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1. Introduction

By a near-ring we mean a right near-ring and R is a near-ring.
Andrunakievich and Rjabuhin [1] characterized the special radicals of
rings using modules. Booth, Groenewald and Veldsman [4] introduced
and studied equiprime near-rings. Using equiprime near-rings, Booth and
Groenewald [2] developed special radicals of near-rings and in [3] they
gave a characterization of special radicals of zero-symmetric near-rings
in terms of left modules of near-rings.

Srinivasa Rao and Siva Prasad [9, 10, 11, 12] introduced and studied
the right Jacobson radicals of type-0, 1, 2, and s for near-rings and showed
that unlike left Jacobson radicals these are relevant for the extension of
a form of Wedderburn—Artin theorem of rings involving matrix rings to
near-rings. Unlike in rings, the left and right Jacobson radicals of a near-
ring are not comparable. For example, in [13, 14] it is shown that the right
Jacobson radicals of near-rings of type-0, 1 and 2 are Kurosh—Amitsur
radicals (KKA-radicals) in the class of all zero-symmetric near-rings but it
is well known that the left Jacobson radicals of type-0 and 1 are not KA-
radicals in the class of all zero-symmetric near-rings. Moreover, in [15, §]
the right Jacobson radicals of type-0(e), 1(e), and 2(e) are introduced for
near-rings and showed that they are special radicals of near-rings. This
shows the important role played by the right modules of near-rings in
the development of structure theory of near-rings.

In this paper an equiprime right R-group is introduced. An ideal I
of R is equiprime if and only if [ is the annihilator of an equiprime right
R-group. Using it special classes of near-ring right modules are intro-
duced. A characterization of the special radicals of near-rings in terms
of right modules of near-rings is presented which is similar to the char-
acterization of the special radicals of rings developed by Andrunakievich
and Rjabuhin [1]. Some special classes of near-ring right modules are
also presented.

2. Preliminaries

R stands for a right near-ring (not necessarily zero-symmetric) and
all notations and definitions will be as in [7].

We need the following definitions and results of [9] and [10].

A group (G,+) is called a right R-group if there is a mapping
((g,7) — gr) of G x R into G such that
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(i) (g+ h)r =gr + hr, and

(ii) g(rs) = (gr)s, for all g,h € G and 1, s € R.
A subgroup (normal subgroup) H of a right R-group of G is called an
R-subgroup (ideal) of G if hr € H for all h € H and r € R.

Let G, H be right R-groups. A mapping f : G — H is called an

R-homomorphism if

(i) flz+y)=f(z)+ f(y) and

(ii) f(ar) = f(x)r for all z,y € G and for all r € R.
G is said to be R-isomorphic to H if there is a one-to-one R-homo-
morphism of G onto H.

An element ¢ in a right R-group G is called distributive if g(r+s) =
=gr+gs for all r,s € R.

Let G be a right R-group. An element g € G is called a generator
of G if g is distributive and gR = G. G is said to be monogenic if G has
a generator.

A monogenic right R-group G is said to be a right R-group of type-0
if G is simple, that is, G’ has no non-trivial ideals and GR # {0}.

A right R-group G of type-0 is said to be of type-1 if G has exactly
two R-subgroups namely, {0} and G.

A right R-group G of type-0 is said to be of type-2 if gR = G for
all 0 # g € G.

A near-ring R is called an equiprime near-ring if 0 # a € R,
x,y € R and arx = ary for all » € R, implies z = y. An ideal I of
R is called equiprime if R/I is an equiprime near-ring.

It is known that a near-ring R is equiprime if and only if

1. z,y € R and 2Ry = {0} implies x = 0 or y = 0.

2. If {0} # I is an invariant subnear-ring of R, z,y € R and
ar = ay for all a € I implies z = y.

Moreover, an equiprime near-ring is zero-symmetric.

If I is an ideal of R, then we denote it by I <t R. A subset S of R
is left invariant if RS C S. By a radical class we mean a radical class in
the sense of Kurosh—Amitsur.

Let £ be a class of near-rings. £ is called regular, if {0} # I<R € £
implies that 0 # I/K € & for some K <. It is known that, if £ is a
regular class, then Y€ = {R | R has no non-zero homomorphic image
in £} is a radical class, called the upper radical determined by €. The
subdirect closure of a class of near-rings & is the class € = {R | Ris a
subdirect sum of near-rings from £}. A class £ is called hereditary if
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I <R e & implies [ € €. & is called c-hereditary if I is a left invariant
ideal of R € &£ implies I € £. It is clear that a hereditary class is a
regular class. If I << R and for every non zero ideal J of R, J N1 # {0},
then [ is called an essential ideal of R and is denoted by I <1-R. A class
of near-rings £ is called closed under essential extensions (essential left
invariant extensions) if I € €, I <-R (I is an essential ideal of R which
is left invariant) implies R € £. A class of near-rings £ is said to satisfy
condition (F;) if K <I < R, and [ is left invariant in R and I/K € &,
then K < R.

In [2], Booth and Groenewald defined special radicals for near-rings.
A class &€ consisting of equiprime near-rings is called a special class if it
is hereditary and closed under essential left invariant extensions. If R is
the upper radical in the class of all near-rings determined by a special
class of near-rings, then R is called a special radical. If R is a radical
class, then the class SR = {R | R(R) = {0}} is called the semisimple
class of R.

We also need the following theorem:

Theorem 2.1 (Th. 2.4 of [16]). Let € be a class of zero-symmetric near-
rings. If € is regqular, closed under essential left invariant extensions
and satisfies condition (Fy), then R := UE is c-hereditary radical class
in the variety of all near-rings, SR = € and SR is hereditary. So,
R(R)={I<R|R/I € E} for all near-rings R.

Remark 2.2. Since all ideals in a zero-symmetric near-ring are left in-
variant, under the hypothesis of Th. 2.1, in the variety of zero-symmetric
near-rings both R and SR are hereditary and hence the radical is ideal-
hereditary, that is, if I < R, then R(I) = I N R(R).

Proposition 2.3 (Prop. 3.3 of [4]). The class of all equiprime near-rings
i1s closed under essential left invariant extensions.

Proposition 2.4 (Cor. 2.4 of [4]). The class of all equiprime near-rings
satisfy condition (F}).

3. Equiprime right R-groups

Throughout this section R stands for a right near-ring and not
necessarily zero-symmetric.

The annihilator of a right R-group G, denoted by (0 : ), is defined
as (0: G) ={a € R| Ga={0}}.
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Proposition 3.1. Let G be a right R-group and GO = {0}. Suppose that
I, J are ideals of R and GI = {0}, GJ = {0} implies G(I + J) = {0}.
Then there is a largest ideal of R contained in (0 : G).
Proof. Since GO = {0}, the zero ideal of R is contained in (0 : G).
Let I and J be ideals of R contained in (0 : G). By our assumption
I'+J C (0:@G). From this we get that for any collection of ideals of
R contained in (0 : G) their sum is an ideal of R contained in (0 : G).
Therefore, the sum K of all ideals 7" of R such that 7' C (0 : G) is the
largest ideal of R contained in (0 : G). O
Definition 3.2. A right R-group G is said to be equiprime if:

(i) GR # {0} and GO = {0};

(i) I, J are ideals of R and GI = {0}, GJ = {0} implies G(I + J) =

={0};

(iii) 0 # g € G, a,b € R and gra = gzxb for all z € R implies a — b € P,

where P is the largest ideal of R contained in (0 : G);

(iv) r,s € Rand r — s € P implies gr = gs for all g € G.

Note that if R. is the constant part of R, and G is an equiprime
right R-group, then GR,. = G(R0) = (GR)0 C GO = {0}.

Also note that if G is an equiprime right R-group, then from condi-
tions (i) and (ii) it follows that there is a largest ideal P of R contained
in (0:G).

If R is a ring, then an equiprime right R-group is a right prime
R-module [6].

Proposition 3.3. Let G be a right R-group satisfying conditions (i), (ii)
and (iii) of Def. 3.2. Then (0 : G) is an ideal of R.

Proof. Let P be the largest ideal of R contained in (0 : G). Let r €
€ (0:G). Let 0 # g € G. Now gar = (gz)r = 0 = (gx)0 = g0 for all
x € R. Therefore, r =r —0 € P. Hence, P = (0: G) is an ideal of R. ¢
Proposition 3.4. Let G be a right R-group satisfying conditions (i), (ii)
and (iv) of Def. 3.2 and P be the largest ideal of R contained in (0 : G).
Then the following are equivalent:

(a) G is an equiprime right R-group.

(b) (i) For0#ge€ G, c€(0:G), gRe # {0}.

(ii) If {0} # H is a right R-subgroup of G,c,d € R and
hc = hd for allh € H, thenc —d € P.
Proof. (a)=(b). Let 0# g € G, ¢ ¢ (0 : G). Suppose that gRc = {0}.
Now grc=0=gz0 for all z€ R. Since G is equiprime, ¢ = c¢—0 € (0 : G),
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a contradiction. So gRec # {0}. Suppose that {0} # H is a right R-
subgroup of G,a,b € R and ha = hb for all h € H. Let 0 # hy € H.
Now hoza = hozb for all x € R. Since G is equiprime, a—b € (0: G) = P.
(b) = (a). Let r € (0 : G). Now gr =0 = ¢0 for all g € G. So
r=r—0¢& P and hence P = (0 : G). Suppose that 0 #¢g € G,c,d € R
and grc = gzd for all x € R. Let s €R\P. Then gRs # {0} and
hence gR # {0}. Let K be the subgroup of (G,+) generated by gR
:={gr | r € R}. Now K is a non-zero right R-subgroup of G. Since gzc =
= gxd for all x € R, we get that kc = kd for all £k € K. Therefore,
¢ —d € P. Hence, G is an equiprime right R-group. ¢
Proposition 3.5. Let QQ be an equiprime ideal of R. Then (Q : R) =
={reR|RrC@}=0aQ.
Proof. Since R, C @, we have that RQ C @. So, @ C (@ : R). Let
y € (Q: R). Now Ry C @ and RO = R. C Q. So, ry —r0 € @ for all
r € R. Since @ is an equiprime ideal of R,y = y — 0 € ). Therefore,
(Q:R)CQand hence (Q: R)=0Q. O
Proposition 3.6. Let Q) be an ideal of R and QQ # R. Then the following
are equivalent:

(i) @ is an equiprime ideal of R.

(ii) There is an equiprime right R-group G such that Q = (0 : G).
Proof. Let () be an equiprime ideal of R. We show that the right R-
group G := R/Q) is equiprime. We have (0: G)=(Q : R)={reR | Rr C
C Q} = Q. If GR = {0}, then RR C . Since an equiprime ideal
is a prime ideal, we get that R C @), a contradiction to Q # R. So,
GR # {0}. Since R, C @, GO = {0}. Let I, J be ideals of R such that
GI =GJ ={0}. Then I C (@ : R), J C (Q: R). Since (Q : R) =@ is
an ideal of R, I +J C (@ : R), that is, G({ + J) = {0}. Let P be the
largest ideal of R contained in (0 : G). Let 0 #r+Q € R/Q, a,b € R
and (r + Q)zra = (r + Q)xb for all x in R. Now rza — rab € @ for all
x € R. Since @ is equiprime and r € (), we get that a — b € ). By
Prop. 3.5, P=Q. So,a—be P. Let r,s€ Randr—s € (0:G) =Q.
Let x4+ Q € R/Q. xr = (z((r —s) +s) — xs) + s = q + s, where
q:=x((r—s)+s)—xzs € Q. So, xr—xs € Q and that (z+Q)r = (z+Q)s.
Therefore, G is an equiprime right R-group. On the other hand suppose
that G is an equiprime right R-group. Let T':= (0 : G). We show that
the ideal T' is an equiprime ideal of R. Let a € R\T, b,c € R and
arb —axc € T for all x € R. We get g € G such that ga # 0. Now
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g(axb) = g(axc) and hence (ga)xb = (ga)zc for all x € R. Since G is
equiprime, b — ¢ € T'. Therefore, T is an equiprime ideal of R. ¢
Proposition 3.7. Let G be an equiprime right R-group and let {0} # H
be an R-subgroup of G. Then H 1is an equiprime right R-group and
(0:G)=(0:H).

Proof. Obviously, (0: G) C (0: H). Let a € (0: H)\(0 : G) and let
0# h e H. Now hra =0 = hr0 for all » € R. Since G is an equiprime
right R-group, a = a — 0 € (0 : G), a contradiction to a ¢ (0 : G).
Therefore, (0: G) = (0: H). Let0 #t € H,a,b € Rand tza = tzb for all
x € R. Since G is an equiprime right R-group,a—b € (0: G) = (0: H).
It is an easy verification that the other conditions of an equiprime right
R-group are satisfied by H. Therefore, H is an equiprime right R-group.

O
Theorem 3.8. Let I be an essential left invariant ideal of R and let G
be an equiprime right I-group. Then H := (GI),, the subgroup of (G, +)
generated by G1, is an equiprime right R-group and (0: G); = (0 : H)g.
Proof. Let H be the subgroup of (G,+) generated by GI. Clearly,
H is an [-subgroup of G. So by Prop. 3.7, H is an equiprime right I-
group and (0 : H); = (0 : G);. We show now that H is an equiprime
right R-group. Let h € H, r € R. Now h = 01(g151) + 92(g282)+
+ -+ + Or(grsk) for some s; € I, g; € G, 6; € {1,—1}. Define
hr = 61(g1(s17)) + 02(g2(s2r)) + - - - + 6k (gr(skr)). We show that this
operation is well defined. Suppose that h has another representation as
h = Al(hltl) + )\2(h2t2) + -+ )\n(hntn), t; € 1, h; € G, A € {1, —1}.
Let ¢ € I\(0 : G)1. Now ((01(g1(s17)) + 02(g2(s2r)) + - - - + Ok (gr(skr)))
— (Ml (tir)) + Aa(ho(tor)) + -+ + Aa(hn(tar))))ac = ((61(g151) +
+52(92$2)+' . -—|—5k(gksk)) — (Al(hltl) +)\2(h2t2) +-- -—I—)\n(hntn)))(ra)c =
= 0(ra)c = 0 for all @ € I. Since G is an equiprime right /-group and
c & (0:G)r, we get that 01(g1(s17)) + d2(g2(s2r)) + - - - + Ok(gr(skr)) =
= M (hi(tir)) + Ag(ho(tor)) + - -+ + Au(hy(tar)). So the operation is
well defined. It is an easy verification that H is a right R-group un-
der this operation. Clearly, the action of R on H is an extension of
the action of I on H. Since GI # {0}, we have ga # 0, for some
g € G,a e I 1If (¢g)I = {0}, then (ga)yb = 0 = (ga)y0 for all
y € I, where b € I\(0 : G);. Since G is an equiprime right I-group,
b=0b—-—0¢€ (0: G), a contradiction. So, (¢g/)] # {0} and that
HR # {0}. We have HO = {0}. Let J and K be ideals of R and
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HJ = HK = {0}. Now GIJ = GIK = {0}. So GJ* = GK* = {0},
where J*, K* are ideals of I generated IJ and IK respectively. Now
G(J*+ K*) ={0}. Forz € I\(0:G);,he H,je J, ke K, and
x € I, we have h(j + k)xz = h(jz + kx)z = 0z = 0 = h(j + k)20.
Since G is an equiprime right I-group and z — 0 ¢ (0 : G);, we have
that h(j + k) = 0. Therefore, H(J + K) = {0}. Let 0 # h € H and
h =61(g181) + 02(g282) + -+ - + Ik (grsk), si € I, g; € G, §; € {1,—1}. Let
P be the largest ideal of R contained in (0 : H)g. Let Q := (0 : G);.
Since G is an equiprime right I-group, by Prop. 3.6, ) is an equiprime
ideal of I. So, I/Q) is an equiprime near-ring. Therefore, by condition Fj,
@ is an ideal of R. Now it is clear that @) C P. Since /@ is an essential
ideal of R/Q) and I/Q) is equiprime, R/ is an equiprime near-ring. So,
@ is an equiprime ideal of R. Suppose that r, s € R and hxr = hxs for
all zx € R. Fix v € I. Now h(av)r = h(av)s for all a € I and hence
ha(vr) = ha(vs) for all a € I. Therefore, vr —vs € (0 : G); = Q.
Since @ is an equiprime ideal of R and [ is a left invariant ideal of R,
r—se@Q CP. Let pe Pand 0 # g9 € H. Now goxp = 0 = goz0
for all x € R. As seen above p = p — 0 € Q. Therefore, P = @
and (0 : H)g = Q. Finally, let 71,79 € R and r; — 15 € P. We have
h= 51(9181) +(52(g282) +- - +5k(gksk), S; € ], g; € G, 52 c {1, —1} Now
h?"l = h’f’g if gi(Sﬂ"1> = gi(SZ”f’2> for all 7 = 1, 2, ey k. Since L — T € Q,
ary —ary = a((ry —ry) +re) —ary € Q for all a € I. Now gary = gars for
all a € I, g € G. So, g;(s;r1) = gi(sir2) and hence hr; = hry. Therefore,
H is an equiprime right R-group and (0: G); = (0: H)g. ¢

Theorem 3.9. Let G be an equiprime right R-group and let I be a left
invariant ideal of R. If GI # {0}, then G is an equiprime right I-group.
Proof. Suppose that GI # {0}. Clearly, G is a right I-group and
GO0 = {0}. Moreover, (0 : G); = (0 : G)g NI is an ideal of I. Let
0# g€ G, abel and gya = gyb for all y € I. If gI = {0}, then
grc=0=gx0forallx € R, ¢ € I with Ge # {0}. Soc=c—0¢€ (0: G),
a contradiction. Therefore, gI # {0}. We have a d € I such that gd # 0.
Now (gd)xa = (gd)zb for all z € R. Therefore, a —b € (0 : G);. Let
u,v € lTandu—v € (0: G)y € (0: G)g. So, gu = gv for all g € G.
Therefore, G is an equiprime right I-group. ¢

Proposition 3.10. Let G be an equiprime right R-group and let I be an
ideal of R with GI = {0}. Then G is an equiprime right R/I-group.
Proof. Let r+1 € R/l and g € G. Define g(r+1) := gr. lf r+1 = s+1,
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s € R,thenr—s € I C (0: G)g and hence hr = hs for all h € G. So, the
above operation is well defined. Clearly, G is a right R/I-group. Since
GR # {0}, we get that G(R/I) # {0}. We have GI = {0}. Let J/I, K/I
be ideals of R/I and G(J/I) = G(K/I) = {0}. Now GJ = GK = {0}
and that G(J + K) = {0}. So, G(J/I+ K/I) ={0}. Let P := (0 : G)g.
Now P is an ideal of R. So, (0 : G)gyy = P/I. Let 0 # gy € G,
a,b € Rand go(x + I)(a+ 1) = go(x + I)(b+ I) for all z € R. Since
G is equiprime and goxa = goxb for all x € R, we have that a — b € P.
Therefore, (a+ 1) — (b+ 1) € P/I. Let (r+1)— (s+1) € P/I. Now
r — s € P and that gr = gs for all g € G. Therefore, g(r +1) = g(s+ 1)
for all ¢ € G. Hence, G is an equiprime right R/I-group. ¢
The following proposition is easy and its proof is omitted.

Proposition 3.11. Let I be an ideal of R and G be an equiprime right
R/I-group. Then G is an equiprime right R-group, where gr := g(r+1).

4. Special classes of right modules of near-rings

In [1] Andrunakievich and Rjabuhin described special radicals of
rings in terms of modules. A similar characterization for special radi-
cals of zero-symmetric near-rings was given in terms of left modules of
near-rings by Booth and Groenewald [2]. In this section we give a char-
acterization for special radicals of near-rings in terms of right modules of
near-rings.

Let N be the class of all near-rings. Suppose that for every near-
ring R, there is a class Mg of right R-groups. Let M = Ugen Mp.
Then M is called a special class of near-ring right modules if it satisfies
the following conditions:

M1. If G € Mg, then G is an equiprime right R-group.
M2. If G € My, I is an essential left invariant ideal of R, then (GI),,

the subgroup of (G, +) generated by G, is in M.

M3. If G € Mg, Iis aleft invariant ideal of R and GI # {0}, then G € M.
M4. If G € Mg, I is an ideal of R and GI = {0}, then G € Mg/,

where g(r+1I):=grforallre R, g € G.

M5. If G € Mgy, I is an ideal of R, then G € Mg, where gr := g(r +1)

forallr € R, g € G.

Theorem 4.1. Let £ := UrenEr, where Eg is the class of all equiprime
right R-groups. Then & is a special class of near-ring right modules.
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Proof. The proof follows from Th. 3.8 and Th. 3.9, and Prop. 3.10 and
Prop. 3.11. $

Let M be a special class of near-ring right modules and let R be a
near-ring. We define M(R) :=N{(0: G)r | G € Mg} and Sp = {R €
€ N | there is a G € Mp such that (0: G)z = {0}} U {0}.

Theorem 4.2. Let M be a special class of near-ring right modules.
Then Sy is a special class of near-rings.

Proof. Let {0} # R € Sy We get a G € Mg such that (0 : G)g = {0}.
By M1, G is an equiprime right R-group. Now by Prop. 3.6, {0} =
= (0 : G)g is an equiprime ideal of R. So R is an equiprime near-
ring. Let I be a non-zero (left invariant) ideal of R. Since (0 : G)g =
= {0}, we have that GI # {0}. So by M3, G € M;. Now (0 : G); =
=(0:G)rNnI={0}N1I ={0}. Therefore, I € Sps and hence Sy, is
hereditary. Now suppose that J is an essential left invariant ideal of a
near-ring 7" and J € Sy. We get a H € M, such that (0: H); = {0}.
We have that H is an equiprime right J-group and HJ # {0}. Since M
is a special class, by M2 we get that K, the subgroup of (H,+) generated
by HJ, is in My. Now we claim that (0 : K)r = (0: H); = {0}. Let
P :=(0: K)7. By Prop. 3.3 and Prop. 3.6, P is an equiprime ideal of T'.
Since HJ = {0}, HJP = {0}. Also, since JP C J and (0: H); = {0},
JP = {0}. Suppose that P # {0}. Since J is an essential ideal of T,
L:=JnNP # {0}. Now JL = {0}. This is a contradiction to the fact
that J is an equiprime near-ring. So P = {0}. Therefore, T' € Sy,.
Hence, Sy is a special class of near-rings. ¢

Proposition 4.3. Let M be a special class of near-ring right modules.
Suppose that I is an ideal of R. Then R/I € Sy if and only if [ =
= (0: G)g for some G € Mp.

Proof. Suppose that R/I € Sy. We get a G € Mg and (0: G)p/;r =
= {0}. Since M is a special class, G € Mpg. Also, (0 : G)g = I as
(0 : G)ryr = {0}. On the other hand suppose that I = (0 : G)g, for
some G € Mp. Since I C (0: G)r and M is a special class, G € Mp/;.
Moreover, (0 : G)ryr = {0} as I = (0: G)g. ¢

Proposition 4.4. Let M be a special class of near-ring right modules.
Let R be the upper radical determined by the special class of near-rings
Sm. Then R(R) =n{(0: G)g | G € Mg}.

Proof. Since R is the upper radical determined by the hereditary class
of near-rings Sy, R(R) = N{I | I is an ideal of R and R/I € Sy }. By
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Prop. 4.3, we get that R(R) =n{(0: G)r | G € Mg}. O

Theorem 4.5. Let A be a special class of near-rings. For any near-
ring R, let Mr = {G | G be an equiprime right R-group and
R/(0 : G)r € A}. Let M := Ureny Mpg. Then M is a special class
of near-ring right modules and A = Sy,.

Proof. (i) By definition, each G € Mg is an equiprime right R-group.

(ii) Let I be an essential left invariant ideal of R and G' € M. Let
H := (GI), be the subgroup of (G,+) generated by GI. Since G is an
equiprime right /-group and [ is an essential left invariant ideal of R, by
Th. 3.8, H is an equiprime right R-group and (0: G); = (0 : H)g. We
have I/(0: G); € A. Now I/(0 : G); is an essential left invariant ideal
of R/(0: H)g. Therefore, R/(0: H)r € A and hence H € Mp.

(iii) Suppose now that G € Mg, J is a left invariant ideal of R
and GJ # {0}. By Th. 3.9, GG is an equiprime right J-group. Moreover,
0:G);=(0:GgrnNnJ. Now J/(0: Gy = J/N(0: GrNJ) ~
~(J+(0:G)r)/(0:G)gand (J+ (0: G)r)/(0: G)g is a left invariant
ideal of R/(0: G)r € A. So J/(0:G); € A and hence G € M.

(iv) Assume that G € Mg, K is an ideal of R and GK = {0}. By
Prop. 3.10, G is an equiprime right R/K-group, where g(r + K) := gr.
Moreover, (0 : G)r/x = (0 : G)r/K. Now (R/K)/((0 : G)r/K) ~
~ R/(0:G)g € A. Therefore, G € Mp/k.

(v) Suppose now that P is an ideal of R and G € Mpg/p. By
Prop. 3.11, GG is an equiprime right R-group, where gr := g(r+ P). Also,
= (R/P)/(0: G)r/p € A. Therefore, G € Mp. Hence, M is a special
class of near-ring right modules. Clearly, Sy € A. Let R € A. Since
A is a class of equiprime near-rings, by Prop. 3.6, there is a faithful
equiprime right R-group G. We have R/(0 : G) = R € A. Therefore,
R € Sp and hence A C Sy So, A =80 O

5. Characterizations for some concrete special radi-
cals

In this section we present characterizations for some concrete spe-
cial radicals of near-rings.

Strongly equiprime near-rings, uniformly strongly equiprime near-
rings, and bounded strongly equiprime near-rings of bound one are in-
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troduced and studied in [5] and completely equiprime near-rings are in-
troduced and studied in [2].

An ideal P of a near-ring R is said to be (right) strongly equiprime
if for each a € R\P, there is a finite subset F, of R such that b,c € R
and axb — axc € P for all x € F, implies b — c € P. A near-ring R is
said to be (right) strongly equiprime if {0} is a (right) strongly equiprime
ideal of R. The strongly equiprime radical of R, denoted by S(R), is the
intersection of all strongly equiprime ideals of R. Moreover, § is a special
radical in the class of all near-rings.

Definition 5.1. A right R-group G is said to be strongly equiprime if
(i) GR # {0} and GO = {0};

(ii) 1, J are ideals of R and GI = {0}, GJ = {0} implies G(I + J) =
={0};

(iii) for each 0 # g € G there is a finite subset F}, of R such that a,b € R
and gra = gab for all x € F, implies a — b € P, where P is the
largest ideal of R contained in (0 : G);

(iv) r,s € Rand r — s € P implies gr = gs for all g € G.

Remark 5.2. Trivially, a strongly equiprime right R-group is equiprime.
So if G is a strongly equiprime right R-group, then (0 : ) is an equiprime
ideal of R.

Proposition 5.3. Let G be a right R-group. If G is strongly equiprime,
then (0 : G) is a strongly equiprime ideal of R.

Proof. Suppose that G is strongly equiprime. We have that R # (0 : G)
is an equiprime ideal of R. Let a € R\(0 : G). Now we get a g € G
such that ga # 0. So, there is a finite subset F' of R such that b,c € R
and (ga)zb = (ga)zc for all x € F implies b — ¢ € (0 : G). Suppose that
y,z € R and ary —azxz € (0: Q) for all z € F. Now (ga)xy = (ga)zz
for all x € F'. Therefore, y — 2z € (0 : G). Hence (0 : G) is a strongly
equiprime ideal of R. ¢

Proposition 5.4. Let P be an ideal of R. If P is strongly equiprime,
then there is a strongly equiprime right R-group G' such that P = (0 : G).
Proof. Suppose that P is strongly equiprime. Now P is equiprime and
hence R/ P is an equiprime right R-group under the operation (r+P)s :=
=rs+P,r+ P € R/P, s € R. Moreover, (0: R/P)=(P:R)=P as
P is equiprime. Let 0 # a4+ P € R/P. Now a € R\P. We get a finite
subset I’ of R such that b, ¢ € R and axb— azxc € P for all x € F implies
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b—c € P. Suppose that y, z € R and (a+ P)xy = (a+P)zz forallz € F.
Now axy — axz € P for all x € F. Therefore, y — 2 € P = (0 : R/P).
Hence R/ P is a strongly equiprime right R-group and P = (0: R/P). {

Let Hr := {G | G is a strongly equiprime right R-group} and
H := UREN HR.

Theorem 5.5. H is a special class of near-ring right modules.
Proof. (i) For each near-ring R, Hg is the class of strongly equiprime
right R-groups. So each G € Hpy is an equiprime right R-group.

(ii) Let I be an essential left invariant ideal of R and G be a strongly
equiprime right I-group. Let H be the subgroup of (G, +) generated by
the subset GI := {ga | g € G,a € I}. Since G is an equiprime right
I-group, by Th. 3.8, H is an equiprime right R-group and (0 : H)g =
= (0 : G)[,Whel"e (51(g151) + (52(9282) + -+ 5k(gksk))r = 51(Q1(Sﬂ’))—|—
+62(g2(sor)) + -+ + 0k (gr(skr)), r € R, g; € G, s; € 1, §; € {1,—1}. Let
0 # h € H. Since G is strongly equiprime, we get a finite subset F' of [
such that a,b € I and hxa = hxb for all € F implies a — b € (0 : G);.
Now F' C R. Suppose that r,s € R and hxr = hxs for all x € F. We
show that r —s € (0: H)g = (0 : G);. Suppose that r — s & (0 : G);.
By Lemma 3.2 of [4], there is a b € I such that (r — s)b € (0 : G); as
I/(0: G); is an essential left invariant ideal of R/(0: G); and 1/(0: G);
is an equiprime near-ring. Now b — sb € (0 : G);. Since hxr = hxs
for all x € F, ha(rb) = hx(sb) for all z € F. Sorb—sb e (0: G)y, a
contradiction to b — sb & (0 : G);. Hence, r — s € (0 : H)g. Therefore,
H is a strongly equiprime right R-group.

(iii) Suppose now that G is a strongly equiprime right R-group and
I is a left invariant ideal of R with GI # {0}. By Th. 3.9, G is an
equiprime right /-group and (0 : G); = (0 : G)rN 1. Let 0 # g € G.
Since G is an equiprime right I-group, gI # {0}. So, there is a ¢ € I
such that gc # 0. Since G is a strongly equiprime right R-group, we get
a finite subset F' of R such that y,z € R and (gc)zy = (gc)zz for all
x € F implies y — 2z € (0 : G)g. Now E := cF is a finite subset of I.
Suppose that a,b € I and gra = gzxb for all z € E. Now g(ct)a = g(ct)b
for all t € F and (gc)ta = (ge)tb for all t € F. So,a—be (0: G)N 1.
Therefore, GG is a strongly equiprime right I-group.

(iv) Suppose that G is a strongly equiprime right R-group and [ is
an ideal of R contained (0 : G)g. We show that G is a strongly equiprime
R/I-group. Since G is an equiprime right R-group and I C (0 : G)g,
by Prop. 3.10, G is an equiprime right R/I-group, where g(r + I) := gr,
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g€ G, re R Let 0# g € G. We get a finite subset F' of R such
that r,s € R and gxr = gzs for all z € F implies r — s € (0 : G). Let
I'={x+I|zeF}. Leta+1,b+1¢€ R/I and g(x+1I)(a+1) =
=g(x+1)b+1I)foral x+1 €T. Now gra = gzb for all z € F. So,
a—be (0:G)and that (a+1)—(b+1) € (0:G)p/I =(0:G)gys.
Therefore, G is a strongly equiprime right R/I-group.

(v) Similarly, if H is a strongly equiprime right R/I-group and [
is an ideal of R, then we can show that H is a strongly equiprime right
R-group. Hence, H is a special class of near-ring right modules. ¢

It is clear that H(R) = S(R) for all near-rings R.

An ideal P of R is called uniformly strongly equiprime if there is
a finite subset F' of R such that a € R\P,b,c € R and azb — axc € P
for all x € F implies b — ¢ € P. A near-ring R is said to be uniformly
strongly equiprime if {0} is an uniformly strongly equiprime ideal of R.
The wuniformly strongly equiprime radical of R, denoted by V(R), is the
intersection of all uniformly strongly equiprime ideals of R. V is a special
radical in the class of all near-rings.

Definition 5.6. A right R-group G is said to be uniformly strongly
equiprime if

(i) GR # {0} and GO = {0};

(ii) I, J are ideals of R and GI = {0}, GJ = {0} implies G(I + J) =

= {0};

(iii) there is a finite subset F' of R such that 0 # g € G, a,b € R and
gra = gxb for all x € F implies a — b € P, where P is the largest

ideal of R contained in (0 : G);

(iv) r,s € Rand r — s € P implies gr = gs for all g € G.

Let Tg := {G | G is a uniformly strongly equiprime right R-group}
and T := URENTR'

By using arguments similar to those used in strongly equiprime
right R-groups, we get the following:
Proposition 5.7. Let G be a right R-group. If G is uniformly strongly
equiprime, then (0 : G) is a uniformly strongly equiprime ideal of R.
Proposition 5.8. Let P be an ideal of R. If P is uniformly strongly
equiprime, then there is a uniformly strongly equiprime right R-group G
such that P = (0: G).
Theorem 5.9. T is a special class of near-ring right modules.
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It is clear that T(R) = V(R) for all near-rings R.

An ideal P of R is called bounded strongly equiprime of bound one
if for each a € R\ P there is a k € R such that b, c € R and akb—akc € P
implies b—c € P. A near-ring R is said to be bounded strongly equiprime
of bound one if the zero ideal {0} is bounded strongly equiprime of bound
one. The bounded strongly equiprime radical of R of bound one, denoted
by W(R), is the intersection of all bounded strongly equiprime ideals of
R of bound one. W is a special radical in the class of all near-rings.

Definition 5.10. A right R-group G is said to be bounded strongly
equiprime of bound one if
(i) GR # {0} and GO = {0};

(ii) I, J are ideals of R and GI = {0}, GJ = {0} implies G(I + J) =
= {0};

(iii) for each 0 # g € G there is an element k € R such that a,b € R
and gka = gkb implies a — b € P, where P is the largest ideal of R
contained in (0 : G);

(iv) r,s € Rand r — s € P implies gr = gs for all g € G.

Let Lg := {G | G is a bounded strongly equiprime right R-group
of bound one} and LL := Ugen Lg.

By using arguments similar to those used in strongly equiprime
right R-groups, we get the following:
Proposition 5.11. Let G be a right R-group. If G is bounded strongly
equiprime of bound one, then (0 : G) is a bounded strongly equiprime
ideal of R of bound one.
Proposition 5.12. Let P be an ideal of R. If P is bounded strongly

equiprime of bound one, then there is a bounded strongly equiprime right
R-group G of bound one such that P = (0 : G).

Theorem 5.13. L is a special class of near-ring right modules.

It is clear that L(R) = W(R) for all near-rings R.

An ideal P of R is called completely equiprime if a € R\P, b,c €
€ R and ab — ac € P implies b — ¢ € P. A near-ring R is said to be
completely equiprime if {0} is a completely equiprime ideal of R. The
completely equiprime radical of R, denoted by N, (R), is the intersection
of all completely equiprime ideals of R. N, is a KA-radical in the class
of all near-rings.

Definition 5.14. A right R-group G is said to be completely equiprime
if
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(i) GR # {0} and GO = {0};
(ii) 1, J are ideals of R and GI = {0}, GJ = {0} implies G(I + J) =
={0};
(iii)) 0 # g € G, a,b € R and ga = gb implies a — b € P, where P is the
largest ideal of R contained in (0 : G);
(iv) r,s € Rand r — s € P implies gr = gs for all g € G.

Let Cgr := {G | G is a completely equiprime right R-group} and
C .= UREN CR.

By using arguments similar to those used in strongly equiprime
right R-groups, we get the following:

Proposition 5.15. Let G be a right R-group. If G is completely equi-
prime, then (0 : G) is a completely equiprime ideal of R.

Proposition 5.16. Let P be an ideal of R. If P is completely equiprime,
then there is a completely equiprime right R-group G such that P =
=(0:G).

Theorem 5.17. C is a special class of near-ring right modules.

It is clear that C(R) = N,(R) for all near-rings R.

In [15] a right R-group of type-0(e) is introduced and in [8] right
R-groups of type-1(e) and 2(e) are introduced.

By Prop. 3.7 of [15], if G is a right R-group of type-0 and GO = {0},
then there is a largest ideal of R contained in (0: G) = {re R | Gr =
— {0}}.

Let G be a right R-group of type-0 and GO = {0}. There is a largest
ideal P of R contained in (0: G) ={r € R| Gr ={0}}. G is said to be
a right R-group of type-0(e) if 0 # g € G, r1, ro € R and gxr; = gars for
all x € R implies r; —ry € P.

Let v € {1,2}. Let G be a right R-group of type-v. A right R-
group of type-v is of type-0. By Prop. 3.2 of [8], GO = {0}. There is a
largest ideal P of R contained in (0 : G) = {r € R | Gr = {0}}. Then
G is said to be a right R-group of type-v(e) it 0 # g € G, r1, 72 € R and
gxry = gxre for all x € R implies r; — ry € P.

A right R-group of type-2(e) is of type-1(e) and a right R-group of
type-1(e) is of type-0(e).

Proposition 5.18. Let v € {0,1,2}. Let G be a right R-group of type-
v(e). Then G is an equiprime right R-group.

Proof. Only the fourth condition in the definition of an equiprime right
R-group has to be verified. By Prop. 3.12 of [15], P := (0 : G) =
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={re R|Gr={0}}is an ideal of R. Let r,s € Rand r — s € P. Let
go be a generator of G. Now goR = G and go(z + y) = gox + goy for all
x,y € R. Let g € G. We have g = got, for some t € R. Now gr = gotr =
= go(t((r—s) +s)—ts+ts) = go(t((r—s) + s)—ts) + gots = 0+ gs = gs.
Therefore, GG is an equiprime right R-group. ¢

Let v € {0,1,2}. If G is aright R-group of type-v(e), then (0 : G) =
={r € R| Gr ={0}}is an ideal of R and is called a right v(e)-primitive
ideal of R. R is right v(e)-primitive if {0} is a right v(e)-primitive ideal
of R. The intersection of all right v(e)-primitive ideals of R is the right
Jacobson radical of R of type-v(e) and is denoted by J7, (R). In [15] and
[8] it is shown that Jie) 1s a special radical in the class of all near-rings.

Let G, g := {G | G is a right R-group of type-v(e)} and G, :=
= UR@\/(G,/7 R,V E {0, 1,2}

Clearly, M4 and M5 conditions in the definition of a special class
of near-ring right modules are satisfied by G,. By Th. 3.28 of [15] and
Th. 3.32 of [8] we get that G, satisfies condition M3.

Proposition 5.19. Let v € {0, 1,2}, and I be an essential left invariant
ideal of R and let G be a right I-group of type-v(e). Let H be the subgroup
of (G,+) generated by GI. Then H is a right R-group of type-v(e) and
(0 . G)[ = (0 . H)R

Proof. From the proof of Th. 3.33 of [15] and Th. 3.36 of [8] it follows
that a faithful right I-group of type-v(e) is a faithful right R-group of
type-v(e). Since G is monogenic, H = G. Now J = (0 : G);, is an
equiprime ideal of I. Clearly, G is a faithful right I/J-group of type-
v(e), where g(a + J) := ga. Since J <1 < R, I is left invariant and I/.J
is equiprime, we get that J <1 R. Since I/J is an essential left invariant
ideal of R/J, G is a faithful right R/J-group of type-v(e). Therefore, H
is a right R-group of type-v(e) and (0: H)g=J. ¢

From the above observations we have:

Theorem 5.20. G, is a special class of near-ring right modules, v €
€ {0,1,2}.

It is clear that G, (R) = J;, (R) for all near-rings R.
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