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Abstract: A power of the point and a power of the line with respect to the
circle in the isotropic plane are studied in this paper. To begin with, the radical
axis and the radical center of circles in the isotropic plane are presented. As
the principle of duality is preserved in the isotropic plane, notions dual to the
radical axis and to the radical center, the umbilic point and the umbilic axis
are introduced. Non-cyclic quadrangle is called standard if a special hyperbola
with the equation xy = 1 is circumscribed to it. The properties of the standard
quadrangle related to the umbilic point and the umbilic axis are given.
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1. Isotropic plane

The isotropic plane is a real affine plane where the metric is in-
troduced by an absolute figure (ω, Ω) where ω is a line at infinity and
Ω is a point incident with it. If T = (x, y, z) denotes any point in the
plane presented in homogeneous coordinates, then usually an projective
coordinate system where Ω = (0, 1, 0) and the line ω with the equation
z = 0 is chosen. The line ω is said to be the absolute line and the point
Ω the absolute point. All projective transformations that preserve the
absolute figure form a 5-parametric group, the group of similarities of
the isotropic plane, usually denoted by G5 ([7, p. 10]).

All the notions related to the geometry of the isotropic plane can
be found for example in [7] and [8].

For two non-parallel points T1 = (x1, y1) and T2 = (x2, y2) a

distance between these two points is defined as d(T1, T2) := x2 − x1.
In the case of parallel points, e.g. T1 = (x, y1) and T2 = (x, y2),
s(T1, T2) := y2 − y1 defines a span between points T1, T2.

For two non-isotropic lines y = kix + li, i = 1, 2 an angle between
two of them is defined by ϕ = ∠(p1, p2) := k2 − k1. The distance, the
span and the angle are directed quantities.

All aforementioned quantities are kept invariant under a subgroup
G3 of G5 being of the form

x = a + x,
y = b + cx + y,

a, b, c ∈ R.

G3 is called the motion group of the isotropic plane.
Later on we will need the notion of a bisector of two lines. It is

easy to show that the bisector of the lines y = kix + li, i = 1, 2 has the
slope k = k1+k2

2
.

2. A power of the point with respect to the circle

In this section we are concerned with a power of the point with
respect to the circle. Although studied in several books and articles (e.g.
[6], [7]) we give a different approach to the topic, suitable for the research
conducted in the sections that follow. It should be pointed out that all
proofs are novel as are the obtained forms for the power of a point with
respect to a circle and the radical axis of two circles.
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Every circle in the isotropic plane can be represented in the form
y = ux2 + vx + w, u, v, w ∈ R, u 6= 0 ([7, p. 23]). The first part of the
theorem that we start with has been stated and proved in [7, p. 38], in a
different way. We have achieved the new form (1) of the power of point
with respect to the circle, suitable for further investigation.

Theorem 1. Let K be a circle with the equation y = ux2+vx+w and let

T = (x′, y′). If points T1, T2 denote the points of intersection of any line

passing through the point T and of the circle K then the product TT1 ·TT2

is constant and equal to

(1) PT,K = x′2 +
vx′

u
−

y′

u
+

w

u
.

PT,K is called the power of the point T with respect to the circle K.

Proof. Let K be given with the equation

(2) y = ux2 + vx + w.

The line passing through the point T (x′, y′) is of the form

(3) y = kx + y′ − kx′

where k stands for its slope. The abscissae of points of intersection of
the line (3) and the circle (2) fulfil the equation

ux2 + x(v − k) + w − y′ + kx′ = 0.

If these points are denoted by T1 = (x1, y1) and T2 = (x2, y2) then ac-
cording to Viete’s formulae their abscissae satisfy the equalities

(4)
x1 + x2 =

k − v

u
,

x1 · x2 =
w − y′ + kx′

u
.

Thus, using (4)

TT1 · TT2 = (x1 − x′)(x2 − x′) = x′2 +
vx′

u
−

y′

u
+

w

u
. ♦

The radical axis of two circles is very well known notion in the
Euclidean case. It is introduced in the isotropic plane as well, e.g. in ([7,
p. 40]). Now on, we will obtain the equation of the radical axis in our
terms.
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Let T = (x, y) be any point in the plane, and K1, K2 two circles
with equations y = uix

2 + vix + wi, i = 1, 2. A point T has the same
power with respect to K1,K2 respectively if and only if PT,K1

= PT,K2
,

i.e.

x2 +
v1

u1

x −
y

u1

+
w1

u1

= x2 +
v2

u2

x −
y

u2

+
w2

u2

,

from where we get

y =
v1u2 − v2u1

u2 − u1

x +
w1u2 − w2u1

u2 − u1

.

In such a way we have reached the following theorem:

Theorem 2. All the points having the same power with respect to two

circles K1 and K2 given with y = uix
2 + vix + wi, i = 1, 2 are incident

with the same line that has the equation

(5) PK1,K2
. . . y =

v1u2 − v2u1

u2 − u1

x +
w1u2 − w2u1

u2 − u1

.

PK1,K2
is called the radical axis of the circles K1 and K2.

In [6, p. 204] has been proved that the radical axes PK1,K2
, PK1,K3

,
PK2,K3

of three given circles are incident with one point. This point is
called the radical center of the circles K1,K2,K3, and it will be denoted
by PK1,K2,K3

.

3. The umbilic point and the umbilic axis

As the principle of duality is preserved in the isotropic plane (see,
for example [7]), this is of great benefit for our further research on this
topic. Hence, the notions of the power of the line with respect to the
circle, the umbilic point and the umbilic axis will be introduced as the
notions dual to the power of the point with respect to the circle, the
radical axis and the radical center, respectively.

Theorem 3. Let K be the circle with the equation y = ux2 + vx + w

and let P be the line with the equation y = kx + l. If T1 and T2 are

tangents from any point of the line P to the circle K, then the product

∠(P, T1) · ∠(P, T2) is constant and equal to

(6) PP,K = k2 + 4ul − 2vk + v2 − 4uw.

PP,K is called the power of the line P with respect to the circle K.
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Proof. Let T = (x′, y′) be any point of the line P and let T1 and T2

be the tangents from the point T = (x′, y′) to the circle K. Denoting
by P1 = (x1, y1) and P2 = (x2, y2) the points of contact of these two
tangents and the circle, the slopes of the tangents are

(7) ki = 2uxi + v, i = 1, 2,

respectively. As the points of contact P1 and P2 can be written in the
form Pi = (xi, uxi

2+vxi+w), i = 1, 2, it is easy to show that the tangents
Ti, i = 1, 2 are of the form

y = (2uxi + v)x − uxi
2 + w, i = 1, 2.

Coordinates of the point T = (x′, y′) satisfy the upper equation under
the condition

uxi
2 − 2uxix

′ + y′ − vx′ − w = 0, i = 1, 2
that is quadratic equation with xi, i = 1, 2 as its roots. From Viete’s
formulae we get

(8)
x1 + x2 = 2x′,

x1 · x2 =
y′ − vx′ − w

u
.

Let us now calculate the product ∠(P, T1) · ∠(P, T2) using the values
given in (7) and the abscissae xi, i = 1, 2 of the points Pi, i = 1, 2:

(9) (k1−k)(k2−k) = k2−2[u(x1+x2)+v]k+4u2x1x2+2uv(x1+x2)+v2.

Inserting (8) into (9) we obtain that

(k1 − k)(k2 − k) = k2 − 2(2ux′ + v)k + 4uy′ − 4uw + v2.
Inserting y′ = kx′ + l (that is also valid) in the upper equality, it turns
into (6). ♦

The first part of the above theorem can be found in [7, p. 49],
while its proof and the form PP,K given by (6) are characteristic for our
approach. The notion of an umbilic point is introduced by:

Theorem 4. All lines that have the same power with respect to two

circles form a pencil of lines.

Proof. The line P with the equation y = kx + l and the circles K1 and
K2 with the equations y = uix

2 + vix + wi, i = 1, 2 are given. According
to Th. 3, the powers of the line P with respect to the circles K1 and K2

are
PP,K1

= k2 + 4u1l − 2v1k + v1
2 − 4u1w1,

and
PP,K2

= k2 + 4u2l − 2v2k + v2
2 − 4u2w2,

respectively.
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Figure 1. The power of the line P with respect to the circle K

This line P will have the same powers with respect to these two
circles on condition that the equality

4(u1 − u2)l − 2(v1 − v2)k + v1
2 − 4u1w1 − v2

2 + 4u2w2 = 0

is fulfilled. Thus it follows that all such lines form a pencil of lines given
by

4u1w1 − 4u2w2 − v1
2 + v2

2

4(u1 − u2)
= −

v1 − v2

2(u1 − u2)
k + l.

Hence, the point that all such lines are incident with has coordinates of
the form

(10) PK1,K2
=

(

−
v1 − v2

2(u1 − u2)
,
4u1w1 − 4u2w2 − v1

2 + v2
2

4(u1 − u2)

)

. ♦

The point from Th. 4 we call the umbilic point of these two cir-
cles. According to its definition, it is dual to the radical axis. As a
consequence, we have:

Corollary 1. The umbilic point of the circles K1 and K2 given with the

equations y = uix
2 + vix + wi, i = 1, 2 is of the form (10).
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3.1. Homothecy and dilatation

The umbilic point has an interesting property. It represents a center

of homothecy
(

PK1,K2
,
u1

u2

)

that transforms the two circles related to that

point into each other. Indeed,

Theorem 5. If PK1,K2
represents the umbilic point of the circles K1

and K2 given with the equations y = uix
2 + vix + wi, i = 1, 2 then the

homothecy
(

PK1,K2
,

u1

u2

)

transforms the circle K1 into the circle K2.

Proof. Homothecy
(

PK1,K2
,

u1

u2

)

with the equation

(11)
x′ =

u1

u2

x +
v1 − v2

2u2

,

y′ =
u1

u2

y −
4u1w1 − 4u2w2 − v1

2 + v2
2

4u2

.

transforms circle K1 into circle K2. ♦

Similar investigation can be carried out for the radical axis. Actu-
ally, it is an axis of dilatation that transforms the circles related to the
radical axis into each other. In accordance with the above, we have:

Theorem 6. If PK1,K2
represents the radical axis of the circles K1 and

K2 given with the equations y = uix
2+vix+wi, i = 1, 2 then the dilatation

(

PK1,K2
,
u2

u1

)

transforms the circle K1 into the circle K2.

Proof. Dilatation
(

PK1,K2
,
u2

u1

)

with equation

(12)
x′ = x,

y′ =
u2

u1

y −
v1u2 − v2u1

u1

x −
w1u2 − w2u1

u1

.

transforms circle K1 into the circle K2. ♦

The following theorem is the result dual to the radical center given
in ([6, p. 204]).

Theorem 7. Umbilic points PK1,K2
, PK1,K3

and PK2,K3
of the three circles

K1,K2,K3 are incident with one line.

This line we call the umbilic axis of the circles K1,K2,K3 and we
will denote it by PK1,K2,K3

(see Fig. 2).
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Figure 2. The umbilic axis PK1,K2,K3
of the circles K1,K2,K3

4. Properties of the umbilic point and the umbilic
axis related to the non-cyclic quadrangle

In [2] we have introduced the geometry of a non-cyclic quadrangle
in the isotropic plane. Before that, the geometry of a quadrangle has not
been developed at all. Onwards we give new properties concerning the
non-cyclic quadrangle related to its umbilic point and its umbilic axis.

A non-cyclic quadrangle is called standard if a special hyperbola
with the equation xy = 1 is circumscribed to it. Such a standard quad-
rangle has vertices

(13) A =
(

a,
1

a

)

, B =
(

b,
1

b

)

, C =
(

c,
1

c

)

, D =
(

d,
1

d

)

,
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and sides of the forms

(14)

AB . . . y = −
1

ab
x +

a + b

ab
, BC . . . y = −

1

bc
x +

b + c

bc
,

AC . . . y = −
1

ac
x +

a + c

ac
, BD . . . y = −

1

bd
x +

b + d

bd
,

AD . . . y = −
1

ad
x +

a + d

ad
, CD . . . y = −

1

cd
x +

c + d

cd
.

Let us recall from [2] that for the study of the non-cyclic quadrangle the
following symmetric functions of the numbers a, b, c, d will be useful:

(15)

s = a + b + c + d,

q = ab + ac + ad + bc + bd + cd,

r = abc + abd + acd + bcd,

p = abcd.

We begin with:

Theorem 8. Let ABCD be a non-cyclic quadrangle and Oa,Ob,Oc and

Od be the circumscribed circles of the triangles BCD, ACD, ABD and

ABC. If Ba is tangent to the circle Oa at the point B and Ab is tangent

to the circle Ob at the point A, then the bisector of the lines Ab and Ba

is incident with the umbilic point of the circles Oc,Od.

Proof. It is easy to show that a circumscribed circle of the triangle BCD

has the equation

(16) bcdy = x2 − (b + c + d)x + bc + bd + cd.

In general, the tangent to this circle Oa at a point (x0, y0) has the equa-
tion

bcd(y + y0) = 2xx0 − (b + c + d)(x + x0) + 2bc + 2bd + 2cd.

Therefore, the tangent Ba to the circle Oa at the point B given in (13)
has the equation

bcdy = (b − c − d)x + bc + bd + cd − b2.

Analogously, Ab, the tangent to the circle Ob at the point A, is

acdy = (a − c − d)x + ac + ad + cd − a2.

After multiplying these two equations by a, b, respectively and adding
them up the bisector Sab of Ba and Ab has the equation

2py = [2ab − (a + b)(c + d)]x + 2ab(c + d) − (a + b)(ab − cd).
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According to (16), circles Oc and Od are of the forms

Oc . . . abdy = x2 − (a + b + d)x + ab + ad + bd,

Od . . . abcy = x2 − (a + b + c)x + ab + ac + bc.

Referring (10) their umbilic point has coordinates

(17) Ucd =

(

a + b

2
,
2r − (a2 + b2)(c + d)

4p

)

.

Out of the equality

2r − a2c − a2d − b2c − b2d = −(a − b)2(c + d) + 2(a + b)cd

follows that the bisector Sab is incident with the umbilic point from
(17). ♦

We proceed with some interesting results concerning the circum-
scribed circles of the triangles of the non-cyclic quadrangle.

Theorem 9. Let ABCD be a non-cyclic quadrangle and Oa,Ob,Oc and

Od be the circumscribed circles of the triangles BCD, ACD, ABD and

ABC. The umbilic axes of three out of four circumscribed circles touch

one circle.

Proof. According to (16), the equations of the circumscribed circles are

Oa . . . bcdy = x2 − (b + c + d)x + bc + bd + cd,

Ob . . . acdy = x2 − (a + c + d)x + ac + ad + cd,

Oc . . . abdy = x2 − (a + b + d)x + ab + ad + bd,

Od . . . abcy = x2 − (a + b + c)x + ab + ac + bc.

The umbilic axes of three out of four circumscribed circles are studied
now. Let us find e.g. an umbilic axis of the circles Ob, Oc and Od.
Denoted by Pa, the umbilic axis of Ob,Oc,Od has the equation

(18) y =
a2 − bc − bd − cd

2p
x −

a2s − 3r

4p
.

As a matter of fact, out of the equality

−(a2 + b2)(c + d) + 2r = (a + b)(a2 − bc − bd − cd) − a2s + 3r

follows that the point Ucd from (17) is incident with Pa. The same is true
for the umbilic points Ubc and Ubd of the circles Ob,Oc and Ob,Od. Then
the umbilic axes of three circles out of four, Pa, Pb, Pc, Pd respectively,
touch a circle with the equation

(19) 4py = sx2 − 2qx + 3r.
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Figure 3. The visualization of Th. 9

Namely, from (18) and (19) it follows

sx2 − 2(q + a2 − bc − bd − cd)x + a2s = 0, i.e. (x − a)2 = 0,

and therefore the umbilic axis Pa from (18) touches the circle (19). ♦

The visualization of Th. 9 is given in the Fig. 3 where by Ku we
denote the circle (19).
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VOLENEC, V.: Metrical relationships in standard triangle in an isotropic plane,
Math. Commun. 10 (2005), 149–157.

[5] LAGUERRE, E.: Question 1435, Nouv. Ann. Math. 18 (1918), 68–70.

[6] MARTINI, H. and SPIROVA, M.: Circle geometry in affine Cayley–Klein planes,
Period. Math. Hungar. 57 (2008), 197–206.

[7] SACHS, H.: Ebene isotrope Geometrie, Vieweg-Verlag, Braunschweig, Wies-
baden, 1987.

[8] STRUBECKER, K.: Geometrie in einer isotropen Ebene, Math. Naturwiss. Un-

terr. 15 (1962-63), 297–306, 343–351, 385–394.


