0 + r̂0)
2 − (d̂0)

2,(2.10b) (
N
d1

)2

= R̂0

(
R̂0 + r̂0 −

√
(R̂0 + r̂0)2 − (d̂0)2

)
,(2.10c) (

N
R2

)2

= R̂0

(
R̂0 − r̂0 +

√
(R̂0 − r̂0)2 − (d̂0)2

)
,(2.10d) (

N
r2

)2

= (R̂0 − r̂0)2 − (d̂0)
2,(2.10e) (

N
d2

)2

= R̂0

(
R̂0 − r̂0 −

√
(R̂0 − r̂0)2 − (d̂0)2

)
.(2.10f)

Then the subsequent relations follow

γ1

(
d̂0

R̂0

)
=

N
d1

N
R1

, γ2

(
d̂0

R̂0

)
=

N
d2

N
R2

,(2.11a)

ϕ1

(
d̂0

R̂0

)
=

N
R1

N
d1

, ϕ2

(
d̂0

R̂0

)
=

N
R2

N
d2

,(2.11b)
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σ1

(
R̂0

d̂0

)
=

N
d1

N
R1

, σ2

(
R̂0

d̂0

)
=

N
d2

N
R2

,(2.11c)

τ1

(
R̂0

d̂0

)
=

N
R1

N
d1

, τ2

(
R̂0

d̂0

)
=

N
R2

N
d2

.(2.11d)

Proof. We will use the following straightforward equalities

(2.12)
N
R1

N
d1 =

N
R2

N
d2 = R̂0d̂0.

Indeed, (
N
R1

N
d1

)2

=

[
R̂0

(
R̂0 + r̂0 +

√
(R̂0 + r̂0)2 − (d̂0)2

)]
·

·
[
R̂0

(
R̂0 + r̂0 −

√
(R̂0 + r̂0)2 − (d̂0)2

)]
=

=(R̂0d̂0)
2.

Using (2.12) and (2.1) we arrive at

γ1

(
d̂0

R̂0

)
=

R̂0

(
R̂0 + r̂0 −

√
(R̂0 + r̂0)2 − (d̂0)2

)
R̂0d̂0

=

(
N
d1

)2

N
R1

N
d1

=

N
d1

N
R1

γ2

(
d̂0

R̂0

)
=

R̂0

(
R̂0 − r̂0 −

√
(R̂0 − r̂0)2 − (d̂0)2

)
R̂0d̂0

=

(
N
d2

)2

N
R2

N
d2

=

N
d2

N
R2

,

which finally confrim (2.11). ♦

Corollary 2.10. For i = 1, 2 we have

γi

(
d̂0

R̂0

)
· ϕi

(
d̂0

R̂0

)
= 1,

γi

(
d̂0

R̂0

)
· τi

(
R̂0

d̂0

)
= 1,

σi

(
R̂0

d̂0

)
· τi

(
R̂0

d̂0

)
= 1.
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Corollary 2.11. It holds

either γ1(R̂0, r̂0, d̂0) = (
N
R1,

N
r1,
N
d1) or γ2(R̂0, r̂0, d̂0) = (

N
R2,

N
r2,
N
d2),

(2.13a)

either ϕ1(R̂0, r̂0, d̂0) = (
N
d1,
N
r1,

N
R1) or ϕ2(R̂0, r̂0, d̂0) = (

N
d2,
N
r2,

N
R2),

(2.13b)

either σ1(d̂0, r̂0, R̂0) = (
N
R1,

N
r1,
N
d1) or σ2(d̂0, r̂0, R̂0) = (

N
R2,

N
r2,
N
d2),

(2.13c)

either τ1(d̂0, r̂0, R̂0) = (
N
d1,
N
r1,

N
R1) or τ2(d̂0, r̂0, R̂0) = (

N
d2,
N
r2,

N
R2).

(2.13d)

The proof follows from (2.14a), so it is omitted.

Corollary 2.12. It holds

γ1

(
d̂0

R̂0

)
= σ1

(
R̂0

d̂0

)
, γ2

(
d̂0

R̂0

)
= σ2

(
R̂0

d̂0

)
,(2.14a)

ϕ1

(
d̂0

R̂0

)
= τ1

(
R̂0

d̂0

)
, ϕ2

(
d̂0

R̂0

)
= τ2

(
R̂0

d̂0

)
.(2.14b)

Remark that for all functions γ1, ϕ1, σ1, τ1 we get different kind then
in the case of γ2, ϕ2, σ2, τ2.

Now, we extend the meaning of definition of γi, ϕi, σi, τi, i = 1, 2
carried by (1.13) and (1.16) omitting the symbol ̂ throughout. This
results in

γ1

(
d0

R0

)
=
R0 + r0 −

√
(R0 + r0)2 − (d0)2

d0

,(2.15a)

γ2

(
d0

R0

)
=
R0 − r0 −

√
(R0 − r0)2 − (d0)2

d0

,(2.15b)

ϕ1

(
d0

R0

)
=
R0 + r0 +

√
(R0 + r0)2 − (d0)2

d0

,(2.15c)

ϕ2

(
d0

R0

)
=
R0 − r0 +

√
(R0 − r0)2 − (d0)2

d0

,(2.15d)
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σ1

(
R0

d0

)
=
R0 + r0 −

√
(R0 + r0)2 − (d0)2

d0

,(2.15e)

σ2

(
R0

d0

)
=
R0 − r0 −

√
(R0 − r0)2 − (d0)2

d0

,(2.15f)

τ1

(
R0

d0

)
=
R0 + r0 +

√
(R0 + r0)2 − (d0)2

d0

,(2.15g)

τ2

(
R0

d0

)
=
R0 − r0 +

√
(R0 − r0)2 − (d0)2

d0

.(2.15h)

Theorem 2.13. The following relations hold

γ1

(
d0

R0

)
=
d1

R1

, γ2

(
d0

R0

)
=
d2

R2

,(2.16a)

ϕ1

(
d0

R0

)
=
R1

d1

, ϕ2

(
d0

R0

)
=
R2

d2

,(2.16b)

σ1

(
R0

d0

)
=
d1

R1

, σ2

(
R0

d0

)
=
d2

R2

,(2.16c)

τ1

(
R0

d0

)
=
R1

d1

, τ2

(
R0

d0

)
=
R2

d2

,(2.16d)

where (Ri, ri, di), i = 1, 2 are given by (1.3) and (1.5).

Proof. The relation R1d1 = R2d2 = R0d0, which we can approve as

R2
1d

2
1 =

[
R0(R0 + r0 +

√
(R0 + r0)2 − d2

0)

]
·

·
[
R0(R0 + r0 −

√
(R0 + r0)2 − d2

0)

]
= R0d0.

the asserted equalities by (2.15) we rewrite as

γ1

(
d0

R0

)
=
R0

(
R0 + r0 −

√
(R0 + r0)2 − (d0)2

)
R0d0

=
d2

1

R1d1

=
d1

R1

,

γ2

(
d0

R0

)
=
R0

(
R0 − r0 −

√
(R0 − r0)2 − (d0)2

)
R0d0

=
d2

2

R2d2

=
d2

R2

.

The rest is obvious. ♦



Functions and relations which have a key role in study of bicentric polygons. . . 93

Corollary 2.14. We have

γ1

(
d0

R0

)
= σ1

(
R0

d0

)
, γ2

(
d0

R0

)
= σ2

(
R0

d0

)
,

ϕ1

(
d0

R0

)
= τ1

(
R0

d0

)
, ϕ2

(
d0

R0

)
= τ2

(
R0

d0

)
.

The shorthand form of (2.16) read

γ1(R0, r0, d0) = (R1, r1, d1), γ2(R0, r0, d0) = (R2, r2, d2),

ϕ1(R0, r0, d0) = (d1, r1, R1), ϕ2(R0, r0, d0) = (d2, r2, R2),

σ1(d0, r0, R0) = (R1, r1, d1), σ2(d0, r0, R0) = (R2, r2, d2),

τ1(d0, r0, R0) = (d1, r1, R1), τ2(d0, r0, R0) = (d2, r2, R2),

where we use the input triples for (2.16). Thus, if a triple (R0, r0, d0)
refers to bicentric polygons with incircle then the triple (d0, r0, R0) refers
to bicentric polygons with excircle.

Definition 2.15. Let Σ = S̃ \ K̃ and (d, r, R) ∈ S̃ \ K̃ if and only
if (R, r, d) ∈ S \ K. Let g̃ : S̃ \ K̃ → S̃ \ K̃ be a function for which
g̃(d, r, R) = (d̂, r̂, R̂), where d̂, r̂, R̂ are given by (1.14).

The functions g and g̃ we call rational dual functions.

In the sequel we note that relations (1.3), (1.5), (1.6) and (1.7)
ensure the validity of the previous theorem.

Theorem 2.16. Let (R0, r0, d0) ∈ S \K. Then

gγ1(R0, r0, d0) = g(R1, r1, d1) = (R̂1, r̂1, d̂1) = (R0, r0, d0),

g̃ϕ1(R0, r0, d0) = g̃(d1, r1, R1) = (d̂1, r̂1, R̂1) = (d0, r0, R0),

gσ1(d0, r0, R0) = g(R1, r1, d1) = (R̂1, r̂1, d̂1) = (R0, r0, d0),

g̃τ1(d0, r0, R0) = g̃(d1, r1, R1) = (d̂1, r̂1, R̂1) = (d0, r0, R0),

Analogous properties have γ2, ϕ2, σ2, τ2.

Corollary 2.17. The function g is left inverse for both of the functions
γ1 and γ2 and the function g̃ is left inverse for both of τ1 and τ2. None
of the functions g and g̃ is left the inverse for ϕ1, ϕ2, σ1, σ2.
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Here let us remark that there is a conjecture for τ1 and τ2 analogous
to the Conjecture 2 for γ1, γ2. Indeed, let g̃(dk, rk, Rk) = (dl, rl, Rl), where
k and l are rotation numbers for an odd n ≥ 3. Then

τ1(dl, rl, Rl) = (dk, rk, Rk) l even,
τ2(dl, rl, Rl) = (dk, rk, Rk) l odd.

Corollary 2.18. The following implications are valid:

γ1(R0, r0, d0) = (R1, r1, d1)⇒ (R̂1, r̂1, d̂1) = (R0, r0, d0),

γ2(R0, r0, d0) = (R2, r2, d2)⇒ (R̂2, r̂2, d̂2) = (R0, r0, d0),

ϕ1(R0, r0, d0) = (d1, r1, R1)⇒ (d̂1, r̂1, R̂1) = (d0, r0, R0),

ϕ2(R0, r0, d0) = (d2, r2, R2)⇒ (d̂2, r̂2, R̂2) = (d0, r0, R0),

σ1(d0, r0, R0) = (R1, r1, d1)⇒ (R̂1, r̂1, d̂1) = (R0, r0, d0),

σ2(d0, r0, R0) = (R2, r2, d2)⇒ (R̂2, r̂2, d̂2) = (R0, r0, d0),

τ1(d0, r0, R0) = (d1, r1, R1)⇒ (d̂1, r̂1, R̂1) = (d0, r0, R0),

τ2(d0, r0, R0) = (d2, r2, R2)⇒ (d̂2, r̂2, R̂2) = (d0, r0, R0).

Corollary 2.19. The solution r0 of (1.7) has the following rational form

r0 =
|2R2

i d
2
i + 2d2

i r
2
i + 2r2

iR
2
i −R4

i − d4
i |

2ri(R2
i − d2

i )
, i = 1, 2.

It is interesting to quote that for i = 1

R0 =
R2

1 − d2
1

2r1
, r0 =

2R2
1d

2
1 + 2d2

1r
2
1 + 2r2

1R
2
1 −R4

1 − d4
1

2r1(R2
1 − d2

1)
, d0 =

2R1r1d1

R2
1 − d2

2

,

but in the case i = 2

R0 =
R2

2 − d2
2

2r2
, r0 =

−(2R2
2d

2
2 + 2d2

2r
2
2 + 2r2

2R
2
2) +R4

2 + d4
2

2r2(R2
2 − d2

2)
, d0 =

2R2r2d2

R2
2 − d2

2

,

that is

2R2
1d

2
1 + 2d2

1r
2
1 + 2r2

1R
2
1 −R4

1 − d4
1 > 0,(2.17)

−2(R2
2d

2
2 + d2

2r
2
2 + r2

2R
2
2) +R4

2 + d4
2 > 0.(2.18)

By using computer algebra, relations (1.3) and (1.5) the proof imme-
diately follows. Of course, instead of (γ1, γ2) any another ordered pair
(ϕ1, ϕ2), (σ1, σ2), (τ1, τ2) can be treated.
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From Corollary 2.18 can be concluded that there is almost complete
analogy between properties of the functions γ1 and γ2 and the functions
τ1 and τ2. It is because γ1 and γ2 map (R0, r0, d0) onto (R1, r1, d1) and
(R2, r2, d2), respectively, and τ1, τ2 map (d0, r0, R0) onto (d1, r1, R1) and
(d2, r2, R2), respectively; cf. with Conjecture 1.7 and compare relations
(1.10).

Theorem 2.20. Let R0, r0, d0 be as in Theorem 2.1 and assume that
g(R0, r0, d0) = (R̂0, r̂0, d̂0). Then

either γ1(R̂0, r̂0, d̂0) = (R0, r0, d0) or γ2(R̂0, r̂0, d̂0) = (R0, r0, d0).

Proof. The assertion follows from Theorem 2.1;
The relation γ1(R̂0, r̂0, d̂0) = (R0, r0, d0) can be reduced into

γ1

(
d̂0/R̂0

)
= d0/R0, consult (1.11b). ♦

By similar way Theorem 2.3 implies the following result.

Theorem 2.21. Let R0, r0, d0 be as in Theorem 2.1. Then
either τ1(d̂0, r̂0, R̂0) = (d0, r0, R0) or τ2(d̂0, r̂0, R̂0) = (d0, r0, R0).

Conjecture 2.22. Let (R0, r0, d0) ∈ R3
+ and Fn(R0, r0, d0) = 0 where

n ≥ 3 is an odd integer. If γ1(R̂0, r̂0, d̂0) = (R0, r0, d0) then rotation
numbers of (R̂0, r̂0, d̂0) is even, but if γ2(R̂0, r̂0, d̂0) = (R0, r0, d0) then ro-
tation number of (R̂0, r̂0, d̂0) is odd. Analogous holds for another ordered
pairs (ϕ1, ϕ2), (σ1, σ2), (τ1, τ2).

3. About n–gons with incircle and those with excircle

In this section we expose some improvements and extension of re-
sults reported in [9].

First in brief on a phenomenon which refers to Fuss’ relations for
bicentric n-gons with excircle where n ≥ 3 is an odd integer, that is,
few words about the geometrical configurations determined by triple
(R0, r0, d0) and by (d0, r0, R0) where R0, r0, d0 > 0 and Fn(R0, r0, d0) = 0,
see Figures 5, 6 and 7. The Figure 5 is determined by (R0, r0, d0) and
Figure 6 is determined by triple (d0, r0, R0) dual to the triple (R0, r0, d0),
that is, (R̃0, r̃0, d̃0) = (d0, r0, R0), compare (1.1). The first figure refers to
bicentric polygons with incircle and the second refers to bicetric polygons
with excircle. Each of them can be called dual to the other.
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Figure 2: The center of C1 is
point O, the center of C2 is point
I0, |AO| = R0, |BI0| = r0,
|OI0| = d0.

Figure 3: The center of C̃1 is de-
noted by Õ, the center of C̃2 is
denoted by Ĩ0,

∣∣∣AÕ∣∣∣ = R̃0 = d0,∣∣∣BĨ0∣∣∣ = r̃0 = r0,
∣∣∣ÕĨ0∣∣∣ = d̃0 =0.

Theorem 3.1. Let R0, r0, d0 > 0 which satisfy R0 > r0 + d0 and
Fn(R0, r0, d0) = 0. Let C1, C2 and C̃1, C̃2 be positioned according to
Figure 3 and Figure 3. Then for any fixed point P ∈ C1, there is exists a
point P̃ ∈ C̃1 for which holds

(3.1) |PT | =
∣∣P̃ T̃ ∣∣,

where |PT | is the tangent length drawn from P to C2 and |P̃ T̃ | is the
length of tangent drawn from P̃ to C̃2.

Proof. Let h denotes homotheticity of the plane which contains circle C1,
such that center O of C1 is center of h and d0/R0 is coefficient of h. Thus
h maps circle C1 onto circle C ′1 which is congruent to the circle C̃1 (since
d0

R0
· R0 = d0). (See Figure 4). The circle C ′1 has radius d0 = R̃0 as the

circle C̃1.
Accordingly, we introduce the rectangular coordinate system xOy

in the plane which contains circle C1 such that center O of C1 is its
origin and center I0 of C2 lie on the positive part of x-axis. Thus, if
P has coordinates (u1, v1) then point P ′ has coordinates (u′, v′) so that
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Figure 4:

u′ = d0

R0
u, v′ = d0

R0
v. Hence

(3.2a) P (u, v)→ P ′
(
d0

R0

u,
d0

R0

v

)
.

Also, define another rectangular coordinate system x̃Õỹ in the plane
which contains circle C̃1 so, that center Õ of C̃1 is the origin and positive
part of x̃–axis contain the center Ĩ0 of C̃2. Thus, there is a point P̃ ∈ C̃1
with coordinates which are the same as those of point P ′, which means

(3.2b) P (u, v)→ P̃

(
d0

R0

u,
d0

R0

v

)
.

Now we can write

|PT |2 = (u− d0)
2 + v2 − r2

0 = R2
0 + d2

0 − r2
0 − 2d0u,∣∣P̃ T̃ ∣∣2 = (u′ −R0)

2 + (v′)2 − r2
0 = R2

0 + d2
0 − r2

0 − 2d0u,

since |PT |2 = |PI0|2 − r2
0, |P̃ T̃ |2 = |P̃ Ĩ0|2 − r2

0. ♦

Corollary 3.2. Let (R0, r0, d0) be a positive triple for which
F

(k)
n (R0, r0, d0) = 0, where k is an element from the set of rotation

numbers for n. Let A1 · · ·An be an n-gon inscribed in C1 and circum-
scribed around C2 such that the first vertex is P , that is, A1 = P . Let
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t1, · · · , tn be tangent lengths of the n-gon A1 · · ·An. Then there is an
n-gon Ã1 · · · Ãn inscribed in C̃1 and circumscribed around C̃2 such that
t̃i = ti, i = 1, · · · , n that is∣∣ÃiT̃i

∣∣ = |AiTi| , i = 1, · · · , n.

Proof. For each vertex Ai of the n-gon A1 · · ·An by Theorem 3.1 there
is vertex Ãi of the n-gon Ã1 · · · Ãn for which t̃i = ti, i = 1, · · · , n. From
this follows

n∑
i=1

arctan
t̃i
r0

=
n∑

i=1

arctan
ti
r0

= kπ.

Thus, the n-gon Ã1 · · · Ãn is inscribed in C̃1 and circumscribed to C̃2. ♦

Figure 5: The triple
(R0, r0, d0) = (5, 2.1, 2) is
a solution of Fuss’ relation
F3(R, r, d) = 0, that is,
R2

0 − d2
0 − 2R0r0 = 0.

Figure 6: The triple
(R̃0, r̃0, d̃0) = (2, 2.1, 5) is
a solution of Fuss’ relation
d2 − R2 − 2dr = 0 and it holds
|ÃiT̃i| = |AiTi|, i = 1, 2, 3.

Example 3.3. Consider the case n = 3. Observe Figure 5, where t1 =
|A1T1| = 4, t2 = |A2T2| = 2.257285251, t3 = |A3T3| = 5.973973936.
Using these tangent lengths we see that vertices of the triangle ∆A1A2A3

(related to coordinate system like the one in Theorem 3.1) are
A1(2.1475,−4.51532429), A2(4.873665824, 1.116962318),

A3(−2.74591147, 4.178512917).
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Figure 7: Triangles Ã1Ã3Ã5 and Ã4Ã6Ã2 are axial symmetric in relation
to x-axis and triangle ∆Ã1Ã3Ã5 is congruent to the triangle ∆Ã1Ã2Ã3

shown at Figure 6.

So, for t1 = 4 we have t21 = R2
0 + d2

0 − r2
0 − 2d0u1 from which follows

u1 = 2.1475, since t1 = 4, R0 = 5, r0 = 2.1, d0 = 2.
The vertices Ã1, Ã2, Ã3 of the corresponding triangle referred to

(R̃0, r̃0, d̃0) = (2, 2.1, 5) are given by Ãi(ũi, ṽi), i = 1, 2, 3, where

(3.3) (ũ1, ṽi) =

(
2

5
ui,

2

5
vi

)
, i = 1, 2, 3.

Consider now Figure 6. The vertices Ã1, Ã2, Ã3 of the triangle ∆Ã1Ã2Ã3

are given by (3.3).
Accordingly, using ũ1, ũ2, ũ3 we derive tangent lengths and find that∣∣ÃiT̃i

∣∣ = |AiTi| , i = 1, 2, 3 Therefore from t̃i = ti, i = 1, 2, 3, bearing in
mind that

3∑
i=1

arctan
ti
r0

= π,

we conclude

arctan
t̃1
r0

+ arctan
t̃2
r0

+ arctan
t̃3
r0

= π.

The triangle ∆Ã1Ã2Ã3 shown at Figure 4(b) is similar to ∆A1A2A3 pre-
sented on Figure 5.

The triangles ∆Ã1Ã3Ã5 and ∆Ã4Ã6Ã2 presented in Figure 7 are
axial symmetric with respect to x-axis. From this clearly follows that

|Ã1T̃1| = |Ã4T̃4| = |A1T1|,
|Ã2T̃2| = |Ã5T̃5| = |A2T2|,
|Ã3T̃3| = |Ã6T̃6| = |A3T3|.

(3.4)
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Conjecture 3.4. Let n ≥ 3 be odd integer and let (R0, r0, d0) ∈ R3
+ so

that Fn(R0, r0, d0) = 0. Let C1, C2 and C̃1, C̃2 be like C1, C2 and C̃1, C̃2

at Figure 2. Then there exists 2n-gon Ã1 · · · Ã2n inscribed in C̃1 and
circumscribed to C̃2 that n-gons

Ã1Ã3 . . . Ã2n−1, Ã1+nÃ3+n . . . Ãn+nÃ2Ã4Ã6 · · · Ãn−1

are axially symmetric with respect to x-axis. Using those n-gons we get
for a given odd n ≥ 3 geometrical configuration completely analogous to
the configurations presented at Figures 6 and 7.

In the case of even n ≥ 4 only an n-gon Ã1 . . . Ãn exists, see Figure 8
and Figure 9 where n = 4.

Figure 8: At this figure is
|AO| = R0, |OI0| = d0,
|I0B| = r0, where R0 = 5,
r0 = 3.328201177 . . . , d0 = 1
and Fn(R0, r0, d0) = 0

Figure 9: This Figure is dual to
Figure 8

Definition 3.5. Let R, d be mutually interchanged in Fuss’ relation
Fn(R, r, d) = 0 for bicentric n-gons with incircle and denote the so ob-
tained relation F̃n(d, r, R) = 0.

Theorem 3.6. Assume (R0, r0, d0) ∈ R3
+ and Fn(R0, r0, d0) = 0. Then

Fn(R0, r0, d0) = 0 ⇔ F̃n(d0, r0, R0) = 0.
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Corollary 3.7. Specify d = a,R = b; a > b > 0 in relation F̃n(d, r, R) =
0. Then there is r > 0 for which F̃n(a, r, b) = 0 and Fn(a, r, b) = 0, that
is (a, r, b) is also a solution of Fuss’ relation Fn(R, r, d) = 0.

It is natural to call relations Fn(R, r, d) = 0 and F̃n(d, r, R) = 0 dual
Fuss’ relations for bicentric polygons, the first one for bicentric polygons
with incircle and the second one for bicentric polygons with excircle.

Now, we discuss certain relations for odd n ≥ 3, see Conjecture 3.4.
As an example see also Figure 5, Figure 6 and Figure 7. Here is t̃i =
ti+3 = ti, i = 1, 2, 3, where t̃i refers to Figure 6, ti+3 refers to Figure 7
and ti turns out to be referred to Figure 5. Triangles ∆Ã1Ã3Ã5 and
∆Ã4Ã6Ã2 are axially symmetric with respect to x-axis and the indices
are related in the manner 4 = 1 + 3, 6 = 3 + 3, 5 + 3 = 8, 8 = 2 · 3 + 2.

The following question arises: which of the Figures 6 and 7 is more
appropriate in the theory of bicentric polygons with excircle? The fol-
lowing facts suggest the answer.

(i1) From each of the vertices A1, A2, A3 drawn at Figure 5 there are two
equal length tangents to the circle C2

(i2) From each of the vertices Ã1, Ã2, Ã3 of ∆Ã1Ã2Ã3 drawn at Figure 6
there are two equal length tangents to the circle C̃2. These tangents
are the same as the tangents drawn at Figure 7 using the well known
algorithm.

The facts expressed by (i1) and (i2) suggest that the axial symmetric
vertices in Figure 7 can be identified and instead of Figure 7 to use
Figure 6. The Figure 6 is simpler and from it we easily get the other.

Next, we investigate Fuss’ relations for bicentric n-gons with incircle
for even n ≥ 4.

Definition 3.8. Let R0, r0, d0 be any given positive solution of Fuss’
relation Fn(R, r, d) = 0 for even n ≥ 4. Then Fn(R, r, d) = 0 will be called
reduced Fuss’ relation for bicentric n-gons with incircle if Fn(R0, r0, d0) =
0, but is not Fn(d0, r0, R0) = 0, where R, r, d in Fn(R, r, d) = 0 are
replaced by d0, r0, R0, respectively.

Conjecture 3.9. Any Fuss’ relation Fn(R, r, d) = 0 for even n ≥ 4 can
be expressed as a reduced one. If Fuss’ relation Fn(R, r, d=0 with n even
is a polynomial in R, r, d, then this relation cannot be a reduced one.



102 Mirko Radić

Here are some examples where n = 4, 6, that is

F4(R, r, d) = p2 + q2 − p2q2 = 0,(3.5)
F6(R, r, d) = 3p4q4 − 2p4q2 − p4 − 2p2q4 + 2p2q2 − q4 = 0,(3.6)

where

p =
R + d

r
, q =

R− d
r

.

From (3.5) we deduce the reduced Fuss’ relation for bicentric quadrilat-
erals with incircle in the form

pq −
√
p2 + q2 = 0.

Of course, the related reduced Fuss’ relation for bicentric quadrilaterals
with excircle becomes

p(−q)−
√
p2 + q2 = 0.

From (3.6) we get the reduced Fuss’ relations for bicentric hexagons with
incircle and those with excircle, which reads

pq
4
√

3 = 4
√

2p4q2 + p4 + 2p2q4 − 2p2q2 + q4,

p(−q) 4
√

3 = 4
√

2p4q2 + p4 + 2p2q4 − 2p2q2 + q4.

Obviously, instead of (3.6) we can employ
2p2q2 = q4 + 2p2q4 + p4 + 2p4q2 − 3p4q4,

which results in reduced amount of calculations.
Analogously can be reached the reduced Fuss’ relation Fn(R, r, d) =

0 and F̃n(R, r, d) = 0 for n = 8, 10, 12, . . . , 20, compare [11, pp. 161-166].

4. Conclusion

In studying bicentric n-gons with incircle and those with excircle it
is highly powerful and useful to introduce the functions γi, ϕi, σi, τi, i =
1, 2 which any of considered geometrical configurations map onto each
other. So, for instance

γ1(R0, r0, d0) = (R1, r1, d1), ϕ1(R0, r0, d0) = (d1, r1, R1),

σ1(d0, r0, R0) = (R1, r1, d1), τ1(d0, r0, R0) = (d1, r1, R1),

where the triples turn out to be the solutions of the corresponding Fuss’
relations. Hence,
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(j1) Each function γ1, γ2 map geometrical configuration with incircle onto
geometrical configurations with incircle.

(j2) Both functions ϕ1, ϕ2 map geometrical configuration with incircle
onto geometrical configurations with excircle.

(j3) Each of the functions σ1, σ2 map geometrical configuration with ex-
circle onto geometrical configurations with incircle.

(j4) The functions τ1, τ2 map geometrical configuration with excircle onto
geometrical configurations with excircle.

The results obtained are valuable contributions to the theory of bicentric
polygons where conics are circles.
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