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1. Introduction

In order to formulate the problem we need to define the notion of
weighted quasi-arithmetic mean. Let J C R be a nonvoid open interval
and denote by CM (J) the class of continuous and strictly monotone real
valued functions defined on the interval J. A function M : J? — J is
called a weighted quasi-arithmetic mean on J if there exist 0 < p < 1

and ¢ € CM(J) such that

M(u,v) = o~ (pp(u) + (1 = p)p(v)) =: Ay(u,v;p)
for all u,v € J. In this case the number p is said to be the weight and
the function ¢ is called the generating function of the weighted quasi-
arithmetic mean M. If p = % in the above equation then M is called a
quasi-arithmetic mean on J (see [7], [5], [1], [3], [10]). If p(u) = u for all
u € J, then we have
A(u,'U;p) = Aid(u>v§p) = pu + (1 —p)’U (u>'U € J)’

which is the well-known weighted arithmetic mean on J.

Now we can formulate the general problem as follows: When will
the nontrivial linear combination of two weighted quasi-arithmetic means
defined on the same interval J be a weighted arithmetic mean on J? In
other words, determine all M, N : J?> — J weighted quasi-arithmetic
means and the constants p # 0,1 and r € (0, 1), such that

uM (u,v) + (1 — p)N(u,v) = A(u,v;r)
holds for all u,v € J. In detail this equation means the following: deter-
mine all the functions o, € CM(J) and the constants (p,q,r) € (0,1)3,
i # 0,1 such that
pe~ (pp(u)+(1=p)p(v) + (1= )™ (g (u) +(1=q)1b(v)) = rut(1—r)v
holds for all u,v € J.

If we suppose that ¢,¢» € CM(J) are differentiable on J and
O'(u) > 0, Y'(u) > 0 for all w € J, and we differentiate the above
equation first with respect to u and then with respect to v, then we have

pe (1) B @)
M Ao T M A ()
and
(1 - p)gO/(U) + (1 . /J,) (1 - Q)W(U) —1—r

1
¢'(Ap(u, v;p)) V(A (u, v q))

for all u,v € J. Multiplying the first equation by (1 —¢q)’(v), the second

equation by —q¢’(u) and adding the new equations, we have
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/ / / /
pp(l —q)¢ (U);p'(gl)i(u,ﬁ;l)) p)#' ()¢ (u) (=) () — (1—r) g (u)
for all u,v € J. With the notations f := ¢'op™!, g:= o™ I := p(J)
for the unknown functions f,¢g : I — Ry and ¢(u) = z and ¢(v) = y
(z,y € I), from the above equation we have
) flpz + (1 =p)y)lr(1 = q@gly) — (1 = r)gg(x)] =
= ulp(1 = q)f(2)g(y) — (1 = p)af(y)g(x)]
for all z,y € I. The functional eq. (1) depends on the parameters
(p,q,r) € (0,1)3 and p # 0,1 for which, if x = y in (1), by f(x) > 0,
g(x) > 0 we have
(2) wp—q)=r—q.
The functional eq. (1) was studied in the following special cases:
(i) p=q=r=p=1/2 by J. Matkowski ([12]), then by Z. Dardczy
and Zs. Péles ([5]) under much weaker conditions.
(ii) p = ¢ (then by (2) r =¢q) by Z. Daréczy and Zs. Pdles in [6], [5].
(iii) p =1r J. Jarczyk and J. Matkowski in [9], and J. Jarczyk ([8]), P.
Burai ([2]).
(iv) w = r and p = 1/2, ¢ # 1/2 by Z. Daréczy in [3] without any
conditions.

In this paper we generalise Z. Dar6czy’s result from [4], studying
the functional eq. (1) in the case p = 1/2 and p # ¢q. Hence, by (2) we
haver;éqandr#%and
r—q r—dq
7 % s 2 T
This means we have to determine all the functions f,g: I — Ry (I CR
nonvoid open interval) and the constants (¢q,7) € (0,1)2, such that

f (x ; y) [r(1=q)g(y) — (1 —r)gg(z)] =

= lr:Qqq [(1—=q)f(x)g(y) — qf (y)g(w)]

holds for all x,y € I.

(3)
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2. Main result

Theorem 1. Let I C R be a nonvoid open interval and 0 < r < 1,
0<qg<1,rq#1/2, r+#q. If the functions f,g: I — R, are solutions
of the functional eq. (3) then the following cases are possible:

1) If r# m then there exist constants a,b € Ry such that

flx)=a and g(x)=0b forallxel;

2) If r= ﬁ then there exists an additive function A: R — R

and real ¢1,co > 0 such that
g(z) = c1e™®  and  f(z) = 2 for allz e I

Conversely, the functions given in the above cases are solutions of eq. (3).

To prove Th. 1 we need the following lemmas.
Lemma 1. Let I C R be a nonvoid open interval and 0 < r < 1,
0<q<1l,r#q,rq#1/2. If the functions f,g : I — Ry satisfy the
functional eq. (3) then

rT+y

W 1Y) )+ o] = o) + S0)alo)]
is true for all x,y € I.
Proof. By interchanging = and y in (3) we have

F(552) = gt = (1= ragt] =

r —

= 1= g fwglx) — af (@)g)]

1—2¢q

()

for all x,y € I.
We add egs. (3) and (5), then we have

F(552) 9+ o = ) = T (o) + F@)ate] (1~ 20)

for all x,y € I.

From this equation it follows (4). ¢

Lemma 2. Let I C R be a nonvoid open interval and 0 < r < 1,
0<qg<1l,r#q,rq#1/2. If the functions f,g : I — R, satisfy the
functional eq. (3) then

) fa {q 1—q)(1=2r)g(y) —[r(1—2q) —¢*(1—2r)]g(x) } =

= f (2){a(1—q)(1—2r)g(x)—[r(1- QQ) ¢*(1-2r)g(y) }

is true for all x,y € 1.
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Proof. From (4) by (3) we obtain

f(x)g(y) + fy)g(x) _
ey = agly) — (1= ag(e)] =
= 15 L= 0/ ()9(y) = af (1)g()]

for all z,y € I. By short computation we obtain (6) for all z,y € I. {
Lemma 3. Let I C R be a nononz'd open interval and 0 < r < 1,
O<qg<l,r#q,r,q#1/2,1r# qur(qW. If the functions f,g: 1 — R,
satisfy the functional eq. (3) then the following propositions

(7) q(1—q)(1 —2r)g(y) — [r(1 —2q) — ¢*(1 — 2r)]g(z) # 0
and

®) f(@)g(y) _ a(t —q)(1 —2r)g(x) — [r(L — 2q) — ¢*(1 — 2r)]g(y)
fglx) a1 —q)(1 =2r)g(y) = [r(1 = 2¢) — ¢*(1 — 2r)]g(x)
are true for all x,y € I.
Proof. If z = y, then the expression in (7) becomes:
9(2)[g(1 = q)(1 = 2r) —r(1 = 29) + ¢*(1 = 2r)] = g(x)(g — ) # O,
therefore assertion (7) is true.
If © # y we assert that

q(1 = q)(1 = 2r)g(y) — [r(1 - 2q) — ¢*(1 — 2r)]g(x) # 0.
Contrary, we suppose that
q(1 = q)(1 = 2r)g(y) — [r(1 —2q) — ¢*(1 — 2r)]g(z) = 0
and then by r(1 — 2¢q) — ¢*(1 — 2r) # 0, which is equivalent to r #
#+ m, we have
glx) ¢ - —2r)
g(y) (1 —2¢) —¢*(1—2r)
With the above assumption by ¢(1 — ¢)(1 — 2r) # 0, from (6) we have
g(z) _r(1—2q) —¢*(1—2r)
9(y) q(1 —q)(1—2r)
From the previous two equations we have
a1 — @)(1 = 2r)]* = [r(1 - 2¢) — ¢*(1 - 2r)]?,

le.

(=r)(1=29)[(1=r)g+ (1 —-qr]=0
which is impossible. Hence, (7) is true for all z,y € I. From (6) by (7)
we have (8) for all z,y € I. {
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Lemma 4. Let I C R be a nonvoid open interval and let O <7< 1,

0<q<1,rq+#1/2, r# q be fired numbers such thatr;éw If
the functions f,g : I — Ry with the property f(yo) = g(yo) =1 (yo € I)

satisfy functional eq. (3), then

(9) [9(z) — gW)][1 — g(@)][1 = g(y)] =0
forall x,y € I.

Proof. By Lemma 3 we know that (7) and (8) are true. From (8) with
y = 1yo € I we have
(1 = q)(1 — 2r)g(x) — [r(1 — 2q) — ¢*(1 — 2r)]
flx)=g(x
= I ) T2~ - 20) — - 2l
for all x € I. With the notations o := ¢(1 — ¢)(1 — 2r) # 0 and 3 :=
:=7r(1—2q) — ¢*(1 — 2r) # 0 the above equation becomes

_ (@) =8

We substitute this form of f in eq. (8) and we obtain
ag(z)—p
905 9W) _ ag(w) — Bg(y)
ag(y)—p o —
g(y)%g(y)g(x) ag(y) — Bg(x)
for all z,y € I, i.e.

lag (@) =Blla=BgY)llag(y)=Ly(x)] = lag(y)—FLlla—Ly(z)]lag(x)—Lg(y)]
for all z,y € I. From this equation with the notation
F(z,y) = [ag(x) = flla = Bg(y)]lag(y) — By(z)]
we have F(x,y) = F(y,z) for all 2,y € I. From this equation with an
easy computation and with the notation A := a3? + o?4 it follows
Ag(z) — Ag(y) + Ag*(2)g(y) — Ag(2)g*(y) + Ag*(y) — Ag*(x) =0

for all x,y € I. We can easily observe that

A=af®+a*8=apa+B)#0,
for af #0and a+ 8 = (1 —2¢)[(1 —r)g+ (1 — q)r] # 0. Hence

l9(z) = gW)I[1 + 9(x)g(y) — g(x) — g(y)] = 0.

But this is (9) for all z,y € I. O
Proof of Th. 1. (i) First we suppose that the functions f,g: I — R,
are solutions of the functional eq. (3) (where 0 < r < 1,0 < ¢ < 1,
rq#1/2, 1 # ), 1 # o and f(yo) = g(yo) = 1 for yo € I. We
assert, that in this case f(z) = g(x) = 1 for all z,y € I. Contrary, we
suppose that there exists y; € I (y1 # o), such that

forall z € I.
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g(y1)=c#1 and ¢>0.
With the substitution y = y; in (9) we have
(10) l9(2) — dJ[1 — g(2)] = 0
for all x € I. We define

E={x|zel, glx)y =1} #0

E*:={z|zel, glx)=c} #0.
By eq. (10) any z € T isin F or in E* i.e. ENE* =0 and [ = EU E*.

By Lemma 3
(11) fz) = g(x)m =\ e ifre B

If x € E and y € E* then by eq. (4) we have
p (1) - ket ) _ e+ egs

and

ozg(x)—ﬂ_{ 1 ifrekl
c

2 c+1 c+1
Now, “Hy e For x—+y € E*. In the first case we have
ac—f3
c+c
a—cf -1
c+1

or in the second case

c+ciE Cg ac—f3
c+1 ‘a- e
In both cases we obtain ¢ = 1, i.e. ¢ = 1, which is a contradiction.
Then g(x) =1 for all x € I and by (11) it follows f(z) = 1 for all
xel.
(” If the pair (f,g) (f,g : I — R,) is a solution of (3) then the

pair ( ) yo € I) is a solution of (3) too, and f(y o =1 ggzgg =1.
By (i) we have ;”((x)) 1, 5(; = 1forallz € I. With f(yo) =a>0and

2

9(yo) := b > 0 we obtain the assertion of Th. 1 for the case r # “‘17)

In the case r = by Lemmas 1 and 2, and with the nota-

q +(1 7)*’
tions of Lemma 4 (6) becomes

f(@)g(y)ag(y) = f(y)g(z)ag(x) forall z,y € I.
Hence

(12) f(z) =cg*(x), ¢>0, forallaxel.
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Replacing this form of f in (4) we have
7 (52) = atatn) oraeyer

consequently, by [10], [11] there exist A : R — R additive function and
real ¢; > 0 such that g(z) = c¢;eA®@ for all z € I, and by (12), f(z) =
= 2e*2@ ¢y > 0 for all z € I and we obtain the assertion of Th. 1.

3. Application

Returning to the generalized problem we need the following defini-
tion.

Definition 1. Let ¢, ¢ € CM(J). If there exist a # 0 and b such that
Y(z) =ap(x)+b fzeld
then we say that ¢ is equivalent to ¢ on J and denote it by ¢(z) ~ (z)
if x € J or in short ¢ ~ v on J.
It is well known that if 0 < p < 1 and ¢,9p € CM(J), then
Ay(z,y;p) = Ap(z,y;p) for all 2,y € J if and only if ¢ ~ 1) on J.
We define the following sets:
To(J):={teR|J+tCRy}
T_(J):={teR| —J+tCRy}.
With the help of these notations, set
) =Vr+tifteTy(J) (z € J)
v (z) =v—z Ftift e T_(J) (z € J).
Theorem 2. Let J C R be a nonvoid open interval and 0 < r < 1,
0<qg<1rq#s3, r#q Ife e CM(J) solve the functional

equation
200 1 (200

®
1—-2 2
(13) I

*(1‘%i}?)w”@wwﬂwl—@wwnzru+u_rw

for allu,v € J and ¢, are differentiable on J and ¢'(u) >0, ¢'(u) >0

for all w € J then ¢ ~ id and ¥ ~ id on J, furthermore, in the case
r= E the following cases are also possible:

q2+(ql—q
o ~logy, ¥~ if teTi(J)
or
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pr~logy, v~y if teT_(J).
Proof. It is enough to solve the functional eq. (13) up to the equivalence
of the functions ¢ and ¢. With the notations f := ¢ o™, g := 1)’ o™,
I := p(J) we get that eq. (3) holds. Due to the definition of f, we obtain
the differential equation for the function ¢:

(14) ¢'(z) = fle(x)) ze€J
By Th. 1, the case r # m gives the constant solutions, from which
. . 2
follows that ¢ ~ id, ¥ ~id. If r = m then
(15) f(z) = 2¢*@ and g(z) = e forall z € I,
1

where ¢1,co > 0 and A : R — R is an additive function. Since 7 is a
derivative, f has a continuity point and therefore in (15) by [11] A(x) =
=cr,zr€R,ceR.

In the case c =0 ¢ ~ id and 9 ~ id.

In the case ¢ # 0 from (14) we have

¢ (1) = 2™ for all u € J,

from which we deduce that either there exists ¢ € T, (J) such that
p~log~, on J or there exists t € T_(J) such that ¢ ~log~y, on J.

Due to the definition of g, by (15) we obtain that

Y'(u) =e¥™ >0 forallue.J
We know that ¢ (u) = ™ > 0, hence ¢'(u) = ¢'(u)?, u € J, from
which we get that either there exists ¢t € T',(J) such that ¥ ~ 7" on J
or there exists t € T_(J) such that ¢ ~~; on J. O
Remark 1. Let J := (—00,0). Then T, (J) = 0 and T_(J) # 0, for
example 1 € T_(J). If the conditions of Th. 2 hold and r = L

?>+(1-q)*’
then
o(u) ~logvV—u+1~log(—u+1)
P(u) ~vV—u+1 (uwelJ)

are solutions of the functional eq. (13). Indeed, because of

ol (M) = —V/(—u+ 1D (—v+1)+1,

and

2
and

VN qp(u) + (1= q)p(v) = —(gvV—u+1+ (1 —)vV—v+1)* +1,

u,v € (—00,0), we have
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p[—v(—u+1)(—v+1)+1] + (1—p) [-¢*(—u+1)— (1—q)*(—v+1)—
—2¢(1 = g)\/(—u+1)(—v+ 1)+ 1] =ru+ (1 —r)v,
which is equivalent to
V(—u+ D (=v+ D= =2¢(1 = )(1 = )] + p+ (1 = p)g*u—
=@+ Q-1 -qv—(1-9*A—p)+1-p=
=ru+ (1—r)v.

r—q

By pu = 2- T and r = m we get (1—p)g> =rand (1—p)(1—q)* =

=1 — r and the above equation becomes
ru—r+(1—rjv—>1—-r)+1=ru+(1—r)v,

i.e. p, 1 solve the functional eq. (13).
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