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Received : November 2007

MSC 2000 : 42 C 10

Keywords : Walsh–Kaczmarz system, Fejér means, Marcinkiewicz means, max-
imal operator.

Abstract: In this paper we prove that the maximal operator of the
Marcinkiewicz–Fejér means of the 2-dimensional Fourier series with respect to
the Walsh–Kaczmarz system is not bounded from the Hardy space H2/3

(

G2
)

to the space L2/3

(

G2
)

.

The second author [5] proved that the maximal function of Marcin-
kiewicz–Fejér means with respect to the two dimensional Walsh–Kacz-
marz system is of weak type (1, 1) and of type (p, p) for all p > 1. Con-
sequently, for any integrable function f the Marcinkiewicz–Fejér means
with respect to the two dimensional Walsh–Kaczmarz system converge
almost everywhere to the function itself. This theorem was extended in
[2] by the authors and G. Gát. Namely, for p > 2/3, the maximal oper-
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ator M
κ∗ is bounded from the Hardy space Hp(G

2) to the space Lp(G
2).

The main aim of this paper is to prove that the assumption p > 2/3 is
essential. Namely, the maximal operator Mκ∗ is not bounded from the
Hardy space H2/3(G

2) to the space L2/3(G
2).

Let P denote the set of positive integers, N := P ∪ {0}. Denote
Z2 the discrete cyclic group of order 2, that is Z2 = {0, 1}, where the
group operation is the modulo 2 addition and every subset is open. The
Haar measure on Z2 is given such that the measure of a singleton is
1/2. Let G be the complete direct product of the countable infinite
copies of the compact groups Z2. The elements of G are of the form
x = (x0, x1, . . . , xk, . . . ) with xk ∈ {0, 1} (k ∈ N). The group operation
on G is the coordinate-wise addition, the measure (denote by µ) and the
topology are the product measure and topology. The compact Abelian
group G is called the Walsh group. A base for the neighborhoods of G
can be given in the following way:

I0 (x) := G, In (x) := In (x0, . . . , xn−1) :=

:= {y ∈ G : y = (x0, . . . , xn−1, yn, yn+1, . . . )} ,

(x ∈ G, n ∈ N) .

These sets are called dyadic intervals. Let 0 = (0 : i ∈ N) ∈ G denote the
null element of G, In := In (0) (n ∈ N). Set en := (0, . . . , 0, 1, 0, . . . ) ∈ G,
the nth coordinate of which is 1 and the rest are zeros (n ∈ N).

For k ∈ N and x ∈ G denote

rk (x) := (−1)xk

the kth Rademacher function. If n ∈ N, then n =
∞
∑

i=0

ni2
i, where ni ∈

∈ {0, 1} (i ∈ N), i.e. n is expressed in the number system of base 2.
Denote |n| := max{j ∈ N :nj 6= 0}, that is 2|n| ≤ n < 2|n|+1.

The Walsh–Paley system is defined as the sequence of Walsh–Paley
functions:

wn (x) :=

∞
∏

k=0

(rk (x))nk = r|n| (x) (−1)

|n|−1
∑

k=0

nkxk

(x ∈ G, n ∈ P) .

The Walsh–Kaczmarz functions are defined by κ0 :=1 and for n≥1

κn(x) := r|n|(x)

|n|−1
∏

k=0

(r|n|−1−k(x))nk = r|n| (x) (−1)

|n|−1
∑

k=0

nkx|n|−k−1

.
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For A ∈ N define the transformation τA : G → G by

τA(x) := (xA−1, xA−2, . . . , x0, xA, xA+1, . . . ).

By the definition of τA (see [9]), we have

κn(x) = r|n|(x)wn−2|n|(τ|n|(x)) (n ∈ N, x ∈ G).

The σ-algebra generated by the dyadic 2-dimensional cube I2
k of

measure 2−k × 2−k will be denoted by Fk (k ∈ N).

The space Lp (G2), 0 < p ≤ ∞ with norms or quasi-norms ‖·‖p is
defined in the usual way (For details see e.g. Weisz [12].)

Denote by f = (fn, n ∈ N) the one-parameter martingale with
respect to (Fn, n ∈ N). The maximal function of a martingale f is
defined by

f ∗ = sup
n∈N

|fn| .

For 0 < p ≤ ∞ the Hardy martingale space Hp(G
2) consists all

martingales for which

‖f‖Hp
= ‖f ∗‖p < ∞.

The Dirichlet kernels are defined by

Dα
n(x) :=

n−1
∑

k=0

αk(x),

where αk = wk or κk. Recall that (see e.g. [1, 7])

(1) D2n(x) := Dw
2n(x) = Dκ

2n(x) =

{

2n, if x ∈ In(0),

0, if x /∈ In(0).

The Fejér kernels are defined as follows

Kα
n (x) :=

1

n

n−1
∑

k=0

Dα
k (x).

The Kroneker product (αm,n : n, m ∈ N) of two Walsh(–Kaczmarz)
system is said to be the two-dimensional Walsh(–Kaczmarz) system.
Thus,

αm,n

(

x1, x2
)

= αn

(

x1
)

αm

(

x2
)

.

If f ∈ L (G2), then the number f̂α (n, m) :=
∫

G2

fαm,n (n, m ∈ N)

is said to be the (n, m)th Walsh(–Kaczmarz)–Fourier coefficient of f .
We can extend this definition to martingales in the usual way (see Weisz
[12, 13]). Denote by Sα

n,m the (n, m)th rectangular partial sum of the
Walsh–Fourier series of a martingale f , namely,
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Sα
n,m(f ; x1, x2) :=

n−1
∑

k=0

m−1
∑

i=0

f̂α(k, i)αk,i(x
1, x2).

The Marcinkiewicz–Fejér means of a martingale f are defined by

M
α
n

(

f ; x1, x2
)

:=
1

n

n−1
∑

k=0

Sα
k,k(f, x1, x2).

The 2-dimensional Dirichlet kernels and Marcinkiewicz–Fejér ker-
nels are defined by

Dα
k,l(x

1, x2) := Dα
k (x1)Dα

l (x2), Kα
n (x1, x2) :=

1

n

n−1
∑

k=0

Dα
k,k(x

1, x2).

For the martingale f we consider the maximal operators

M
∗κf(x1, x2) = sup

n

∣

∣M
κ
n(f, x1, x2)

∣

∣.

In 1939 for the two-dimensional trigonometric Fourier partial sums
Sj,j (f) Marcinkiewicz [6] has proved for f ∈ L log L([0, 2π]2) that the
means

Mnf =
1

n

n
∑

j=1

Sj,j (f)

converge a.e. to f as n → ∞. Zhizhiashvili [14] improved this result for
f ∈ L([0, 2π]2).

For the two-dimensional Walsh–Fourier series Weisz [11] proved
that the maximal operator

M
∗wf = sup

n≥1

1

n

∣

∣

∣

∣

∣

n−1
∑

j=0

Sw
j,j (f)

∣

∣

∣

∣

∣

is bounded from the two-dimensional dyadic martingale Hardy space Hp

to the space Lp for p > 2/3 and is of weak type (1,1). The first author
[3] proved that the assumption p > 2/3 is essential for the boundedness
of the maximal operator Mw∗ from the Hardy space Hp(G

2) to the space
Lp(G

2).

In 1974 Schipp [7] and Young [10] proved that the Walsh–Kaczmarz
system is a convergence system. Gát [1] proved, for any integrable func-
tions, that the Fejér means with respect to the Walsh–Kaczmarz system
converge almost everywhere to the function itself. Gát’s Theorem was
extended by Simon [8] to Hp spaces, namely that the maximal operator
of Fejér means of one-dimensional Fourier series is bounded from Hardy
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space Hp(G
2) into the space Lp(G

2) for p > 1/2.

The second author [5] proved, that for any integrable functions, the
Marcinkiewicz–Fejér means with respect to the two dimensional Walsh–
Kaczmarz system converge almost everywhere to the function itself. This
theorem was extended in [2]. Namely, the following is true:

Theorem A1. Let p > 2/3, then the maximal operator Mκ∗ of the

Marcinkiewicz–Fejér means of double Walsh–Kaczmarz–Fourier series is

bounded from the Hardy space Hp(G
2) to the space Lp(G

2).

The aim of this paper is to prove that the assumption p > 2/3
is essential for the boundedness of the maximal operator Mκ∗ from the
Hardy space Hp(G

2) to the space Lp(G
2). Namely, the following theorem

holds:

Theorem 1. The maximal operator Mκ∗ of the Marcinkiewicz–Fejér

means of double Walsh–Kaczmarz–Fourier series is not bounded from

the Hardy space H2/3(G
2) to the space L2/3(G

2).

Proof. Let

fA(x1, x2) := (D2A+1(x1) − D2A(x1))(D2A+1(x2) − D2A(x2)).

It is simple to calculate

f̂κ
A(i, k) =

{

1, if i, k = 2A, . . . , 2A+1 − 1,

0, otherwise,

and

Sκ
i,j(f ; x1, x2) =

=











(Dκ
i (x1)−D2A(x1))(Dκ

j (x2)−D2A(x2)), if i, j = 2A + 1, ..., 2A+1−1,

fA(x1, x2), if i, j ≥ 2A+1,

0, otherwise.

We can write the nth Dirichlet kernel with respect to the Walsh–Kaczmarz
system in the following form:

Dκ
n(x) = D2|n|(x) +

n−1
∑

k=2|n|

r|k|(x)wk−2|n|(τ|k|(x)) =

= D2|n|(x) + r|n|(x)Dw
n−2|n|(τ|n|(x)).

Thus, we have

M
κ∗fA(x1, x2) =

= sup
n∈N

∣

∣M
κ
n(fA; x1, x2)

∣

∣ ≥ max
1≤N≤2A

∣

∣M
κ
2A+N(fA; x1, x2)

∣

∣ =



54 U. Goginava and K. Nagy

= max
1≤N≤2A

1

2A + N

∣

∣

∣

∣

∣

2A+N−1
∑

k=0

Sκ
k,k(fA; x1, x2)

∣

∣

∣

∣

∣

≥

≥ max
1≤N≤2A

1

2A+1

∣

∣

∣

∣

∣

2A+N−1
∑

k=2A+1

(Dκ
k(x1) − D2A(x1))(Dκ

k(x2) − D2A(x2))

∣

∣

∣

∣

∣

=

= max
1≤N≤2A

1

2A+1

∣

∣

∣

∣

∣

2A+N−1
∑

k=2A+1

rA(x1)Dw
k−2A(τA(x1))rA(x2)Dw

k−2A(τA(x2))

∣

∣

∣

∣

∣

=

= max
1≤N≤2A

1

2A+1

∣

∣

∣

∣

∣

N−1
∑

l=1

Dw
l (τA(x1))Dw

l (τA(x2))

∣

∣

∣

∣

∣

=

=
1

2A+1
max

1≤N≤2A
N
∣

∣K
w
N(τA(x1), τA(x2))

∣

∣.

Since, we have

f ∗
A(x1, x2) = sup

n∈N

∣

∣S2n,2n(fA; x1, x2)
∣

∣ =
∣

∣fA(x1, x2)
∣

∣

and

‖fA‖Hp = ‖f ∗
A‖p = ‖D2A‖2

p = 22A(1−1/p).

We obtain
‖Mκ∗fA‖2/3

‖fA‖H2/3

≥

≥
1

2A+12−A

(

∫

G2

max
1≤N≤2A

(N |Kw
n (τA(x1), τA(x2))|)2/3dµ(x1, x2)

)3/2

.

To investigate the integral
∫

G2

max
1≤N≤2A

(N |Kw
N(τA(x1), τA(x2))|)2/3dµ(x1, x2),

we decompose the set G as the following disjoint union

G = IA ∪

A−1
⋃

t=0

JA
t ,

where A > t ≥ 1 and JA
t := {x ∈ G : xA−1 = · · · = xA−t = 0, xA−t−1 =

= 1}, JA
0 := {x ∈ G : xA−1 = 1}. Notice that, by the definition of τA we

have τA(JA
t ) = It\It+1. By Cor. 2.4 in [4], for (x1, x2) ∈ IA × IA

K
w
2A(x1, x2) =

(2A + 1)(2A+1 + 1)

6
.
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Therefore,
∫

G×G

max
1≤N≤2A

(

N
∣

∣K
w
N(τA(x1), τA(x2))

∣

∣

)2/3
dµ(x1, x2) ≥

≥
A−1
∑

t=1

∫

JA
t ×JA

t

max
1≤N≤2A

(

N
∣

∣K
w
N(τA(x1), τA(x2))

∣

∣

)2/3
dµ(x1, x2) ≥

≥
A−1
∑

t=1

∫

JA
t ×JA

t

(

2t
∣

∣K
w
2t(τA(x1), τA(x2))

∣

∣

)2/3
dµ(x1, x2) =

=
A−1
∑

t=1

∫

(It\It+1)×(It\It+1)

(

2t
∣

∣K
w
2t(x1, x2)

∣

∣

)2/3
dµ(x1, x2) =

=
A−1
∑

t=1

∫

(It\It+1)×(It\It+1)

(

2t (2
t + 1)(2t+1 + 1)

6

)2/3

dµ(x1, x2) ≥

≥
A−1
∑

t=1

∫

(It\It+1)×(It\It+1)

(

23t

6

)2/3

dµ(x1, x2) ≥

≥ c(A − 1).

This completes the proof of the main theorem. ♦
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