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Abstract: The abacus is a well-known calculating tool with a limited number
of placeholders for digits of operands and results. Given a number of rods n of
the abacus, a chosen basis of the number system and the first operand a, this
paper deals with the possible values of the other operand b in the four basic
arithmetic operations performed with integers on the abacus.

1. Introduction

The abacus is an ideal tool to demonstrate the basic arithmetic op-
erations in various number systems. This, probably first and definitely
the most well-known calculating tool, is still widely used and has sur-
vived through centuries due to its simplicity, adaptability and creativity
which it provides. Certain historical facts can be found in [3] and in an
interesting manuscript [2].

We take a moment to recall that every abacus consists of a frame
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with several rods, with equal number of beads on each rod (actually,
there is one rod with few beads less on the Russian abacus, but that will
not be of much importance for us). Calculations are made by moving
beads, representing digits in that way, while beads on a single rod repre-
sent a single digit. Every basic arithmetic operation can be carried out
on the abacus and is performed very similarly to the standard pencil-
and-paper algorithm. In fact, every pencil-and-paper algorithm can be
transferred to abacus, after possible slight modifications. Despite known
ways of making such modifications, users may harmonize the calculating
procedure according to their requirements and wishes (this property also
develops a higher level of creativity).

The number systems representable on an abacus depend on the
number of beads on a rod. For instance, the basis of a number system
representable on a traditional Chinese abacus is less than or equal to 16,
while such basis on a traditional Japanese abacus is not greater than 10.
From now on, when working with the numbers in base B, we assume
that there are at least B − 1 beads on each rod.

It is worth pointing out that the abacus has numerous pedagogical
applications and therefore it is widely used as a teaching tool, especially
in learning arithmetic, mental calculation and manipulating with various
number systems. Also, some special sorts of abacus are still used by
the blind individuals as a decisive help in learning arithmetic. Some of
the above mentioned subjects are described in [5] and [6]. For a deeper
discussion we also refer the reader to [1].

Besides many advantages, a major drawback while calculating on
abacus is the insufficiency of space needed for implementation of some
calculating procedures. A problem that naturally arises is to find ex-
plicit upper bounds for a given arithmetic operation, on an abacus with
arbitrary (but fixed) number of rods and the fixed first operand. Since
abacus allows computation in various number systems, this problem can
be generalized by considering operands in any basis (assuming that they
are representable on the rods of the abacus). Surprisingly, this was not
done before, except by the second-named author et al. in [4] for basis 10,
where division was considered only in the special case of a traditional
Chinese 13-rod abacus. Since on each abacus a single rod can be used to
represent at most one digit, we will not specify the type of the abacus
that we use. Also, our inquiry could be viewed as a problem of deter-
mining a minimal space required for some integer computations, which
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seems to be of independent interest, especially in some aspects of the
number theory and computer science.

For the sake of completeness, before deriving the constraints on
some basic arithmetic operation, we shortly describe its usage on the
abacus. We shall describe all the considered operations under the natural
assumption that the person making the calculations is not memorizing
any of the data.

Given the number of rods on an abacus and the first operand a, for
each basic arithmetic operation we have considered the maximal values
of the second operand b such that it is performable on our abacus. While
the maximal values for b are quite obvious in the case of addition and
subtraction, they are not so obvious (although relatively simple to prove)
for multiplication. The case of division is by far the most complicated
case, with many special cases and answers that are neither obvious nor
simple to formulate. The most of the paper is devoted to that problem,
in which appear some extremely non-trivial cases of numbers with so-
called critical number of digits, which have to be studied separately. We
have completely solved the problem of finding the maximal value of the
divisor b for a with at most Nn digits, Nn being the smallest number
of digits for a such that a cannot be divided by all smaller divisors on
the n-rod abacus. Although there are still several open questions to be
solved, the most usual 13-rod case, which has turned up several times
as a specially complicated, has been completely solved. It is expected
that the remaining situations can be solved in pretty much the same
way. This needs longer case-by-case examination, and we plan to write
it elsewhere.

We now describe the content of the paper in more detail. In the
second section we recall some basic notations that will be used through
the paper. In the third section we briefly sketch addition and subtraction
on the abacus and, as a motivation, obtain explicit bounds for this oper-
ations. Sec. 4 is devoted to the study of the limitations of multiplication
using abacus. Sec. 5 provides a detailed exposition of the limitations
which arise during the division.

2. Notation

The base of the number system we are working in shall be denoted
by B (B ∈ N, B > 1); accordingly, the digits of a number represented
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in the base B number system are 0, 1, . . . , B − 1. The number of digits
of a number a in base B shall be denoted by δB(a). If a number a is
represented in the base B number system, the digits shall be denoted by
ai, i = 0, 1, . . . , m = δB(a) − 1 and we shall write

a = (amam−1 . . . a2a1a0)B.

If a number is represented by its digits without reference to base it is
understood, as usual, that the chosen base is 10. We shall frequently
make use of the fact that for a number a that has δB(a) digits with
respect to base B the following inequalities hold:

BδB(a)−1 ≤ a ≤ BδB(a) − 1.

The number of the abacus rods shall be denoted by n (n ∈ N).
Note that a number a is representable in base B on an abacus with n

rods if (and only if) δB(a) ≤ n. Throughout the text we use the phrases
“a can be multiplied with b” and “a can be divided by b” in the sense
that the corresponding arithmetical operation is feasible on the abacus
for a given number n of rods (i.e. under “a can be divided by b” we don’t
mean that a is a multiple of b).

3. Addition and subtraction

Let a and b be two positive integers. In the case of the calculation
of a − b we suppose that b ≤ a. For adding a + b or subtracting a − b

one starts with the number a registered on the abacus; we suppose that
it is registered in such a way that the last digit of a is represented on
the last (rightmost) rod of our abacus. Starting from right, one adds
or subtracts the corresponding digit of b by moving the corresponding
number of beads on the rod. Say we are adding the i-th digits of a and b

i.e. performing addition ai−1 + bi−1 on the i-th rod from the right. If the
sum ai−1 + bi−1 is less than B, we just move bi−1 beads to the ai−1 beads
and then move to the next digit to the left. Otherwise, as soon as we
have B beads moved to the bottom of the rod, we remove them and then
on the same rod we represent bi − ai and add 1 to the digit represented
on the next rod to the left. Addition is illustrated in Fig. 1.

When subtracting bi from ai, if ai ≥ bi the operation is obvious.
Otherwise one has to remove one bead from the next left rod and on the
i-th rod the digit (ai + B) − bi is represented.

The proof of the following proposition is elementary.
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Figure 1. Addition on the abacus (base B = 8, a = (70156)8,

b = (2714)8, a + b = (73072)8).

Proposition 1. Given the number of rods n and a number a ∈ N rep-
resentable on the abacus, then the largest number b ∈ N for which it is
possible to calculate a + b is

bmax = Bn − 1 − a.

The largest number b ∈ N for which it is possible to calculate a − b is
bmax = a.

4. Multiplication

The multiplication procedure on the abacus is similar to the algo-
rithm that is used in pencil-and-paper calculations. The main difference
in the algorithm is that the first factor a is sequentially multiplied with
digits of the second factor b starting with the rightmost digit and the
results are added. This ensures we don’t have to plan ahead how many
columns we need for the product a · b. In order to keep the calculation
neat we shall reserve two columns of the abacus to separate the factors
and the second factor from the result (we can imagine these two empty
columns represent the symbols · and =). Secondly, we suppose that we
need to represent both factors a and b on the abacus so the user doesn’t
need to memorize any of them.

We shall suppose that we write a and b with the empty columns on
the left side of the abacus.

Before we continue with the limitations of the multiplication using
the abacus we have to describe the algorithm in detail. The first factor
a is first multiplied by the last digit of the second factor b. This is
a multiplication of a by a single-digit number and is performed right
to left and the result is represented on the abacus starting from the
rightmost column to the left; whenever we have to carry a digit because
the multiplication of digits resulted in a number greater or equal to the
base B we perform the corresponding addition. After the multiplication
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of a with the last digit of b is completed, we continue sequentially with the
other digits of b (right to left), every time positioning the last digit of this
partial result one place more to the left and adding it to the previously
obtained partial product. The algorithm is illustrated in Fig. 2.

Figure 2. Multiplication on the abacus (base B = 9, a = (132)9,

b = (48)9, ab = (6567)9).

Considering the algorithm, it is obvious that in order to be able
to perform the multiplication ab one needs an abacus with (at least)
2 + δB(a) + δB(b) + δB(ab) rods. Given a number a, observe that if it
cannot be multiplied by 1, then it cannot be multiplied by any larger
number b. So, a can be multiplied on the abacus if it can be multiplied
at least by 1. To multiply a by 1 we need δB(a) columns for a, one for
1, two additional separating columns and δB(a) columns for the result
a · 1 = a. Altogether, we need 2δB(a) + 3 columns. Consequently, we
have proven

Proposition 2. A number a can be multiplied on an abacus with n rods
if

n ≥ 2δB(a) + 3,

i.e. if a has at most

⌊
n − 3

2

⌋
digits.

In particular, it is not possible to multiply any numbers on an
abacus with less than 5 rods. On the usual 13-rod abacus one cannot
multiply a number having 6 or more digits with any other number.

Now suppose that a has at most

⌊
n − 3

2

⌋
digits. What is the largest

number b that a can be multiplied with? To answer this question first
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we shall determine the maximal number k of digits that b can have. If a

can be multiplied with any k-digit number, then it can be multiplied by
the smallest k-digit number Bk−1. Note that δB(aBk−1) = k−1+ δB(a),
so 2k ≤ n−1−2δB(a). Thus, k =

⌊
n−1

2

⌋
− δB(a) is the maximal number

of digits the second factor can have. The following theorem describes the
constraints which arise during the multiplication.

Theorem 1. Let n be the number of rods on the abacus and a be a

number such that δB(a) ≤

⌊
n − 3

2

⌋
. Then:

(a) if n is odd, a can be multiplied on the abacus with all numbers

not greater than

⌊
B

n−3

2 − 1

a

⌋
;

(b) if n is even, a can be multiplied on the abacus with numbers
not greater than B

n

2
−1−δB(a) − 1.

Proof. If n is odd, then k = n−1
2

− δB(a), so multiplication of a with a
k-digit number b requires n or n+1 columns (2 separating columns, δB(a)
columns for a, k columns for b and δB(a)+k = n−1

2
or δB(a)+k−1 = n−3

2

columns for ab). Accordingly, the upper limit for b is the largest number
such that the product ab has δB(a) + k − 1 = n−3

2
digits. That means

that the largest feasible product is B
n−3

2 − 1, i.e., b ≤ B
n−3

2 −1
2

. Thus we
have proven case (a). For case (b), the situation is simpler: we need 2
columns for separation purposes, δB(a) columns for a, k = n−2

2
−δB(a) =

= n
2
− 1 − δB(a) columns for b and n

2
− 1 or n

2
− 2 columns for ab. That

makes altogether n or n− 1 columns, so we can calculate the product of
a with any k-digit number b. It follows that the upper limit for b is the
largest k-digit number Bk − 1 = B

n

2
−1−δB(a) − 1. ♦

Note that we can significantly increase the maximal feasible number
of digits of the second factor if we allow its digits to be sequentially
deleted during the computation. Namely, since we are multiplying the
first factor a with the second factor’s digits right to left, as soon as we
have completed the multiplication of a with a digit of the second factor,
we can delete this digit and use the column of the deleted digit as the
separation column between b and ab.

In the same way as before, we obtain the following theorem:

Theorem 2. Let n be the number of rods on the abacus and a be a number

such that δB(a) ≤

⌊
n − 3

2

⌋
. Let us suppose the modified multiplication
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procedure is to be used, i.e. in each calculation step after multiplying a

with a digit of b the column of b containing that digit is cleared and
used as the separation column between b and the result. Then a can be

multiplied on the abacus with numbers up to

⌊
Bn−3−δB(a) − 1

a

⌋
.

5. Division

The algorithm of division a : b on the abacus is also performed sim-
ilarly to the pencil-and-paper algorithm. Obviously it is not interesting
to consider the division a : b in case a < b, so in all of the following we
suppose that a ≥ b. We start by representing a and b on the leftmost
rods of the abacus. In each step we determine one digit of the integer
quotient. After the digit is determined we have to calculate the partial
product, i.e. the product of this digit with b, and represent it on the
rightmost columns of our abacus. Then we subtract this partial prod-
uct from a (this can be done in the columns where a was represented in
the beginning). Accordingly, in each step of the division we need δB(a)
columns on the left to represent a (or the current remainder obtained by
sequentially subtracting the previous partial products), δB(b) columns
to represent b, and columns for the currently known digits of the integer
quotient q = ⌊a : b⌋ and columns for the present partial product. To keep
the calculations neat, we shall suppose that three columns shall be used
for separation purposes (one separating a from b and thus representing
the symbol :, one separating b from the quotient and thus representing
the symbol = and one separating the quotient from the partial product).
The algorithm is illustrated in Fig. 3.

Figure 3. Division on the abacus (base B = 10, a = 563, b = 24,

q = ⌊a : b⌋ = 23 and the remainder r = 11).

The following lemma contains well-known results; both statements
are simple consequences of the equation stated in the introductory section
about notation.
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Lemma 1. (a) The integer quotient q = ⌊a : b⌋ has either δB(a)− δB(b)
or δB(a) − δB(b) + 1 digits.

(b) The product of a number b with a one digit number and thus
every nonzero partial product in the calculation of a : b has δB(b) or
δB(b) + 1 digits.

A simple, but important, observation is contained in the following
lemma:

Lemma 2. If the abacus allows enough space to represent the last
nonzero partial product, then it is also possible to represent all the previ-
ous partial products.

Proof. The last nonzero partial product is the product of the last
nonzero digit from q with b. If this product is representable on the
abacus, the previous was also representable since it has the same num-
ber of digits or one more, and there was one less digit of q determined.
Inductively we conclude that all the previous steps could be performed. ♦

First we shall, for a given a, determine when it is not possible to
divide it by any b and vice versa, for a given b when it cannot be a divisor
for any dividend a. In all of the following we suppose that we need one
column for a zero partial product.

Proposition 3. A number a cannot be a dividend on an abacus with n

rods if
n < 4 + 2δB(a).

A number b cannot be a divisor on an abacus with n rods if
n < 4 + 3δB(b).

Proof. For a given a the most favorable situation we obtain when b is
such that the quotient has δB(a)−δB(b) digits and all but the first partial
products are zero (i.e. all but the first digit of the quotient are zero) and
thus we need only one column to represent these partial products. In
such a case we need

Na,b,min = 3 + δB(a) + δB(b) + δB(a) − δB(b) + 1 = 2δB(a) + 4

columns. Consequently, a cannot be divided by any b if n < 2δB(a) + 4.
For a given b the most favorable situation we obtain when a = b

since and in this case we need only one step that uses 3+δB(a)+δB(b)+
+1 + δB(b) = 3δB(b) + 4 columns. This proves the second statement. ♦

It follows that on abaci with less than seven rods one cannot divide
any numbers, so in all of the following we shall suppose n ≥ 7.
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In the rest of the paper we shall deal with the following question:
given a number a, what is the largest number b such that it is possible to
calculate a : b on a n-rod abacus? Such a b shall be denoted by bmax(a).
Although the question is simple, the answer shall be quite nontrivial to
prove. Because of the previous proposition we shall consider only a with

at most

⌊
n − 4

2

⌋
digits. For example, on a 13-rod abacus one cannot

divide a number with five or more digits (in any base) with any other
number.

The maximal number of rods needed for a division a : b is
Na,b,max = 3 + δB(a) + δB(b) + δB(a) − δB(b)+

+ 1 + δB(b) + 1 = 2δB(a) + δB(b) + 5.

Since δB(b) ≤ δB(a), we conclude that Na,b,max is at most 3δB(a) + 5,
and this can happen only if b has the same number of digits as a. But,
if this is the case the quotient has to have only one digit and the one
and only partial product cannot be greater than a, thus it has the same
number of digits as a and b and we need only 3δB(a) + 4 columns. On
the other side, if δB(b) < δB(a) then Na,b,max < 3δB(a)+5, so in all cases
we need at most 3δB(a) + 4 columns for the division of a given a by any
b. Consequently, if 3δB(a) + 4 ≤ n, then a can be divided by all b ≤ a.
We summarize this as

Proposition 4. If a has at most

⌊
n − 4

3

⌋
digits, then it is possible to

calculate a : b on a n-rod abacus for all b ≤ a and bmax(a) = a.

For example, on a 13-rod abacus every number with three digits
can be divided by all numbers not greater than it and it is the smallest
number of rods which allows a three-digit dividend to be divided by any
smaller divisor. On a 7-rod abacus all quotients of two one-digit numbers
can be calculated.

The previous two propositions suggest that there is a possibility
(and unfortunately, it occurs) that there are specific numbers of digits
k, depending on n, of a dividend such that some of k-digit dividends
cannot be divided by all smaller divisors. Such numbers of digits k are

called critical. Critical numbers of digits are those greater than

⌊
n − 4

3

⌋

and not greater than

⌊
n − 4

2

⌋
, i.e. there are c(n) such critical numbers

of digits, where c : N \ {1, 2, 3, 4, 5} → N0 is the function defined by
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c(n) =

⌊
n − 4

2

⌋
−

⌊
n − 4

3

⌋
.

Checking for all possible remainders of the division of n by 6 it is
easy to show that

c(n + 1) =





c(n) − 1, n ≡ 0(mod 6),

c(n) + 1, n ≡ 5(mod 6),

c(n), otherwise.

The largest value n for which c(n) = 1 (i.e. the largest number of rods
for which there is only one critical number of digits for a dividend) is 13.
As n increases the situation becomes more complicated. Let us for each
n denote the smallest critical number of digits of a dividend a by Nn, i.e.

Nn = 1 +

⌊
n − 4

3

⌋
.

Note that:

(1) Nn =

{
m − 1, n = 3m,

m, n = 3m + 1 or n = 3m + 2.

Since there are no critical numbers of digits for n = 7, we shall now
restrict ourself to abaci with n > 7 rods.

Lemma 3. Let n ≥ 8.
If n is odd, every number a with a critical number of digits can be

divided by at least one number not greater than a.
If n is even, every number a with less than the maximal critical

number of digits, i.e. with δB(a) <
⌊

n−4
2

⌋
, can be divided by at least one

number not greater than a.

Proof. Note first that for every a the division of a by 1 requires 5+2δB(a)
columns.

If n = 2l + 1 is odd and Nn < δB(a) ≤
⌊

n−4
2

⌋
, then 5 + 2δB(a) ≤

≤ 5+2
⌊

2l+1−4
2

⌋
= 5+2(l−2) = 2l+1 = n columns, i.e. a can be divided

at least by 1.
Consider now even n = 2l, n ≥ 8. Now, 5+2δB(a) ≤ 5+2

⌊
2l−4

2

⌋
=

= 2l + 1 = n + 1. Thus, if δB(a) <
⌊

n−4
2

⌋
the division of a by 1 is

possible. Consequently, of all numbers a with a critical number of digits
only those with

⌊
n−4

2

⌋
digits cannot be divided by 1, and this happens

only for even n. ♦

Let now n be even and δB(a) =
⌊

n−4
2

⌋
. Since the least possible

number of columns for a division of a by some b is Na,min = 4+2δB(a) = n,
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if there is no b such that the division needs Na,min columns, then a cannot
be divided by any b on an abacus with n rods. Since the first step of the
division a : b by any b needs at least 4+ δB(a)+ 2δB(b) columns and this
must not exceed n = 4 + 2δB(a), we get the following condition on the

possible number of digits for the divisor b: δB(b) ≤
⌊

δB(a)
2

⌋
. It is now

easy to find examples of even n, bases B and numbers a with
⌊

n−4
2

⌋
digits

that cannot be divided by any number b ≤ a. If n = 8, then considering
numbers a with δB(a) = 2 digits the only possible divisors resulting in a
division using only 8 columns are one-digit numbers. Taking e.g. B = 10
it is easy to see that the division of a = 21 by all one-digit numbers
requires at least 9 columns. If n = 10, then considering numbers a with
δB(a) = 3 digits the only possible divisors resulting in a division using
only 10 columns are also one-digit numbers. Taking e.g. B = 10 it is
easy to see that the division of a = 297 by all one-digit numbers requires
at least 11 columns. Since for n = 8 and n = 10 the only critical number
of digits is

⌊
n−4

2

⌋
we conclude that there exist numbers a with a critical

number of digits for which the calculation a : b cannot be performed for
any b. Another example for even n is the case n = 12, B = 2, a = (1001)2.

In this case the only possible divisors b with δB(b) ≤
⌊

δB(a)
2

⌋
are 1, (10)2

and (11)2 and it is easy to check that the division of a by any of these
divisors requires 13 columns.

Because of these problems we shall now restrict ourselves to abaci
with 9 or at least 11 rods and to the identification of maximal divisors
for numbers a with the minimal critical number Nn of digits.

Lemma 4. To divide a number with k digits by a number with the same
number of digits the abacus has to have at least 3k+4 rods. In particular,
a number with a critical number of digits cannot be divided by any number
with the same number of digits.

Proof. The division of a number by another one with the same number
of digits necessary yields a one-digit quotient (this is a consequence of
Lemma 1). Since the only partial product in this case has at least the
value of the divisor and at most the value of the dividend, we need the
same number k of columns for representing it. This means that for the
calculation one needs exactly 4 + 3k columns.

If k ≥ Nn, we conclude that for dividing a k-digit number by a
k-digit number one needs at least 4 + 3Nn = 7 + 3

⌊
n−4

3

⌋
columns. Using

equation (1) it is easy to see that this number is always greater than n. ♦
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Thus the largest number that a Nn-digit number can be divided by
has at most Nn − 1 digits. In many, but not in all, cases it is possible to
perform the division of a Nn-digit number by a (Nn−1)-digit divisor. Let
a be a number with Nn digits and b a number with one digit less. Because
of Lemma 1 we know that the integer quotient of a by b has 1 or 2 digits.
In the first step of the division we obtain the first (and possibly the last)
digit of the quotient and the partial product is necessarily nonzero. For
this step we need 3Nn +2 or 3Nn +3 columns, depending on if the partial
product has the same number of digits as b has or one more. Because
of equation (1), we conclude that for determining the first digit of the
quotient we need at most 3m = n columns if n = 3m, at least 3m+2 > n

columns if n = 3m + 1 and either 3m + 2 = n or one more columns if
n = 3m + 2. So we conclude:

Proposition 5. If n ≡ 1 (mod 3) then it is not possible to divide a
number with Nn digits with any number with Nn−1 digits. In particular,
it is not possible to divide any four-digit number with any three-digit
number on the classical 13-rod abacus.

We shall continue to consider separately the three possible cases
in three separate subsections. In all of the three subsections we assume
δB(a) = Nn.

5.1. Maximal divisors for Nn-digit numbers on abaci
with n ≡ 0(mod 3) rods

As we have seen, on abaci with n = 3m ≥ 9 rods it is always possible
to obtain the first digit of the result a : b for δB(b) = Nn−1. Since we are
searching for the maximal divisor, we are primarily interested in quotients
that have only one digit and so we check the division of such numbers a

by the maximal (Nn − 1)-digit number

b∗ = BNn−1 − 1.
The division a : b∗ can be performed if the integer quotient has one digit.
The quotient of a by b∗ has two digits only if a ≥ Bb∗ = BNn −B. But,
there are only B such numbers a. Since b∗ > B − 1 (n ≥ 9 implies that
δB(b) is at least 2) the division theorem implies that for a ≥ Bb∗ we have
⌊a : b∗⌋ = B = (10)B. Consequently the second partial product must be
zero and for these divisions we need 3 + Nn + Nn − 1 + 2 + 1 = 2Nn + 5
columns. As n = 3m ≥ 9, equation (1) implies that we need 2m+3 ≤ 3m



38 F. M. Brueckler and I. Matić

columns. For all m ≥ 3 this condition is fulfilled and the division can be
performed. Thus we have proven

Theorem 3. If n ≡ 0(mod 3) then the largest divisor b of an Nn-digit
number a such that a : b can be computed on a n-rod abacus is the largest
(Nn − 1)-digit number b∗ = BNn−1 − 1.

Note that this does not imply that all a with Nn digits can be
divided by all b with Nn − 1 digits (but a can be divided with all b with
at most Nn − 2 digits: if b has p digits, the division requires at most
2Nn + 5 + p digits, and this is at most 2Nn + 5 + Nn − 2 = 3m = n).
For example, if n = 15, i.e. Nn = 4, the number 9989 can be divided
by 999 (quotient 9 and partial product 8991, altogether this makes 15
columns), but the division of 9989 by 112 yields 89 as the quotient and
the last partial product is 9 · 112 = 1008, so the calculation would need
16 columns.

As is obvious from the considerations above, the calculation of a : b

(for δB(a) = Nn and δB(b) = Nn−1) is not feasible if the integer quotient
⌊a : b⌋ has two digits and the last partial product has more digits than b

i.e. when ⌊a : b⌋ ≥ B and q0b ≥ BNn−1, where q0 denotes the last digit of
⌊a : b⌋. This cannot happen if q0 = 0 or q0 = 1 (in particular, if B = 2
the division is always possible!). Otherwise we have the (necessary and

sufficient) condition: b < BNn−1

q0

. Since q0 ≤ B − 1 we conclude

Proposition 6. If n ≡ 0(mod 3) then a Nn-digit number a can be

divided by all b < BNn−1

B−1
. In particular, for binary calculations such an a

can be divided by all (Nn − 1)-digit numbers b.

As conditions similar to the one above the previous proposition
shall appear in the subsequent subsections, we formulate the following
lemma:

Lemma 5. If q∗ is a one-digit number, i.e. q∗ ∈ {1, 2, . . . , B − 1}, and
b has δB(b) digits, then the product q∗ · b has δB(b) digits if and only if

b <
BδB(b)

q∗
.

Otherwise the product has δB(b) + 1 digits.
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5.2. Maximal divisors for Nn-digit numbers on abaci
with n ≡ 1(mod 3) rods

As we have seen, the divisors in this case can have at most Nn − 2
digits. For a given a, with δB(a) = Nn = m (if n = 3m + 1), we want to
determine1 bmax(a). Note also that m ≥ 4 since we restricted ourselves
to abaci with 9 or at least 11 rods, so the smallest n ≡ 1(mod 3) we are
considering in this section is n = 13. We consider only (unless otherwise
stated) divisors b with δB(b) = Nn − 2 = m − 2. The maximal such
number b shall be denoted b∗:

b∗ = BNn−2 − 1 = Bm−2 − 1.

By Lemma 1, the quotients q = ⌊a : b⌋ will have two or three digits. The
first calculation step needs at most 3 + Nn + Nn − 2 + 1 + Nn − 1 = n

columns, so we can always determine the first digit of the result. The
second step needs either 2Nn + 4 < n (if the second digit of the quotient
is zero), 3Nn+1 = n or n+1 columns; the last, problematic, case appears
if the product of b with the second digit of the quotient has more digits
than b, i.e. if the partial product is at least BNn−2. This cannot happen
if the second digit of the quotient is 0 or 1, in particular it cannot happen
in binary calculations. If the second digit is 2 or larger, then b has to
meet the condition from Lemma 5 (where q∗ is the second digit of the
quotient and δB(b) = Nn − 2). If needed, the third step requires one
column more for the quotient and thus either 2Nn + 5 < n columns (if
the third digit of the quotient is 0), or at least 3Nn +2 > n columns. So,
if the quotient has three digits, then it can be calculated if and only if
the last digit is zero. We summarize this as

Proposition 7. If n = 3m + 1 for some m ∈ N (m ≥ 4), δB(a) = m

and δB(b) = m − 2, then the calculation of the integer quotient q of a

by b on a n-rod abacus is not feasible if the product of b with the second
digit of q is at least Bm−2 or if q has three digits and the last one is
not zero. If B = 2 the calculation is always possible, except for the cases
when the quotient has three digits the last of which is 1.

If B = 2 the only case when bmax(a) 6= b∗ happens if the quotient
is a three-digit binary number such that the last digit is 1. It can easily
be seen by inspection of the possible cases for m > 4 and separately
for m = 4 that the only case when ⌊a : b∗⌋ cannot be calculated is for

1The number bmax(a) depends not only on a, but also on B.
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a = (1111)2. By checking the possible divisors b for this a it is easily
seen that bmax((1111)2) = 1.

Proposition 8. For binary calculations on an abacus with n=3m+1 ≥
≥ 13 rods for all a with m digits the maximal number b such that the
integer quotient of a by b can be calculated is b∗, except for m = 4 and
a = (1111)2, in which case the maximal divisor is 1.

In the following we shall suppose that B > 2. As we want to
determine the maximal b, we would prefer smaller quotients. Let us first
consider the case when there exists a b such that the integer quotient
q = ⌊a : b⌋ has two digits. Since the smallest quotients of a given a we
get for the largest b, and that is b∗, if we are sure that no quotient of a

by b∗ can have 0 or 1 as the last (second) digit, then a cannot be divided
on a n-rod abacus by any b that results in a two-digit quotient. Now, the
quotient q has to have the last digit greater than 1 if q is greater than or
equal to (B − 1 2)B = (B − 1)B + 2 = B2 − B + 2. It follows that for

a ≥ (B2 − B + 2) · b∗ = Bm − Bm−1 + 2Bm−2 − B2 + B − 2 = a

it is not possible to divide a by any of the b with m−2 digits that yield a
quotient with two digits (the smallest such quotient would be B2−B+2,
i.e. all possible two-digit quotients have the last digit greater than 1). We
summarize this as

Lemma 6. If a ≥ a, then none of the integer quotients of a by a
(m − 2)-digit divisor b has two digits.

This means that for a ≥ a we have to search for the maximal divisor
bmax(a) among those yielding three-digit quotients. Note also that for
m = 4 (i.e. n = 13) a = (B−1)Bm−1+Bm−2+(B−2) = (B−1 1 0 B−2)B.
For larger n,

a = (B − 1)Bm−1 + Bm−2 + Bm−2 − B2 + (B − 2) =

= (B − 1 1 B − 1 B − 1 . . . B − 1 0 B − 2)B.

For example, if B = 10 then for n = 13, 16, 19, 22, 25, . . . we get the
following values of a: 9108, 91908, 919908, 9199908, 91999908, . . .

Let us determine bmax(a) for a given a, a ≥ a. Since all quotients
have three digits, if there exists a b < Bm−2 such that ⌊a : b⌋ = B2 (the
smallest three-digit number: B2 = (100)B), then bmax(a) = b.

Lemma 7. For n ≡ 1(mod 3) if a ≥ a and ⌊a : B2⌋ > a − B2⌊a : B2⌋,
then bmax(a) = ⌊a : B2⌋.
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Proof. If ⌊a : b⌋ = B2, the division theorem implies that a = bB2 + r

with r < ⌊a : B2⌋. Thus a − bB2 < ⌊a : B2⌋. ♦

Which a ≥ a fulfil the condition from the lemma? Except in the
case n = 13, all do! Namely, if a = (akak−1 . . . a2a1a0)B, then ⌊a : B2⌋ =
= (akak−1 . . . a2)B and B2⌊a : B2⌋ = (akak−1 . . . a200)B, and thus

a − B2⌊a : B2⌋ = (a1a0)B < (akak−1 . . . a2)B

if k = 1+Nn ≥ 4, i.e. if n ≥ 16, n ≡ 1(mod 3). Thus the only complicated
case is n = 13.

If n = 13, all of the numbers a ≥ a = (B − 1 1 0 B − 2)B ful-
fil the condition from the previous lemma except for the numbers a =
= (B − 1 a2a1a0)B with the property (B − 1 a2)B ≤ (a1a0)B. These
are exactly the numbers a with the property that the remainder of the
division a : B2 is not smaller than the quotient. For these numbers there
is no two-digit divisor b (m − 2 = 2 in this case) such that ⌊a : b⌋ = B2.
In the paper [4, pp. 83–84] the case B = 10 was solved.

We shall now show that there is a similar way to determine bmax(a)
for bases B > 2. According to the previous discussion, we have to deter-
mine bmax(a) for numbers a that are of the form (B−1 0 B−1 0)B+101i+j

for 1 ≤ i ≤ B−3 and 0 ≤ j ≤ B−(i+1), and for numbers a in the three-
element set S = {(B−1 B−2 B−1 B−2)B, (B−1 B−2 B−1 B−1)B ,
(B − 1 B − 1 B − 1 B − 1)B}.

Proposition 9. If a = (B − 1 0 B − 1 0)B + 101i + j, 1 ≤ i ≤ B − 3,
0 ≤ j ≤ B− (i+1), then bmax(a) = (B − 2) ·B + i+2 = (B − 2 i+2)B.

Proof. It suffices to prove that ⌊a : (B − 2 i + 2)B⌋ = (110)B, i.e.

B2 + B ≤
B4 − B3 + (i + 1) · B2 − B + i + j

(B − 2) · B + i + 2
< B2 + B + 1

for all 1 ≤ i ≤ B − 3 and 0 ≤ j ≤ B − (i + 1). This is easy to check by
direct calculation. ♦

Proposition 10. For a ∈ S the number bmax(a) is the largest number b

such that B ≤ b < B2 and ⌊a : b⌋ = (i j 0)B, where 0 < j ≤ i ≤ B−1, if
such a number b exists. Otherwise bmax(a) is equal to the largest number
b′, b′ ≤ B − 1, such that b′ · q0 < B, where q0 denotes the last digit of the
number ⌊a : b′⌋.

Proof. It can be shown similarly as before that there is no number b

with the property that ⌊a : b⌋ is of the form (i 0 0)B. If there exist a
number b as in the first statement of the proposition, it is obvious that a
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can be divided by b on a 13-rod abacus (because both partial products
have at most two digits).

To finish the proof of the first part of the proposition we have to
check that a cannot be divided by b if ⌊a : b⌋ = (i j 0)B, j > i. Namely, if
we suppose that this division is feasible, the product b·j would be smaller
than B2. This is not possible if b · i ≥ (B − 1 B − 2)B. The inequality
b · i < (B − 1 B − 2)B < b · (i + 1) implies b · j = (B − 1 B − 1)B and
j = i + 1. Since in the first partial division we have obtained the integer
quotient i, the remainder in this division is b − 1. Since (B − 1 B − 1)B

is divisible by b, we get B ≤ b− 1. The second digit of the quotient (i.e.,
j) we obtain by the division of (b − 1 B − 1)B by b. We get j = B − 1
because (b − 1 B − 1)B + 1 = (b 0)B. In the same way we get that the
third digit of the quotient cannot be zero (it is in fact equal to B − 1)
and we have obtained a contradiction with our presumption.

The second part of the proposition is now obviously valid, noting
that such a number b′ always exists and is in the worst case equal to 1. ♦

Table 1 shows a few interesting examples.

a B bmax(a)
6565, 6566 7 5
6666 7 6
7676, 7677 8 1
7777 8 42
8787, 8788 9 1
8888 9 28
9898, 9899 10 47
9999 10 9

Table 1. Values of bmax(a) for some cases of a ∈ S

Now let us turn to numbers a < a (for B > 2). For such numbers
there is at least one b with δB(b) = Nn−2 such that ⌊a : b⌋ has two digits.
The necessary and sufficient condition that the calculation is performable
is contained in Lemma 5 (with q∗ being the second digit of the quotient
⌊a : b⌋). There are two cases when the maximal b such that the division
is possible is equal to b∗; these two cases are contained in the following
two lemmas. We first introduce some additional notation: a = (B + 2)b∗

and ã = (B2 − B)b∗.

Lemma 8. Let n be the number of rods on the abacus, n = 3m + 1,
B ≥ 3 and a be a number smaller than a. If a < a or a ≥ ã, then a
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can be divided by b∗, i.e. b∗ is the maximal divisor b such that a can be
divided by b on the abacus.

Proof. If a < a, the integer quotient ⌊a : b∗⌋ has two digits. In
fact, the largest possible integer quotient of such a number a by b∗ is
⌊(a−1) : b∗⌋ = ⌊((B2−B +2)b∗−1) : b∗⌋ = B2−B +1 = B(B−1)+1 =
= (B − 1 1)B.

Now, for a < a, because a is a multiple of b∗ we obtain the following
sharp inequality: ⌊a : b∗⌋ < ⌊a : b∗⌋ = B + 2. Thus ⌊a : b∗⌋ = B or
⌊a : b∗⌋ = B + 1, so the second (and the last) digit of the quotient of a

by b∗ is 0 or 1 and a can be divided by b∗.
On the other side, if a ≥ ã, then ⌊a : b∗⌋ ≥ B2 − B = (B − 1 0)B.

Since the largest possible quotient is (B − 1 1)B, for such numbers a the
only possible quotients with b∗ are (B − 1 0)B and (B − 1 1)B, so we can
again conclude that the division is possible. ♦

The numbers a such that a ≤ a < ã can be divided in two classes:
I = {a : iBb∗ ≤ a < (iB + 2)b∗, i = 2, 3, . . . , B − 2}

and
II = {a : (iB + 2)b∗ ≤ a < (i + 1)Bb∗, i = 1, 2, . . . , B − 2}.

For all numbers a of the form described as class I the largest divisor
is b∗:

Lemma 9. Let n be the number of rods on the abacus, n = 3m+1, B ≥ 3
and a be a number such that a ≤ a < ã. If there exist integers i and j

such that a = iBb∗ + j, i ∈ {2, 3, . . . , B − 2} and j ∈ {0, 1, . . . , 2b∗ − 1},
then the maximal divisor b such that a can be divided by b on the abacus
with n rods is b∗.

Proof. If a can be represented in the form a = iBb∗ + j with i and j as
described in the statement of the lemma, then either a = iBb∗ + j with
j < b∗ or a = iBb∗+b∗+j′ = (iB+1)b∗+j′ with j′ < b∗. In the first case
we have ⌊a : b∗⌋ = iB = (i 0) and in the second ⌊a : b∗⌋ = iB +1 = (i 1),
so in both cases the last digit of the quotient is 0 or 1 and the division
of a by b∗ is feasible. ♦

Before we continue, note that for numbers a ∈ II the maximal
divisor cannot be b∗. Namely, for a ≥ a and b ≤ b∗ we have ⌊a : b⌋ ≥
≥ ⌊a : b∗⌋ = B + 2 = (1 2)B. Thus for a ∈ II we have
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⌊a : b∗⌋ ∈
{
B + 2, B + 3, . . . , B2 − B − 1

}
\

\
{
iB, iB + 1 : i = 2, 3, . . . , B − 2

}
=

=
{
(1 2)B, (1 3)B, . . . , (B − 2 B − 1)B

}
\

\
{
(2 0)B, (2 1)B, . . . , (B − 2 0)B, (B − 2 1)B

}
,

i.e. the second digit of the quotient is larger than 1 and so the last partial
product of the division by b∗ must be larger than b∗. In class II we shall
show that the largest divisor is the number

(2) b♮ =

 a⌈
⌊a:b∗⌋

B

⌉
B

 .

Although the formula seems complicated, the idea behind it is quite
simple: We check the number ⌊a : b∗⌋ and now we decrease the divisor
downwards starting with b∗ − 1 until we find the first b (that is our b♮)
such that the integer quotient of a by b is a two-digit number with the
second digit equal to zero, i.e. ⌊a : b⌋ is a multiple of B and it is the
smallest multiple of B less than ⌊a : b∗⌋.

To prove that bmax(a) = b♮ for a ∈ II we have to prove that a can
be divided by b♮ and that there is no larger b (b♮ < b ≤ b∗ − 1) such that
a can be divided by b on an abacus with n = 3m + 1 rods. Denote by

k =
⌈
⌊a:b∗⌋

B

⌉
the smallest integer k such that ⌊a : b∗⌋ < kB = (k 0)B.

Since a ∈ II there exists some i ∈ {1, 2, . . . , B−2} such that (iB+2)b∗ ≤
≤ a < (i + 1)Bb∗. By the definition of k we have i + 1 = k and

(k − 1)B <
a

b∗
< kB.

Lemma 10. Let a ∈ II and suppose (iB + 2)b∗ ≤ a < (i + 1)Bb∗, for

some i ∈ {1, 2, . . . , B − 2}. Then a ∈ II can be divided by b♮ =
⌊

a
(i+1)B

⌋
.

The corresponding quotient ⌊a : b♮⌋ is equal to (i + 1)B = (k 0)B and
thus b♮ is the largest b such that ⌊a : b⌋ = (i + 1)B.

Proof. The quotient theorem implies that a can be represented in the
form a = p(i+1)B+r, with 0 ≤ r < (i+1)B. Obviously p = ⌊ a

(i+1)B
⌋. If

we show that p > r, the same theorem implies that ⌊a : b♮⌋ = (i + 1)B =
= (k 0)B. It is sufficient to show that a ≥ (i+1)2B2, because this implies
p ≥ (i + 1)B.

As a is at least (iB +2)b∗, it is sufficient to check that (i+1)2B2 <

< (iB+2)(B2−1). Note that (iB+2)(B2−1) > iB3 and (i+1)2B2 < iB3
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for i < B − 2. In the case i = B − 2, the required inequality is obtained
by direct calculation. ♦

Now let us suppose that there is a b > b♮ such that a can be
divided by b on our abacus. Since we have shown that b♮ is the largest
divisor b such that ⌊a : b⌋ = kB we conclude that for b > b♮ we have
⌊a : b⌋ ≤ (k − 1 B − 1)B. On the other side, b < b∗ and our choice of k

implies that (k − 1)B + 2 < a : b∗ < a : b. Thus ⌊a : b⌋ has to be one of
the B − 1 numbers (k − 1 2)B, (k − 1 3)B, . . . , (k − 1 B − 1)B. Now, it
is enough to show that 2b♮ ≥ b∗, because this would imply 2b > b∗ so all
of the possible quotients result in a too large second partial product and
then we can conclude that a cannot be divided by any b > b♮.

Lemma 11.
2b♮ ≥ b∗.

Proof. We have ((k − 1)B + 2)b∗ ≤ a < kBb∗ and thus

b♮ =
⌊ a

kB

⌋
≥

⌊
(k − 1)B + 2

kB
· b∗

⌋
.

It is easy to see by elementary calculus that the function f : R
+ → R,

f(x) = (x−1)B+2
xB

= 1 − B−2
xB

is increasing and has the line y = 1 as a
horizontal asymptote. Consequently, 1 > f(k) ≥ f(2) = 2+B

2B
> 1

2
for

all k.

Now, if B is odd, i.e. b∗ is even, we have b♮ ≥

⌊
b∗

2

⌋
=

b∗

2
.

On the other side, if B is even and thus b∗ is odd,

b♮ ≥

⌊
B + 2

2B
· b∗

⌋
=

⌊
Bm−2

2
+ Bm−3 −

B + 2

2B

⌋
=

=
Bm−2

2
+ Bm−3 − 1 >

b∗

2
. ♦

The previous two lemmas imply that the formula (2) is valid, i.e.
we have proven

Proposition 11. Let n ≥ 13 be the number of rods on the abacus,
n = 3m + 1, and B ≥ 3. For a ∈ II

bmax(a) = b♮ = ⌊a : (kB)⌋,

where k is the largest of the numbers 2, 3, . . . , B − 1 such that ⌊a : b∗⌋ ≤
≤ kB.

We summarize the previous results as

Theorem 4. Let n ≥ 13 be the number of rods on the abacus, n = 3m+1
and B ≥ 3. Let a be a number such that δB(a) = Nn and b∗ = BNn−2−1.
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(a) If a ≥ (B2−B+2)·b∗ then bmax(a) = ⌊a : B2⌋, except if n = 13 and
a is of the form a = (B − 1 a2a1a0)B where (B − 1 a2)B ≤ (a1a0)B.
If this is the case, the value of bmax(a) is determined either by
Prop. 9 or Prop. 10.

(b) If a < (B + 2)b∗ or (B2 − B)b∗ ≤ a < (B2 − B + 2)b∗ or if
there exists some i ∈ {2, 3, . . . , B − 2} such that a ∈

{
(i− 1 B − 1

B − 1 . . . B − 1 B − i 0), (i − 1 B − 1 B − 1 . . . B − 1
B − i 1), (i− 1 B − 1 B − 1 . . . B − 1 B − i 2),. . . , (i 1 B − 1 . . .

B − 1 B − (i + 1) B − 3)
}
, then bmax(a) = b∗.

(c) In all other cases bmax(a) = b♮ = ⌊a : (⌈⌊a : b∗⌋ : B⌉B)⌋.

5.3. Maximal divisors for Nn-digit numbers on abaci

with n ≡ 2(mod 3) rods

In this subsection we assume that n = 3m+2 with m ≥ 3, δB(a) =
= Nn = m and (unless otherwise stated) δB(b) = Nn − 1 = m − 1. The
maximal number Bm−1−1 with m−1 digits shall be denoted by b∗. The
integer quotient q = ⌊a : b⌋ has either one or two digits. The first division
step needs either 3 + Nn + Nn − 1 + 1 + Nn − 1 = n or n + 1 columns,
so we get the first condition for the division to be feasible: b < Bm−1

q1

,

where q1 denotes the first (and possibly the only) digit of q. If needed,
the second step requires either 2Nn + 5 < n columns (if the second digit
of q is zero) or at least 2Nn + 4 + Nn − 1 > n columns. Thus we have a
second condition: if q ≥ B, then the second digit of q has to be zero.

Lemma 12. All integer quotients q = ⌊a : b∗⌋, where a has m digits and
b∗ = Bm−1 − 1, are smaller than (11)B = B + 1.

Proof. If q ≥ B + 1 then qb∗ ≥ Bm + Bm−1 −B − 1 > Bm for all B ≥ 2
and m ≥ 3. In particular it is impossible for an m-digit number to be of
the form qb∗ + r with q ≥ B + 1 and r ≥ 0. ♦

For binary calculations this amounts to: the smallest quotient for
which the calculation cannot be performed is q = (11)2 = 3. The previous
lemma implies that this cannot happen, i.e. for B = 2 and n = 3m + 2,
for numbers a with m digits we have bmax(a) = b∗.

Now we turn to bases B > 2. The conditions stated above for the
division to be performable imply that the only cases when bmax(a) 6= b∗

arise when q1b
∗ ≥ Bm−1 or if there is a second digit in q that is not zero.

Because of the previous lemma, the maximal possible two-digit quotient
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⌊a : b∗⌋ is (10)B, so in fact we have only one condition: the first partial
product has to have m − 1 digits. The possible quotients of a by b∗ are
1, 2, . . . , B. If q = 1 or q = B, the division is feasible, i.e. for a < 2b∗

and for a ≥ Bb∗ we have bmax(a) = b∗. For a ∈ {2b∗, . . . , Bb∗ − 1} the
first partial product is at least 2b∗ > Bm, so bmax(a) 6= b∗. Also, it is
impossible to obtain q = 1 in the division of a ∈ {2b∗, . . . , Bb∗ − 1} by a
number b < b∗ (a = 1 · b + r would imply that a < 2b∗, contrary to our
assumption). Since we want the largest b, i.e. the smallest possible q, we
now check if there are performable divisions of a ∈ {2b∗, . . . , Bb∗ − 1}
by b such that q has one digit. In such a case b must meet the condition
qb < Bm−1 and thus 2b∗ ≤ a = qb + r < (q + 1)b < q+1

q
Bm−1. The last

inequality implies that Bm−1 < 2q
q−1

. Since m, B ≥ 3 we have Bm−1 ≥

≥ 32 = 9, so the only possibilities for a division of a by b to be per-
formable would be in the cases when 9 < 2q

q−1
, i.e. when 7q < 9, which is

impossible for q ≥ 2. Thus there are no cases where a ≥ 2b∗, q has only
one digit and the division is performable. Because of the previous lemma,
the only possibility for a division of a number a ∈ {2b∗, . . . , Bb∗ − 1}
by a number b with m − 1 digits to be performable is the case when
q = (10)B = B.

Let now a be any m-digit number in the set {2b∗, . . . , Bb∗ − 1}. If
there is a b with m − 1 digits such that a = Bb + r, 0 ≤ r < b, then
this b is the searched for maximal divisor. Set b = ⌊ a

B
⌋. Obviously this b

fulfils the equality a = Bb + r, so we only have to check that b has one
digit less than a. But, dividing any number a = (am−1 . . . a2a1a0)B by B

results in the integer quotient b = (am−1 . . . a2a1)B with m− 1 digits. So
we have proven

Theorem 5. Let n = 3m + 2 ≥ 11 be the number of rods on the abacus.
Let a be a number with Nn = m digits and let b∗ = BNn−1 − 1 be the
maximal (Nn − 1)-digit number. The maximal divisor b such that the
division of a by b on an abacus with n rods can be performed is:

(a) b∗ if a < 2b∗ or a ≥ Bb∗ or
(b) ⌊a : B⌋ otherwise.
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