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Abstract: We use categorical methods to clarify the fundamental relations
between planar nearrings and block designs by introducing new concepts of
Ferrero categories and Clay functors.

1. Introduction

We start with a quote from [11]: “Nearrings are generalized rings:
commutativity of addition is not assumed and only one distributive law
is required. The most famous example is the collection of all maps from
an additive group into itself. . . . The theory of nearrings is a sophisti-
cated theory which has found numerous applications...”. The definition
of nearrings will be given in Sec. 4. As for general references for nearrings
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we take [3] and [10].

Some part of the theory of nearrings has a heavy combinatorial
favour. In particular, this is the case in planar nearrings and balanced
incomplete block designs. Due to this, much effort was spent on sets and
equations. Here, we propose a new point of view by emphasizing the the
role played by the yet neglected morphisms.

First, we expand the work of Ferrero [4] by introducing suitable
concepts of morphisms and show that we can define a category of Ferrero
pairs which is complete and cocomplete. We indicate why this cannot be
an additive category. Then we construct the category of Ferrero triples
from which we construct a functor to the category of nearrings. The
category point of view makes relations between objects involved more
precise. For example in order to reverse the direction of the functor from
Ferrero triples to nearrings we show that it is an equivalence of categories,
and yet this is not the same as an isomorphism.

The final category we introduce is that of balanced incomplete block
designs (BIBD) ([13]). This is usually not treated as a category. But
then our interest is not pure combinatorics. We are more interested in
the structures involved. Finally we impose conditions on the morphisms
allowed to refine the categories that will appear in our construction of
the Clay functor.

It is fair to say that the construction on the objects are known
classically. Our contribution is to provide the missing morphisms to give a
categorial structure to the theory of nearrings. The functors we construct
here have never been introduced in the standard theory of nearrings. We
go further than earlier attempts at a categorical study made by Clay [3,
Chapter 3] and Pilz [12]. We give a categorical analysis of the celebrated
papers of Ferrero [4] and Clay [2] by introducing Ferrero categories and
the Clay functor. We hope that our new perspective not only clarifies
the fundamental relations between nearrings and block designs but also
opens the way to further developments in theory of nearrings.

2. Ferrero pairs

Given a set Φ we can consider the category of all groups N equipped
with an action by Φ as endomorphisms, with morphisms the group ho-
momorphisms φ : N → N ′ commuting with all elements φ of Φ, i.e.
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Tφ = φT . This category has most of the properties of the category of
modules over a given ring (see [5]). For the purpose of studying nearrings
we extend this concept to groups with operators.

Given a group N with group operation written additively (though
this may not be commutative) and a group Φ of automorphisms of N
such that every φ ∈ Φ \ {idN} is fixed point free (φ(x) = x only if x = 0)
in N . Here idN denotes the identity map from N to N itself. We call
F = (N,Φ) a Ferrero pair. Note that this is not the same in general
as the Ferrero pairs given by Clay, which would be planar Ferrero pairs
given in Sec. 4.

By a morphism of Ferrero pairs F and F ′ we mean a pair t : N → N ′

and T : Φ → Φ′ of group homomorphisms such that for all φ ∈ Φ the
following diagram is commutative:

N
t−−−→ N ′

φ

y yTφ
N

t−−−→ N ′

.

Given two morphisms of of Ferrero pairs (t, T ) : F → F ′ and
(t′, T ′) : F ′ → F ′′, the following diagram shows that we can define com-
position as (t′, T ′) ◦ (t, T ) = (t′ ◦ t, T ′ ◦ T ):

N
t−−−→ N ′

t′−−−→ N ′′

φ

y yTφ yT ′(Tφ)

N
t−−−→ N ′

t′−−−→ N ′′

.

The following proposition is clear.

Proposition 2.1. Composition is associative and identity morphisms
are (idN , idΦ).

Thus we have defined the category of Ferrero pairs which we shall
denote by CF.P.. A Ferrero pair F = (N,Φ) is said to be finite if both
N and Φ are finite. The full subcategory of finite Ferrero pairs will be
denote by Cf.F.P..

We shall say that the morphism (t, T ) : F → F ′ of Ferrero pairs
is an isomorphism if both t and T are isomorphisms. The following
proposition is clear.
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Proposition 2.2. The morphism (t, T ) : F → F ′ of Ferrero pairs is an
isomorphism if and only if Tφ = tφt−1.

For groups in additive notation a morphism 0 : N → N ′ is a zero
morphism if it factors through the zero group:

N
0 //

��

N ′

0

>> .

For groups in multiplicative notation a zero morphism is one which factor
through the group 1 and in this case we write 1 for the “zero” morphism.

The zero morphism in the Ferrero category CF.P. is (0, 1).

Given a morphism (t, T ) : (N,Φ)→ (N ′,Φ′) of Ferrero pairs we set
K = Ker t, Ψ = KerT , and let i : K → N , I : Ψ → Φ be the inclusion
homomorphisms. For k ∈ K and φ ∈ Φ we have tφk = Tφik = 0 and so
φK ⊂ K. It follows that (i, I) : (K,Ψ) → (N,Φ) is a morphism in the
category CF.P. of Ferrero pairs.

Proposition 2.3. (i, I) : (K,Ψ) → (N,Φ) is the kernel of (t, T ) :
(N,Φ)→ (N ′,Φ′) in CF.P..

Proof. The proposition says that (i, I) is the equalizer of (T,A) and
(0, 1). So we need to show that if (s, S) : (Y,Ξ)→ (N,Φ) is a morphism
such that (t, T ) ◦ (s, S) = (0, 1) ◦ (s, S), then there is a unique morphism
(r, R) : (Y,Ξ)→ (K,Ψ) such that the following diagram commutes

(K,Ψ)
(i,I) // (N,Φ)

(t,T )
--

(0,1)
11 (N

′,Φ′)

(Y,Ξ)

(r,R)

OO

(s,S)

::
.

But by construction we have in the category of groups unique homomor-
phisms R : X → K and C : Ξ→ Ψ such that

K i // N
t **

0
44 N ′

Y

r

OO

s

>> and Ψ I // Φ
T **

1

44 Φ′

Ξ

R

OO

S

?? .
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Moreover the image of r is in K, the image of R is in Ψ and so in fact
r = s and S = R. By assumption (s, S) is a morphism in CF.P. and so is
(r, R). ♦

In the same way one can establish that co-equalizers exist in the
category of Ferrero pairs and we can prove the isomorphism theorems as
in the case of groups with operators. See also [12].

Next we show that the category of Ferrero pairs has products.

Theorem 2.4. The category CF.P. of Ferrero pairs is complete and co-
complete.

Proof. We start with a family of Ferrero pairs (Ni,Φi) indexed by i∈I.
We take products in the category of groups to get products with pro-
jections pi :

∏
iNi → Ni, Pi :

∏
i Φi → Φi. We let

∏
i Φi acts on

∏
iNi

componentwise. This means that the diagram∏
iNi

pi−−−→ Ni

φ

y yPiφ∏
iNi

pi−−−→ Ni

commutes for any φ ∈
∏

i Φi. This says that

(pi, Pi) :

(∏
i

Ni,
∏
i

Φi

)
→ (Ni,Φi)

is a morphism in CF.P..

We shall show that this map defines a product in CF.P.. For this
we take a family of CF.P.-morphisms (ti, Ti) : (X,Ξ) → (Ni,Φi), and we
need to find a unique morphism (t, T ) : (X,Ξ) → (

∏
iNi,

∏
i Φi) such

that (pi, Pi) ◦ (t, T ) = (ti, Ti) in CF.P..

From the construction of
∏

iNi and
∏

i Φi we obtain unique homo-
morphisms t : X →

∏
iNi and T : Ξ→

∏
i Φi such that

pit = ti and PiT = Ti.

It remains to check that (t, T ) is a morphism in CF.P..

As (ti, Ti) is a CF.P.-morphisms, for any ξ ∈ Ξ we get
tiξ = Tiξti = PiTξti = PiTξpit

with the second equality coming from the following diagram
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Ξ
Ti

""
T
��∏
i Φi Pi

// Φi

for the product
∏

i Φi, and the third equality from pit = ti given above.
From the fact that (pi, Pi) is a morphism in CF.P. and TΞ ∈

∏
i Φi we get

pitξpi = pitΞ and so
pitξ = tiξ = piTξt.

Call this map si : X → Ni. Then we have two maps tξ and Tξt from X
to
∏

iNi making the following diagram commutative

X
si

##��∏
iNi pi

// Ni .

By the uniqueness we get tξ = Tξt, i.e.

X
t−−−→

∏
iNi

ξ

y yTξ
X

t−−−→
∏

iNi

commutes. This completes the proof that (t, T ) is a morphism in CF.P..

The case of coproducts follow the same lines. ♦

In general it is not possible to add two morphisms of Ferrero pairs
using the usual addition of morphisms of additive group. This explains
why it is difficult to give the structure of an additive category to the cate-
gory of Ferrero pairs and thus blocks the usual techniques of homological
algebra. However we have the following result.

A Ferrero pair F = (N,Φ) is said to be abelian if N is abelian. We
note that the additive group of a planar nearring is automatically almost
abelian.

Proposition 2.5. Let F = (N,Φ) and F ′ = (N ′,Φ′) be abelian Ferrero
pairs, and fix a homomorphism T : Φ → Φ′. The set HomT (F, F ′) of
all morphisms from F to F ′ of the form (t, T ) is an abelian group with
addition given by (t1, T ) + (t2, T ) = (t1 + t2, T ) where t1 + t2 is defined as

(t1 + t2)(a) = t1(a) + t2(a) for a ∈ N.
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The map t1 + t2 can also be described as the composition of the
push-out of t1, t2 and the addition in N ′:

N
t2−−−→ N ′

t1

y y
N ′ −−−→ N ′ ⊕N ′ α−−−→ N ′

with α(b1, b2) = b1 + b2.

3. Ferrero triples

Given a Ferrero pair F = (N,Φ) we denote the set of orbits of the
the action Φ×N → N by Φ\N and the natural projection by

ρ : N → Φ\N : a 7→ Φa.

By a section of F we shall mean a map σ : Φ\N → N such that ρσ = idN .
The set of all sections of F will be denoted by ΣF . It is easy to check
that if σ ∈ ΣF then φσ ∈ ΣF for φ ∈ Φ. Thus Φ also acts on ΣF .

Let (t, T ) : F → F ′ be a morphism of Ferrero pairs. We can write
the condition on morphism as tφ = Tφt and so for a ∈ N we have

tΦa ⊂ TΦta ⊂ Φ′ta.

Thus it makes sense to say that the morphism (t, T ) induces a map on
the orbit sets

T : Φ\N → Φ′\N ′ : Φa 7→ Φ′ta.

A Ferrero triple is the data (N,Φ, σ) where F = (N,Φ) is a Ferrero
pair and σ ∈ ΣF is a section of F . A morphism (t, T ) : F → F ′ of
Ferrero pairs is a morphism of Ferrero triples (N,Φ, σ) → (N ′,Φ′, σ′) if
the following diagram commutes

N
σ←−−− Φ\N

t

y yT
N ←−−−

σ′
Φ′\N ′

.

The Ferrero triples with morphism defined as above form a category
which we denote by CF.T.. The category of finite Ferrero triples is denoted
by Cf.F.T.. See [8, §2.3].

It is easy to check the following proposition.
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Proposition 3.1. An isomorphism (t, T ) : F → F ′ of Ferrero pairs is
an isomorphism of Ferrero triples (N,Φ, σ) → (N ′,Φ′, σ′) if and only if
t(Imσ) = Imσ′.

4. Nearrings

A nearring is a triple (N,+, ∗) so that (1) (N,+) is a group; (2)
(N, ∗) is a semigroup; and (3) a∗ (b+ c)=a∗ b+a∗ c for all a, b, c∈N . A
morphism of nearrings t : (N,+, ∗) → (N ′,+′, ∗′) is a group homomor-
phism t : (N,+) → (N ′,+′) such that t(a ∗ b) = ta ∗′ tb. We shall write
in the future ∗, + for ∗′, +′ respectively. The category of nearrings will
be denoted by CN.R..

For a, b ∈ N we write a ≡m b whenever a ∗ x = b ∗ x for all x ∈ N .
The relation ≡m is an equivalence relation. Say (N,+, ∗) is a planar
nearring if the set N/≡m of equivalence classes has at least 3 elements
and for each triple a, b, c ∈ N with a 6≡m b, the equation a ∗ x = b ∗ x+ c
has a unique solution x ∈ N . In another words this is saying that two
lines of different “slops” define a unique point. We say that a planar
nearring N is integral if for a ∈ N , a ≡m 0 if and only if a = 0.

Let (N,Φ, σ) be a Ferrero triple. The image C of σ is a complete
set of orbit representatives of Φ in N . Then N = ∪cΦ(c). For a, b ∈ N
define

a ∗ b =

{
φ(b) if a = φ(c), c ∈ C \ {0}, φ ∈ Φ,

0 otherwise.

Then (N,+, ∗) is an integral nearring. We shall also write
η((N,Φ, σ)) = (N,+, ∗).

We note that the definition actually says that φ(b) = φ(c) ∗ b for
any nonzero c ∈ C!

Suppose that (t, T ) : (N,Φ, σ) → (N ′,Φ′, σ′) is a morphism of
Ferrero triples. By definition, t : (N,+) → (N ′,+) is a homomorphism.
Now from φ(c) ∗ b = φ(b) we get

t(φ(c) ∗ b) = t(φ(b)) = (Tφ)tb = (Tφ)(tc) ∗ tb = t(φc) ∗ tb .
This shows that t is a nearring homomorphism. We denote this by η(t, T ),
i.e. η(t, T ) = t.
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We say a Ferrero pair F is planar if |Φ| ≥ 2 and −idN + φ is sur-
jective for every φ ∈ Φ \ idN . The condition |Φ| ≥ 2 is to ensure that
there are at least two different “slopes” in the system. The planarity,
i.e. the second condition, says that if a and b are two non-equivalent ele-
ments (so they correspond to different elements in Φ), then the equation
ax = bx + c has a unique solution. When F is finite with |Φ| ≥ 2, it is
automatically planar. See [3, §4].

We introduce the category Cf.p.F.T. whose objects are finite pla-
nar Ferrero triples and morphisms are those morphisms (t, T ) of Ferrero
triples such that t is an isomorphism. We also define the category Cf.i.p.N.R.

with objects which are finite integral planar nearring and we stipulate
that the morphisms between objects in this category are isomorphisms
of nearring.

Theorem 4.1. (1) Let F, F ′ be two finite planar Ferrero triples. The
map

η : HomCf.p.F.T.
(F, F ′) −→ HomCf.i.p.N.R.

(ηF, ηF ′)

is bijective.

(2) For any integral planar nearring (N,+, ∗) there exists a Ferrero
triple (N,Φ, σ) such that

η((N,Φ, σ)) = (N,+, ∗).

(3) We have an equivalence of categories given by the functor
η : Cf.p.F.T. −→ Cf.i.p.N.R..

Proof. (1) follows from 2.2 which characterizes when t is an isomor-
phism, and T is uniquely determined as φ 7→ tφt−1.

(2) can be found in [3, p. 47].

(3) It is clear that η(idN , idΦ) = idN says that
η(id(N,Φ,σ)) = idη((N,Φ,σ)).

Also η(s, S) ◦ η(t, T ) = η(s ◦ t, S ◦ T ). This shows that η : CF.T. → CN.R.

is a functor. Now parts (1) and (2) says that η is an equivalence of
categories. ♦

Remark 4.2. The above theorem shows that the situation is quite
“rigid”. However it does open the way to further investigation as to
what will happen if we relax the conditions on the choice of morphisms
for the categories involved.
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Another point is this. Given two finite planar Ferrero triples F
and F ′. Then the category HomCf.p.F.T.

(F, F ′) is nonempty if and only if
HomCf.p.F.T.

(ηF, ηF ′) is nonempty. This is the same as saying ηF and ηF ′

are isomorphic if and only if there exists an isomorphism t : N → N ′

such that Φ′ = tΦt−1. See [6].

5. BIBD’s

A tactical configuration is a pair (X,X ) such that the following
properties are satisfied:

(1) X is a finite set of elements called points or treatments,

(2) X is a collection (i.e., multiset) of nonempty subsets of X called
blocks, and

(3) each block in X has a fixed size k.

Let v, k, and λ be positive integers such that v > k ≥ 2. A (v, k, λ)-
balanced incomplete block design (which is abbreviated to (v, k, λ)-BIBD)
is a tactical configuration (X,X ) such that the following properties are
satisfied:

(1) |X| = v,

(2) each block contains exactly k points, and

(3) every pair of distinct points is contained in exactly λ blocks.

The number λ is called the concurrence parameter. A BIBD is also called
a 2-design because of the concurrent condition. When the blocks of a 2-
design are all distinct, the design is said to be simple. In the following,
a design is understood to be a 2-design.

For a map f : X → Y and A ∈ X we write f(A) = {f(x) : x ∈ A}.
We define a morphism from a design (X,X ) to a design (Y,Y) to be a
pair of maps f : X → Y , F : X → Y such that for every A ∈ X we
have f(A) = F (A). Clearly composition of morphisms of designs is a
morphism of design and composition is associative. Therefore we can
talk about the category CBIBD of BIBD’s.

Remark 5.1. We could have said that a design morphism is a map
f : X → Y such that f(A) ∈ Y for all A ∈ X . But we shall see how the
second map F makes certain categorical argument easy.
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A design morphism (m,M) is said to be monic if (m,M)◦ (f, F ) =
= (m,M) ◦ (g,G) implies (f, F ) = (g,G). A design morphism (s, S) is
said to be epic if (f, F ) ◦ (s, S) = (g,G) ◦ (s, S) implies (f, F ) = (g,G).

Proposition 5.2. If (f, F ) : (X,X ) → (Y,Y) is both monic and epic
then f : X → Y is bijective and

{f(A) : A ∈ X} = Y .

Proof. The fact that f is monic and epic on sets means that f is bijective.
The same is true for F . In fact from (f, F ) is monic follows that both f
and F are injective, and so if f(A1) = f(A2) then F (A1) = F (A2) and
hence A1 = A2. Assuming (f, F ) is epic, if B ∈ Y , then there exists
A ∈ X such that F (A) = B. But f(A) = F (A), so f(A) = B. ♦

The conclusion in the proposition is the usual definition of equiva-
lence for designs.

We say a design morphism (f, F ) : (X,X ) → (Y,Y) is an isomor-
phism if there is a design morphism (g,G) : (Y,Y) → (X,X ) such that
(g,G) ◦ (f, F ) = id(X,X ) and (f, F ) ◦ (g,G) = id(Y,Y).

6. Block Ferro pairs

We define the category Cb.F.P. of block Ferrero pairs to have finite
planar Ferrero pairs as objects and require a morphism (t, T ) : (N,Φ)→
(N ′,Φ′) in this category satisfies the conditions that t is injective and T is
surjective. We remark that the properties of being injective or surjective
is stable under composition.

Given a finite Ferrero pair (N,Φ), we set N to be the set of subsets
of N of the form Φa + b with a, b ∈ N and a 6= 0. It is known that
Φa+ b = Φc+ d if and only if b = d and Φa = Φc.

Theorem 6.1 ([2, Th. 2]). Let (N,Φ) be a finite planar Ferrero pair.
Then (N,N ) is a BIBD with parameters (|N |, |Φ|, |Φ| − 1).

Clay called this construction one of the milestones of this theory
[2, p. 96], even though he never introduced this as a functor.

Remark 6.2. Beside the above construction, there are yet many other
ways to obtain BIBD’s from planar nearrings. See [3, §7] and [14]. One
may also find a unifying approach to various methods in [1].
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Let us write β((N,Φ)) = (N,N ).

Next we have to complete the picture by adding the effects of the
morphisms. Given a morphism (t, T ) : (N,Φ)→ (N ′,Φ′) in the category
Cb.F.P. we have the homomorphism t : N → N ′′ and we define

βT (Φa+ b) = t(Φa+ b) = Φ′ta+ tb.

Note that t is assumed to be injective so that a 6= 0 implies ta 6= 0
and T is surjective implies that TΦ = Φ′. We have also used the fact
that t(φa) = Tφ(ta) for a ∈ N and φ ∈ Φ. In this way we attach to a
morphism (t, T ) a design morphism (t, βT ) which we will also denote by
β(t, T ).

Now if we have morphisms

(t, T ) : (N,Φ)→ (N ′,Φ′), (s, S) : (N ′,Φ′)→ (N ′′,Φ′′)

in the category Cb.F.P., then from

Φa+ b
β(t,T )−→ Φ′ta+ tb

β(s,S)−→ Φ′′sta+ stb = β(ST )(Φa+ b)

we see that
β(st, ST ) = β(s, S) ◦ β(t, T ).

Since id(N,Φ) = (idN , idΦ) we see that β(id(N,Φ)) = id(N,N ).

We have proved the following proposition.

Proposition 6.3. β : Cb.F.P. → CBIBD is a functor.

Remark 6.4. Certainly there are many more BIBD’s which cannot
be constructed from Ferrero pairs. Those that can be constructed from
Ferrero pairs have parameter λ = k−1. Even if among λ = k−1 BIBD’s,
there are many which cannot constructed from Ferrero pairs. There is
still no characterization about Ferrero pairs derived BIBD’s, not even
conjectures.

Next we introduce a faithful functor θ : Cf.p.F.T. −→ Cb.F.P.. On
objects θ forgets the section, thus, θ(N,Φ, σ) = (N,Φ). On morphisms
it is just the inclusion map taking (t, T ) to (t, T ).
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7. A diagram

Since the functor η : Cf.p.F.T. → Cf.i.p.N.R. in Th. 4.1 is an equivalence
of categories, there is a functor ξ : Cf.i.p.N.R. → Cf.p.F.T. such that ξη =
= idCf.p.F.T.

and ηξ = idCf.i.p.N.R.
(see [9, Th. 1, p. 91]). We can now sum-

marize our discussions by a commutative diagram

Cf.p.F.T.
θ // Cb.F.P.

β

��
Cf.i.p.N.R. κ

//

ξ

OO

CBIBD

.

We call the functor κ defined by the diagram (so κ = βθξ) the Clay
functor. It was Clay [2] who first assigned the BIBD to a finite planar
nearring, and one of our goals is to make this precise. With the Ferrero
category and the Clay functor set up, we completed our initial categorical
analysis. We shall follow up in a future paper.

Acknowledgement. We thank the National Center for Theoretical Sci-
ences (South), Taiwan, for the support for a short visit of Lai during
which this work is done. We thank Günter Pilz for useful correspon-
dences.
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