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Abstract: The aim of this paper is to investigate the integral of the weighted
maximal function of the Dirichlet and Fejér kernels with respect to the so-called
Vilenkin-like system. We give – in the bounded case – a necessary and sufficient
condition for that the weighted maximal functions belong to L1 in this general
space.

1. Introduction

1.1. Historical notes

It is a well known result that for the Walsh–Paley system we have
supn∈N

|Dn(x)| < ∞ for each x 6= 0. (For Walsh–Kaczmarz system it
does not hold.) (See [14], for bounded Vilenkin-like system see Cor. 6.)
This property is a useful fact for proving convergence theorems of the
Fourier series in Walsh–Paley system. But what can we say for the
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norm of maximal functions? It is easy to obtain that the L1 norm of
supn∈N |Dn(x)| with respect to the Walsh–Paley and Walsh–Kaczmarz
systems (and also for bounded Vilenkin-like system) is infinite. (See e.g.
[14], for bounded Vilenkin-like system see Cor. 9.) “What happens if we
apply some weight function α?” asked G. Gát in [3].

In his paper he gave a necessary and sufficient condition for that the
weighted maximal functions belong to L1 in the case of Walsh–Paley and
Walsh–Kaczmarz systems. K. Nagy (see [8]) proved similar statements
for Fejér kernels for both systems and for (C, α) kernels with respect
to Walsh–Paley system. I. Mező and P. Simon in their common work
(see [9]) verified the necessary and sufficient condition with respect to
bounded Vilenkin systems. They proved that the analogous statement
with the Walsh–Paley case is not true for arbitrary unbounded Vilenkin
system. In their paper they found a different necessary and sufficient
condition for any Vilenkin systems.

In this article the author deals with the case of bounded Vilenkin
space.

1.2. Notations and definitions

Let m := (m0, m1, . . . ) denote by a sequence of positive integers
not less than 2. Denote by Gmj

a set, where the number of the elements
is mj (j ∈ N). Define the measure on Gmj

as follows

µk({j}) :=
1

mk

(j ∈ Gmk
, k ∈ N).

Let Gm be the complete direct product of the sets Gmj
(without any

operation on it), with the product of the topologies and measures (de-
noted by µ). This product measure is a regular Borel one on Gm with
µ(Gm) = 1. If the sequence m is bounded, then Gm is called by bounded
Vilenkin space, otherwise it is unbounded one. The elements of Gm can
be represented by sequences x := (x0, x1, . . . ) (xj ∈ Gmj

). It is easy to
give a neighbourhood base of Gm :

I0(x) := Gm,

In(x) := {y ∈ Gm|y0 = x0, . . . , yn−1 = xn−1}
for x ∈ Gm, 0 < n ∈ N. Define the well-known generalized number
system in the usual way. If M0 := 1, Mk+1 :=mkMk (k ∈N), then every
n ∈ N can be uniquely expressed as n =

∑∞
j=0 njMj , where nj ∈ Gmj

(j ∈ N), and only a finite number of njs differ from zero. Let
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|n| := max{k ∈ N : nk 6= 0}
(that is, M|n| ≤ n < M|n|+1) if 0 < n ∈ N, and |0| := 0. Let n(k) =
=
∑∞

j=k nkMk.

Denote by Lp(Gm) the usual Lebesgue spaces (‖.‖p the correspond-
ing norms) (1 ≤ p ≤ ∞), An the σ algebra generated by the sets In(x)
(x ∈ Gm, n ∈ N) and En the conditional expectation operator with
respect to An, (n ∈ N).

Now we introduce an orthonormal system on Gm, which will be
called Vilenkin-like system. This system was defined by G. Gát in his
paper [4]. The complex valued functions rn

k : Gm → C (k, n ∈ N) are
called generalized Rademacher functions, if they have the following four
properties.

(i) rn
k (k, n ∈ N) is Ak+1 measurable (i.e. rn

k (x) depends only on
x0, . . . , xk (x ∈ Gm)) and r0

k = 1.

(ii) If Mk is a divisor of n, l and n(k+1) = l(k+1) (k, l, n ∈ N), then

Ek(r
n
k r̄

l
k) =

{

1 if nk = lk,
0 if nk 6= lk

(z̄ is the complex conjugate of z).

(iii) IfMk is a divisor of n (that is, n=nkMk+nk+1Mk+1+· · ·+n|n|M|n|),
then

mk−1
∑

nk=0

|rn
k (x)|2 = mk

for all x ∈ Gm.

(iv) There exists a δ > 1, for which ‖rn
k‖∞ ≤

√

mk/δ for all k, n ∈ N.

Now define the Vilenkin-like system ψ := (ψn : n ∈ N) as follows

ψn :=

∞
∏

k=0

rn(k)

k (n ∈ N).

(Since r0
k = 1, then ψn =

∏|n|
k=0 r

n(k)

k .) The Vilenkin-like system ψ is
orthonormal (see e.g. [4]).
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1.3. Examples

Let us see some known examples to the Vilenkin-like system.

(1) The Walsh–Paley and Vilenkin systems. For more on these see e.g.
[1], [14].

(2) The group of 2-adic (m-adic) integers [7], [13], [15].

(3) The product system of coordinate functions of unitary irreducible
representation of non commutative Vilenkin groups (in this case
the group Gm is the Cartesian product of any finite groups) [6].

(4) A system in the field of number theory. The so-called ψα Vilenkin-
like system (on Vilenkin groups) was a new tool in order to inves-
tigate limit periodic arithmetical functions [5], [10].

(5) The UDMD product system (introduced by F. Schipp on the Walsh–
Paley group) [12], [13].

(6) The universal contractive projections system (UCP) (introduced
by F. Schipp) [11].

For more on these examples and their proofs see e.g. [4].

1.4. Further definitions

Finally, we introduce some definitions of the Fourier-analysis in the
usual way. We define the Dirichlet and Fejér kernels

Dn(y, x) :=
n−1
∑

k=0

ψk(y)ψk(x) (0 < n ∈ N, D0 := 0),

Kn(y, x) :=
1

n

n−1
∑

k=0

Dk(y, x) (n ∈ N, K0 := 0).

Let sequence αn → R+ be monotone increasing, and define the weighted
maximal function of the Dirichlet and Fejér kernels in the following way:

Dα(y, x) := sup
n∈N

|Dn(y, x)|
α|n|

, Kα(y, x) := sup
n∈N

|Kn(y, x)|
α|n|

(x, y ∈ Gm).
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1.5. Auxiliary results

Lemma 1 [3]. Let x, y ∈ Gm, n ∈ N. Then

DMn
(y, x) =

{

Mn if y ∈ In(x),
0 if y 6∈ In(x).

Lemma 2 [2]. Let x ∈ IA(y)\IA+1(y), where x, y ∈ Gm, A ∈ N. Then

Dn(y, x) =

A
∑

i=0

Mi

(

ni−1
∑

j=0

rn(i+1)+jMi

i (y)r̄n(i+1)+jMi

i (x)

)

ψn(i+1)(y)ψ̄n(i+1)(x).

2. Results

From now letm be a bounded sequence, that is letGm be a bounded
Vilenkin space. Constants denoted by cm, Cm depend only on the finite
number supn∈N

mn.

Corollary 3. Let x ∈ IA(y)\IA+1(y), where x, y ∈ Gm, A ∈ N. Then

there is a constant Cm such that

|Dn(y, x)| ≤ Cm

A
∑

i=0

Mi

∣

∣ψn(i+1)(y)ψ̄n(i+1)(x)
∣

∣ .

Proof. Because of
mk−1
∑

nk=0

|rn
k (x)|2 = mk we obtain |rn

k (x)| ≤ √
mk, so

∣

∣

∣

∣

∣

ni−1
∑

j=0

rn(i+1)+jMi

i (y)r̄n(i+1)+jMi

i (x)

∣

∣

∣

∣

∣

≤ nimi < m2
i < Cm.

Using Lemma 1 and Lemma 2 we obtain the statement of Cor. 3. ♦

Corollary 4. If x, y ∈ Gm, n ∈ N then there is a constant Cm such that

|Dn(y, x)| ≤ Cmn.

Proof. Using ‖rn
k‖∞ ≤

√

mk/δ, easy to see that ψn(i+1)(x) ≤
√

M|n|

Mi
δi−|n|.

In this way from Cor. 3. we get

|Dn(y, x)| ≤ Cm

|n|
∑

i=0

Mi

∣

∣ψn(i+1)(y)ψ̄n(i+1)(x)
∣

∣ ≤

≤ Cm

|n|
∑

i=0

Mi

M|n|

Mi

δi−|n| ≤ CmM|n| ≤ Cmn. ♦
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Corollary 5. Let x ∈ IA(y)\IA+1(y), where x, y ∈ Gm, A ∈ N. Then

there is a constant Cm such that

|Dn(y, x)| ≤ CmMA.

Proof. Using ‖rn
k‖∞ ≤

√

mk/δ and Cor. 3, if y ∈ IA(x)\IA+1(x), then

|Dn(y, x)| ≤ Cm

A
∑

i=0

Mi

∣

∣ψn(i+1)(y)ψ̄n(i+1)(x)
∣

∣ ≤

≤ Cm

A
∑

i=0

Mi

MA

Mi

δi−A ≤ CmMA. ♦

Corollary 6. Let x, y ∈ Gm and x 6= y. Then

sup
n∈N

|Dn(y, x)| <∞.

Proof. If x 6= y, then there exists A ∈ N, for which x ∈ IA(y)\IA+1(y).
Now using Cor. 5 the statement of this corollary is obvious. ♦

Theorem 7. Let y ∈ Gm. There exist positive constants cm and Cm

such that

cm

∞
∑

k=0

1

αk

≤ ‖Rα(y, .)‖1 ≤ Cm

∞
∑

k=0

1

αk

,

where Rα = Dα or Rα = Kα.

Proof. It is easy to see that

|Kn(y, x)|
α|n|

≤
1
n

n−1
∑

i=0

|Di(y, x)|

α|n|

≤

≤ 1

n

n−1
∑

i=1

|Di(y, x)|
α|i|

≤ 1

n

n−1
∑

i=1

Dα(y, x) = Dα(y, x),

where x, y ∈ Gm and n ∈ N are arbitrary. From these inequalities it is
obvious that

Kα(y, x) = sup
n∈N

|Kn(y, x)|
α|n|

≤ Dα(y, x)

for every x, y ∈ Gm. It means, for proving the theorem it is enough to
verify existences of positive constants cm, Cm that for any y ∈ Gm

‖Dα(y, .)‖1 ≤ Cm

∞
∑

k=0

1

αk

and cm

∞
∑

k=0

1

αk

≤ ‖Kα(y, .)‖1.

Corollaries imply
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‖Dα(y, .)‖1 =

∞
∑

A=0

∫

IA(y)\IA+1(y)

Dα(y, x)dµ(x) ≤

≤ Cm

∞
∑

A=0

∫

IA(y)\IA+1(y)

A
∑

k=0

Mk

αk

dµ(x) ≤

≤ Cm

∞
∑

A=0

1

MA

A
∑

k=0

Mk

αk

=

= Cm

∞
∑

k=0

1

αk

∞
∑

A=k

Mk

MA

≤

≤ Cm

∞
∑

k=0

1

αk

.

It was the expected upper estimation for Dα.
Let x ∈ IA(y)\IA+1(y), where x, y ∈ Gm. Let A, k ∈ N and let us

suppose that k ≤ MA. In this case ψk(x) depends only on the first k
coordinates of x, so ψk(x) is constant on the set IA(y). It means that
ψk(x) = ψk(y) is realized in case of x ∈ IA(y)\IA+1(y), too. Based on
conditions above, with help of Lemma 1 it yields

Dk(y, x) =
k−1
∑

i=0

ψi(y)ψ̄i(x) =
k−1
∑

i=0

ψi(x)ψ̄i(x) =
k−1
∑

i=0

|ψi(x)|2 ≥

≥
M|k|−1
∑

i=0

|ψi(x)|2 = M|k|.

Thus – using Lemma 1 again – we have

KMA
(y, x) =

1

MA

MA−1
∑

k=0

Dk(y, x) ≥
1

MA

MA−1
∑

k=0

M|k| ≥ cm
1

MA

MA−1
∑

k=0

M|k|+1 ≥

≥ cm
1

MA

MA−1
∑

k=0

k ≥ cmMA.

Consequently,
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‖Kα(y, .)‖1 =

∞
∑

A=0

∫

IA(y)\IA+1(y)

Kα(y, x)dµ(x) ≥

≥
∞
∑

A=0

∫

IA(y)\IA+1(y)

KMA
(y, x)

αA

dµ(x) ≥

≥ cm

∞
∑

A=0

1

MA+1

MA

αA

≥

≥ cm

∞
∑

A=0

1

αA

.

So the lower estimation for Kα is also proved. ♦

Corollary 8. Let y ∈ Gm. Rα(y, .) ∈ L1 if and only if
∞
∑

k=0

1

αk

<∞,

where Rα = Dα or Rα = Kα.

Proof. It comes from Th. 7 immediately. ♦

We mention that using some lower estimations from the proof of
Th. 7 we can verify the infinity of ‖ supn∈N

|Dn(y, .)|‖1 easily.

Corollary 9. Let y ∈ Gm. Then
∥

∥sup
n∈N

|Dn(y, .)|
∥

∥

1
= ∞.

Proof. Let x ∈ IA(y)\IA+1(y), where x, y ∈ Gm. Let A, n ∈ N and let
us suppose that n ≤ MA. We proved before that in this case

Dk(y, x) ≥M|n| ≥MA−1.

Therefore,
∥

∥sup
n∈N

|Dn(y, .)|
∥

∥

1
≥

∞
∑

A=0

∫

IA(y)\IA+1(y)

DMA
(y, x)dµ(x) ≥

≥
∞
∑

A=0

∫

IA(y)\IA+1(y)

MA−1dµ(x) ≥

≥
∞
∑

A=0

MA−1

MA+1

≥

≥ cm

∞
∑

A=0

1 = ∞. ♦
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