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Abstract: The functional equation

f (x) g (y) = h (ax + by)k (cx + dy)

is investigated for almost all (x, y) ∈ R2 for the measurable functions
f, g, h, k : R → R+, where a, b, c, d ∈ R \ {0} are arbitrary constants.
This equation is related to the characterization of the family of normal dis-
tributions and it has important role in the characterization of distributions,
whose conditionals belong to given location families.

1. Introduction

Let R be the set of real numbers and R+ be the set of positive real
numbers.

The functional equation

(1) f (x) g (y) = h (ax+ by) k (cx+ dy) , (x, y) ∈ R
2

where f, g, h, k : R → C and a, b, c, d are fixed non-zero real numbers
with ad − bc 6= 0, was investigated several times, for example by J. A.
Baker [2] and K. Lajkó [6].
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Baker determined all measurable and not almost everywhere zero
functions f, g, h, k : R → C satisfying the functional eq. (1), Lajkó gave
all solutions f, g, h, k of (1), which are not almost everywhere zero.

The purpose of this paper is to determine all measurable solutions
f, g, h, k : R → R+ of eq. (1) satisfied almost everywhere. This result
can be used in characterization of distributions, hence eq. (1) related to
the characterization of the family of normal distributions (see Sec. 3)
and it has important role in the characterization of distributions, whose
conditionals belong to given location families (see Sec. 4). (It also has
applications to the quantum mechanical three-body problem.)

Our proof is based on the following theorem of Járai (see [4], [5]):

Theorem1 (Járai). Let Z be a regular topological space, Zi (i=1, 2, ..., n)
be topological spaces and T be a first countable topological space. Let Y
be an open subset of Rk, Xi an open subset of Rri, (i = 1, 2, . . . , n) and
D an open subset of T × Y . Let furthermore T ′ ⊂ T be a dense subset,
F : T ′ → Z, gi : D → Xi and H : D × Z1 × . . .× Zn → Z. Suppose that
the function fi is almost everywhere defined on Xi (with respect to the
ri-dimensional Lebesgue measure) with values in Zi (i = 1, 2, . . . n) and
the following conditions are satisfied:

1) for all t ∈ T ′ and for almost all y ∈ Dt = {y ∈ Y : (t, y) ∈ D}
(2) F (t) = H

(
t, y, f1(g1(t, y)), . . . , fn(gn(t, y))

)
;

2) for each fixed y in Y , the function H is continuous in the other
variables;

3) fi is Lebesgue measurable on Rri (i = 1, 2, . . . , n);
4) gi and the partial derivative ∂gi

∂y
are continuous on D (i =

= 1, 2, . . . , n);
5) for each t ∈ T there exist a y such that (t, y) ∈ D and the partial

derivative ∂gi

∂y
has the rank ri at (t, y) ∈ D (i = 1, 2, . . . , n).

Then there exists a unique continuous function F̃ such that F = F̃ almost
everywhere on T , and if F is replaced by F̃ then eq. (2) is satisfied almost
everywhere on D.

2. The measurable solution of (1) for a.e. (x, y) ∈ R2

First we prove the following

Lemma 1. If the measurable functions f, g, h, k : R → R+ satisfy eq.
(1) for almost all (x, y) ∈ R

2, where a, b, c, d ∈ R \ {0} are arbitrary
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constants with ∆ = ad − bc 6= 0, then there exist unique continuous
functions f̃ , g̃, h̃, k̃ : R → R+ such that f̃ = f , g̃ = g, h̃ = h and k̃ = k

almost everywhere, and if f, g, h, k are replaced by f̃ , g̃, h̃, k̃, respectively,
then (1) is satisfied everywhere on R2.

Proof. First, by the help of Járai’s Theorem, we prove that there exist
unique continuous function h̃ which is almost everywhere equal to h on
R and replacing h by h̃, eq. (1) is satisfied almost everywhere.

With the substitution t = ax+ by we get from (1) the equation

(3) h (t) =
f

(
t−by
a

)
g (y)

k
(
c
a
(t− by) + dy

)

which is satisfied for almost all (t, y) ∈ D, where D = R2. By Fubini’s
Theorem it follows that there exists T ′ ⊆ R of full measure such that for
all t ∈ T ′ eq. (3) is satisfied for almost every y ∈ Dt = R.

Let us define the functions g1, g2, g3, H in the following way:

g1 (t, y) =
t− by

a
, g2 (t, y) = y,

g3 (t, y) =
c

a
(t− by) + dy, H (t, y, z1, z2, z3) =

z1z2

z3
,

and let us now apply Th. 1 of Járai to (3) with a suitable casting.
Hence the first assumption in Th. 1 with respect to (3) holds. In

the event of fixed y, the function H is continuous in the other variables,
so the second assumption holds too. Because the functions in eq. (3) are
measurable, the third assumption is trivial.

The functions gi are continuous, the partial derivatives

D2g1 (t, y) = − b

a
, D2g2 (t, y) = 1, D2g3 (t, y) =

∆

a
are also continuous, so the fourth assumption holds too.

For each t ∈ R there exist a y ∈ R such that (t, y) ∈ D = R2 and
the partial derivatives don’t equal zero in (t, y), so they have the rank 1.
Thus the last assumption is satisfied in Th. 1.

So we get from Th. 1 that there exists unique continuous function
h̃ which is almost everywhere equal to h on R and f, g, h̃, k satisfy eq.
(1) almost everywhere, which is equivalent to the equation

(4) f (x) g (y) = h̃ (ax+ by) k (cx+ dy)

for almost all (x, y) ∈ R2.
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By a similar argument we can prove the same for the function k.
From eq. (4) with the substitution t = cx+ dy we get the equation

k (t) =
f

(
t−dy
c

)
g (y)

h̃
(
a
c
(t− dy) + by

) ,

which with a suitable casting

g1 (t, y) =
t− dy

c
, g2 (t, y) = y,

g3 (t, y) =
a

c
(t− dy) + by, H (t, y, z1, z2, z3) =

z1z2

z3
,

by Fubini’s Theorem, and the fact that the assumptions of Th. 1 are
fulfilled again, gives us that there exists unique continuous function k̃

which is almost everywhere equal to k on R and f, g, h̃, k̃ satisfy eq. (1)
almost everywhere, i.e.

(5) f (x) g (y) = h̃ (ax+ by) k̃ (cx+ dy)

for almost all (x, y) ∈ R2.
There exist such x0 and y0 so that with the substitutions x = x0

and y = y0, respectively, we get from eq. (5) that

f (x) =
1

g (y0)
h̃ (ax+ by0) k̃ (cx+ dy0)

holds for almost all y ∈ R, and

g (y) =
1

f (x0)
h̃ (ax0 + by) k̃ (cx0 + dy)

holds for almost all x ∈ R. Since h̃, k̃ are continuous, therefore there exist
unique continuous functions f̃ and g̃, defined by the right-hand side of
the last two equality, which are almost everywhere equal to f and g on
R, and if we replace f and g by f̃ and g̃, respectively, then the functional
equation

(6) f̃ (x) g̃ (y) = h̃ (ax+ by) k̃ (cx+ dy)

is satisfied almost everywhere on R2.
Both sides of (6) define continuous functions on R2, which are equal

to each other on a dense subset of R2, therefore we obtain that (6) is
satisfied everywhere on R2.

Further f = f̃ , g = g̃, h = h̃, k = k̃ almost everywhere on R,
respectively. ♦
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Hence, by the help of the measurable (continuous) solutions of eq.
(1) satisfied everywhere, we can give the solutions of the almost every-
where satisfied functional equation.

Theorem 2. Suppose that the measurable functions f, g, h, k : R → R+

satisfy functional eq. (1) almost everywhere, then

f (x) = α1 exp
[
a1x+ b1x

2
]

a.e. x ∈ R,

g (x) = α2 exp

[
a2x−

bd

ac
b1x

2

]
a.e. x ∈ R,

h (x) = β1α1α2 exp

[
a1d− a2c

∆
x+

d

a
b1x

2

]
a.e. x ∈ R,

k (x) = β2α1α2 exp

[
a2a− a1b

∆
x− b

c
b1x

2

]
a.e. x ∈ R,

where a1, a2, b1 ∈ R are arbitrary constants and αi, βi ∈ R (i = 1, 2) are
arbitrary constants, satisfying α1β1α2β2 = 1.

Proof. The measurable (continuous) solutions of eq. (1) satisfied every-
where (see [2] and [6]) and the previous lemma immediately gives our
statement. ♦

3. A characterization of normal distributions

A well-known characterization of the family of normal distributions
is the following: The independent random variablesX and Y have normal
distributions if and only if X + Y and X − Y are independent (see [7]).

A possible characterization of univariate distributions is based on
the following general Transformation Theorem. (See [3].)

Theorem 3. Let X = (X1, . . . , Xn) be an absolutely continuous random
variable with density function f : RN → R, which is zero outside of a
region Ωx ⊂ RN . Let ψ : Ωx → Ωy ⊂ Rn be a one-to-one transformation
onto Ωy and denote ψ−1 its inverse transformation.

If the Jacobi determinant J (y) = det
(
∂ψ−1(y)

∂y

)
exists, is continuous

and does not change sign in Ωy, then the random variable Y = ψ (X) is
absolutely continuous with density function g such that

g (y) =

{
f (ψ−1 (y)) |J (y)| if y ∈ Ωy a.e.,
0 if y ∈ R

N \ Ωy.
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We shall use the transformation

(7) ψ (x, y) = (x+ y, x− y) .

The function ψ defined in (7) is bijective, ψ−1 (u, v) =
(
u+v

2
, u−v

2

)
,

and the Jacobi determinant of ψ−1 is of the form

J (u, v) = −1

2
(u, v ∈ R) .

Obviously, J is continuous and does not change sign on R2.
Let X, Y be absolutely continuous and independent random vari-

ables with range in R+. Let us denote the densities by fX , fY respectively.
Then, by the Transformation Theorem, the random variable

(U, V ) = ψ (X, Y ) = (X + Y,X − Y )

is absolutely continuous with density function g defined by

(8) g (u, v) :=
1

2
fX

(
u+ v

2

)
fY

(
u− v

2

)

for almost all (u, v) ∈ R2.
It is easy to see that if the independent random variables X and Y

have normal distribution, then U and V are independent.
The converse question can be formulated as follows: Assume that

X and Y are independent and the random vector (U, V ) = ψ (X, Y ) has
independent components. Is it true in this case that X, Y have normal
distribution?

If U and V are independent with density functions fU , fV respec-
tively, then from (8) we get the functional equation

(9) fU (u) fV (v) =
1

2
fX

(
u+ v

2

)
fY

(
u− v

2

)
a.e. (u, v) ∈ R

2

for unknown density functions fX , fY , fU , fV : R → R+.
With the substitution x = u+v

2
, y = u−v

2
we get from (9) the equa-

tion
fX (x) fY (y) = 2fU (x+ y) fV (x− y)

for almost all (x, y) ∈ R2, and with the notations

f (t) = fX (t) , g (t) = fY (t) ,

h (t) = 2fU (t) , k (t) = fV (t)
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we get the equation
f (x) g (y) = h (x+ y)k (x− y)

for almost all (x, y) ∈ R2, which is a special case of equation (1) with
constants a = b = c = 1 and d = −1.

From Th. 2, we get that

fX (x) = α1 exp
[
a1x+ b1x

2
]

a.e. x ∈ R,

and
fY (x) = α2 exp

[
a2x+ b1x

2
]

a.e. x ∈ R,

where α1, α2, a1, a2, b1 ∈ R are arbitrary constants.
Since fX and fY are density functions, we get that X and Y are

normal distributions with densities

fX (x) =
1√

2πσ2
e−

(x−µ1)2

2σ2 a.e. x ∈ R,

and

fY (x) =
1√

2πσ2
e−

(x−µ2)2

2σ2 a.e. x ∈ R,

respectively.
From Th. 2, we also get that

fU (x) =
1

2
β1α1α2 exp

[
1

2
(a1 + a2) x− b1x

2

]
a.e. x ∈ R,

and

fV (x) = β2α1α2 exp

[
1

2
(a1 − a2)x− b1x

2

]
a.e. x ∈ R,

where a1, a2, b1 ∈ R are arbitrary constants and αi, βi ∈ R (i = 1, 2) are
arbitrary constants, satisfying α1β1α2β2 = 1.

Hence if X ∼ N (µX, σ
2
X) and Y ∼ N (µY , σ

2
Y ) are independent

normal random variables, then their sum is normally distributed with
U = X + Y ∼ N (µX + µY , σ

2
X + σ2

Y ); their difference is normally dis-
tributed with V = X − Y ∼ N (µX − µY , σ

2
X + σ2

Y ).
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4. Linear regressions with conditionals in location
families

Let (X, Y ) be an absolutely continuous bivariate random variable,
whose joint, marginal and conditional density functions are denoted by
f(X,Y ), fX , fY , fX|Y , fY |X respectively. One can write f(X,Y ) in two dif-
ferent ways and obtain the functional equation

f(X,Y ) (x, y) = fX|Y (x, y) fY (y) = fY |X (x, y) fX (x)

for a.e. (x, y) ∈ R2.
It could be a difficult problem to characterize distributions whose

conditionals belong to given location families.
In his paper ([8]), Narumi was the first who studied this question.

Based on the analysis of Narumi, in their book ([1]) Arnold, Castillo
and Sarabia considered among others all possible distributions with given
regression functions E (X |Y = y ) = a (y) and E (Y |X = x) = b (x) with
conditionals in location families.

Thus the conditional densities were required to be of the form (with
the implicit inclusion of the assumption that conditional variances are
constant)

(10) fX|Y (x, y) = g1 (x− a (y))

and

(11) fY |X (x, y) = g2 (y − b (x)) .

For certain choices of the functions a (y) and b (x), it is possible to deter-
mine the nature of the joint distribution associated with (10) and (11).

It is natural to inquire about the case in which a (y) and b (x) are
linear (see Sec. 7.4 in [1]). In that case, we will have

(12) fY (y) g1 (x− a1y − a2) = fX (x) g2 (y − b1x− b2) .

Narumi solved (12) by taking logarithms of both sides and differentiating,
assuming the existence of derivatives up to the third order. It is quite
natural to assume only the measurability of the unknown functions and
that eq. (12) holds for almost all pairs (x, y).

Eq. (12) can be rewritten in terms of functions

ḡ1 (t) = g1 (t− a2) , ḡ2 (t) = g2 (t− b2) .
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Hence we get

(13) fY (y) ḡ1 (x− a1y) = fX (x) ḡ2 (y − b1x)

for almost every (x, y) ∈ R2. Write y instead of y − b1x we get the
equation

(14) fX (x) ḡ2 (y) = fY (y + b1x) ḡ1 ((1 − a1b1) x− a1y)

for almost every (x, y) ∈ R2. Eq. (14) with the notations
f (t) = fX (t) , g (t) = ḡ2 (t) ,

h (t) = fY (t) , k (t) = ḡ1 (t) ,
yields

f (x) g (y) = h (ax+ by) k (cx+ dy) a.e. (x, y) ∈ R
2,

with constants
a = b1, b = 1, c = 1 − a1b1, d = −a1.

Here ∆ = −1.
By the help of Th. 2 we have the solution of equation (14) and

hence the solution of equation (13) and (12), i.e.

fX (x) = α1 exp
[
A1x+ B1x

2
]

a.e. x ∈ R,

ḡ2 (x) = α2 exp

[
A2x+

a1B1

b1 (1 − a1b2)
x2

]
a.e. x ∈ R,

fY (x) = β1α1α2 exp

[
(A1a1 + A2 (1 − a1b1))x−

a1B1

b1
x2

]
a.e. x ∈ R,

ḡ1 (x) = β2α1α2 exp

[
(A1 − A2b1) x−

B1

1 − a1b1
x2

]
a.e. x ∈ R,

moreover for a.e. x ∈ R

g1 (x) = β2α1α2 exp

[
(A1 − A2b1) (x+ a2) −

B1

1 − a1b1
(x+ a2)

2

]
,

g2 (x) = α2 exp

[
A2 (x+ b2) +

a1B1

b1 (1 − a1b2)
(x+ b2)

2

]
.

After substituting the corresponding functions to these formula
f(X,Y ) (x, y) = fY (y) ḡ1 (x− a1y) = fX (x) ḡ2 (y − b1x)

we can calculate the joint density function

f(X,Y )(x, y) = α1α2 exp

[
(A1−A2b1) x+A2y −

a1B1

1−a1b1

(
x2

a1

−2xy+
y2

b1

)]

for a.e. x ∈ R.
As in [1], we also can conclude that either X and Y are independent

or (X, Y ) must have a classical bivariate normal distribution.
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