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~ Abstract: In his book “The fractal Geometry in Nature” B. B. Mandelbrot
gives computer pictures of plane ‘models for the bronchial tree. He renounces
of an exact mathematical handling. We present here another model, together
with a detailed description .of the construction and with an exact mathe-

matical mvestlgatlon So our ‘paper may be considered as a completion of
Mandelbrot’s work

It is important to describe the reality using mathematics. Today
people are speaking about models.

For a model it is not necessary to grasp all the details of a proce-
dure or an object. On the contrary! Sometimes we must give up certain -
properties within a model. Then the model describes the reality only
approximately — it is incomplete.

‘ Today also in the field of medicine such models are constructed.

So there exist for example models describing arterial trees in the kidneys
or in the retina. Other models are used investigating the emergence of
cancer or special metabolic diseases. In the following the bronchial tree
is investigated.

E-mail address: kraemer.alexander@yahoo.de
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1. Demands to a model of the bronchial tree

Fig. 1 shows the X-ray picture of one lobe of the human lung. The
bronchial tubes are clearly to recognize.

Fig. 1. X-ray picture of one lobe of the human lung.

Anatomists are looking for a suitable geometric model of the
bronchial tree. They gave some demands which the model should fulfil.
In this paper we restrict ourselves to consider only plane models (X-ray
pictures). ; ,

A. Our model shall reach a certain limit curve (thorax) — but never

. leave it. The model then is embedded in the limit curve.

B. The closed limit curve shall be completely filled by the model.

C. The model shall have no overlappings because bronchial tubes
do not intersect. (In the X-ray picture this is not fulfilled. In
spite of this fact we maintain Demand C — to avoid mathematical
difficulties.)

D. The model shall be fractal. (In this paper we denote a point set
fractal if the corresponding fractal dimension is not an integer.)

Sometimes objects fulfilling all these four demands are denoted as
physiological fractals.
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2. Construction of models

2.1. A first model

Fig. 2 (left) shows a string tree. In each ramification point two
branches emerge. The opening angle 2% is always the same with 0° <
< 1 < 90°. The intervals are shortened in respect to the preceding ones
by the factor r with 0 < r < 1. The tree shall be symmetric.

Fig. 2. A string tree and the “golden tree”. s
 Using this procedure in case ¥ = 60°, r = —‘/—%-“—1 :‘;15 (¢ golden
number) the computer yields the “golden tree” (Fig. 2, right). This tree
may be a first model of the lung. Demands A, C and D are fulfilled.
But the situation is described very roughly. The bronchial tubes are
not at all strings.

2.2. Another model : ,

Stimulated by B. B. Mandelbrot [3], we now use rectangles instead
of the intervals in Fig. 2. :
2.2.1. The starting figure ,,

We start with a rectangle (a, b). Reduction with the factors z, y
and 0 <z, y < 1 gives two rectangles (az, bz), (ay, by). These two rect-
angles are added to the starting rectangle in the following way (Fig. 3).
The rectangle (ay, by) touches (a, b) and (az, bx) is moved away. Both
rectangles are “translated”. The point Z in Fig. 3 is called ramification
point. The small hatched rectangle (b= pb, pbz +b(y — z)) is added.
The factor p < 1 gives the degree of the respective translation.

With this the fundamental figure is perfect, using the fundamental
numbers a, b, z, ¥, .

The figures in all the following text are only sketches and not
exactly scaled — excepting the computer pictures.
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The fundamental figure.

2.2.2. Further procedure
Doing further constructions we give two rules (see Fig. 4).
RULE I: Let a rectangle 1 emerge after a left-curve then the next
left-rectangle 2 is moved away. '
RULE II: Let a rectangle 1 emerge after a right-curve then the
next right-rectangle 2 is moved away.

With our rules I and II we have an algorithm.‘ Using the rules
again and again we finally obtain our new (plane) model for the bronchial
tubes. Fig. 5 shows some iterations. ‘
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Construction rules.

Fig. 5. The new lung model.
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2.2.3. What about selfsimilarity?

Looking at Fig. 5 we discover that each rectangle is a trunk of a
“subtree”. These smaller trees can be developed in different directions —
horizontal or vertical.- A smtable macatlon of subtrees ylelds again
the complete tree. :

There is no selfsimilarity in the strict sense [6]. Therefore we speak
only about quasi-selfsimilarity. We shall use this notation very often.

3. Calculation of some border segments

Now we calculate the border sides Hg, , Hg,, VE,, Vg,, L shown in
Fig. 5. In the first four cases the calculations are similar, but sometimes
different too.

3.1. The segment Hi;,
a+by— pby
YT
—y?
The proof of this formula is given in several steps.

a) The first step: From Z to Fj.

The horizontal road from Z to F} is composed by three sectlons
— as Fig. 6 (left) shows.

A1 = ay + by® — pby® = y(a + by — pby).

(1) Hg, =

1

b
a y?

Y T : v zy>
3 1,2 7 3 3
7Y o g
1 I

S |

F _‘V.Iyz ‘Fg " T'.’ oyt

Ay As

Fig. 6. The segment Hp, .
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b) The second step: From Fj to Fa.
~ The interval Az is composed by three sections t00 (Fig. 6 right).

Az = ay® + by* — pby* = y*(a + by — pby) =y A1
c) Step number n: From Fy,_; to Fy,.
An=y""? (ay + by? pbyz) = yzn 2A Wlth ne N;
'd) Adding up all steps:

_— 1 yZn
A+ +A, = (l+y+ P AL = Al e
e) Limit:
- Because of y < l we have
e y
i, = Jim T4 = ety =), 0
3.2. The segment Hg,
2) - Hg, = (a + by — pby).

1—

The proof is done in complete analogy to 3.1. O
3.3. The segment L

x -+
(3). L= y(a—l—by pby)

This result follows imniedlately with (1) and (2) by addition. ¢
3.4. The segment Vg,

(4) VEl =

T _yy2 (ay + by® — pb).

a) The first step: From Z to Fi.
We use once more Fig. 6 (left). There we see that the vertical
road from Z to Fj is also composed by three intervals.

C1 = ay? + by® — pby = y(ay + by” — pb).
b) The second step: From F, to Fs.
From Fig. 6 (right) we see
Cy = ay* + by® — pby® =17 (ay® + by’ — pby) =y C1.
c) Step number n: From F,_; to Fj.
Using complete induction we obtain



A plane model of the bronchial tree 243

Crn = v 2(ay® + by® — pby) = v*"2C with neN
d) Adding up all steps:

Ci+ +Ca=(1+y"+-+y" %) C1 =Ci-
e) Limit:

_ o 1—y _ ¥ 2
Vg, = lim T 01—1_y2(ay+by —pb). ¢

3.5. The segment Vg,

(5) | Vi, =~pbz+1_y2(ay+by2—pb)- o
y
__——m.____
v z
T 2
1 x? B,
+ Hs=
G | 3
zy* T
: Go

Fig. 7. The segment Vg, .
a) The first step: From Z to Gi.
The vertical road from Z to Gy is composed in the following way:
B; = azy + bzy® + pbz — pbz = pbz + (azy + bzy® — pbz) = pbz + D1.

Now all is running exactly as in the case Vg, .
b) The second step: From G to Gs.

By = Dy = azy® + bzy* — pbzy® = yz(amy + bzy? — pbz) = y2D;.
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¢) Step number n: From G,_; to Gp,.
B, =D, =9y?""%D; with neN.
d) Adding up all steps:

) 1— 2n
Bl+"‘+Bn=Pb$+D1(1+y2+---+y2”_2):pb.’c—i—Dl1_?22.
e) Limit:
. 1—‘y2”‘ z : 9
Vg, = pbz + lim D, = pbx + (ay + by* — pb). ¢

n—+ool—y2 1__y2

4. Connections between the fundamental numbers
a, b, z, y, p

4.1. A cosmetic operation

We change our configuration such that the corner points F; and
E5 in Fig. 5 are on a horizontal line. This is reached by putting Vg, =
= Vg,. With (4) and (5) we obtain

Y 2 _ T
1_y2(ay+by —pb)—pbac-l—l_y2

(ay + by® — pb)

or

(6) pbz + ——Z (ay + by? — pb) = 0.

1—192

If we choose our fundamental numbers such that the equation (6)
ist fulfilled then our goal is reached. So on the one hand we get better
pictures and on the other hand working with our rectangles is becoming
much easier.

4.2. An additional relation

We consider the rectangles (ay?, by®), (azy, bzy) in Fig. 7 as
trunks of subtrees. Because of quasi-similarity the limit interval on
the line through E; and E; (Fig. 5) have the lengths y*L and zyL
respectively. Now we require that these two intervals do not overlap.
This is reached by the demand

2

1—y
.

Because of quasi-similarity the property of non-overlapping is in-
herited to all subtrees. Therefore Demand C given in Sec. 1 is fulfilled.

(7 L=yL+zyl or z=
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4.3. And once more a relatibn

Have a look at Fig. 8, but at the computer picture in Fig. 9 too.

Fig. 9. Once more concerning the proof in 4.3.

We see that above the rectangle (azdy, bz3y) a subtree develops.
If this tree touches the rectangle (az, bz) and there does not occur any
overlapping then we have z3yL = az. Using 3.3 (3) we obtain

T+
(8) PPy g (a+by —pby) =o.

With (7) the property of non-overlapping was already secured. Now
we have a new formulation of this fact, using a connection between the

fundamental numbers.
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5. An equation of degree 5iny

5.1. Some calculations

Let a, b, y be given, then we calculate z and p. To do this we
use the equations (6), (7), (8) in the last chapter (3 equations and 2
unknowns!). From (7) we obtain immediately z. The relations (7) and
(8) both characterize the non-overlapping. Therefore it is not surprising
that we obtain two values for p. We substitute (7) in (6)

. 2
1—-¢2 =L—y
pb yy + 1y_ 5 (ay+by — pb) =0,

2ay + 20y —a—by
by3

(9)

And (7) is substituted in (8)

1—192 2 4y
( . ) y ”’_yz (a+by —pby) = a,

=7p.

1
a + by — 2ay? — by
yb(l-y?)

(10)
5.2. Equatlon of degree 5 in y
We identify (9) and (10)
2ay® +2by® —a—by a+by—2ay2 — by
by? o yb(—y?)
(11) by® — 2by® — 2ay® + by +a = 0.

3

5.3. Some consequences

5.3.1. y2 =D
To prove this equation we transform (11).

by® — by® = by ‘—|— 2012 — by — a,
by® (y2 — 1) = by® + 2ay® = by — a,
2 a+ by — 2ay® — by
o yb(1-9P)
Comparison with (10) yields y? = p. ¢
5.3.2. %x/ﬁ <y<1

We transform (11) once more, but in another way.
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b(y® —2y° +y) = 2ay® —q,
yb (12 —1)° = a(2y® — 1),

o 1= L= 1)?
a

Because of a,b > 0 and 0 < y < 1 it follows 2y> — 1 > 0 and

therefore y > 1\/_ O
With thlS result we obtain also z < y. Because in case T >

> y we have —yL > y and therefore y < ,_%\/— .- But this would be a
contradiction to y > 1/2.

533. 224+9% <1
With (7) we have to prove

1-92)?
( Y ) +2< 1.
Y
Transformation yields - .
2

: . o N 3 4
1-3y°+2y* <0 2=
Yy +2y” < or | (y 1 6
Wlth 5.3.2 it is lmmedlately to see that this inequality is fu]ﬁlled.
We distinguish three cases. ,

< -

3 1
4

1) 2—%>O = Z<y2<1
2) yz—z-:O’
3) yz—%<0 = %<y <%.<>
5'3'4'L::c3y,:y23m2 |
“with 3.3 (3), (7), 5.3.1 we obtain

From L = —%-
z?y

+; (a+by— by?) =

1- 2y
or
1 3y ay
= ) = T
and finally

(a+by—by®) (1 —9%) = ay?.
We have once more our equation (11). So it remains only to show
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With z = 1——?} it follows

1-9%\" 1-32\°
y y

| by 2by 2ay —i—by—l—a~0
That is again equation (11). 3

or

6. Limit curve and the enclosed region

6.1. Theorem. The length of the limit curve ( czrcumference ) is: U =
2b(1+y)

2 —z2

Prgof We consider the rectangles I and II in Fig. 10 to be trunks of
subtrees. These trees have at the top the limit segments G; H; = Lzy
and GoHs = Lz?2.

In the same way we procede with the rectangles III and IV. To
the left respectively to the right the corresponding subtrees have limit
segments F1G1 = Ly and E;Go = Lz. Due to 5.3.2 we have Lz < Ly.

It can be proved — the reader should try to do so — that the points
G4, Hy, H, are collinear and even that Lzy + b+ Lz* = L.

H, H»
Gl 1 2
H, -
I
‘ ” I
o[ 1M z
Yy IV &
Ey : En

Fig. 10. Limit curve and the enclosed region.

Now we add the lengths of all our limit segments — this yields the
total length U of the limit curve (polygon)
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U=FEG+G1H; +H1H2+(G1E1—G2E2)+H3G2+G2E2+E2E1 =
=Ly+Ley+b+Lly—z)+ L+ Lz+ L=
=L(2y—|—:cy—|-$2-|—1) + b.

Now we use L = o505 7 from 5.3.4 and equation (7). After some calcu-
lation we obtain

b 1—q2 1—12\? %(y + 1
y2—z Yy Yy Y2 —

6.2. Theorem. The region enclosed by the limit curve has the area

F:bzy_xzy,+x3

Proof. The rectangle with side lengths F1Ey = L and E1G; = yL
from Fig. 10 has area L?y. To obtain the total area of the enclosed
region we must still subtract the area of the small rectangle with side
lengths GoHs = Lz? and HyHz = E1G1 — E3Gs = L(y — ). Finally
we have

F=L%y—-Ly—-2)z*= — (y—y:c2+333). O

7. Demand B

Theorem. The area of all the bronchial tubes is
FopdZiYET
(v — z2)*
With Th. 6.2 this means that the bronchial trees completely fill the limit
region. Therefore our model fulfils Demand B. ,
Proof. The proof is a little bit difficult. It is given in several steps.
a) The area in different generations
Generation 0
We consider the rectangle (a, b) and the small rectangle (b(1—p),

pbz+b(y —z)). Both together form the polygon of generation 0.
The corresponding area is

Fo = ab+b*(1 —p)(zp+y — z)
and with 5.3.1 finally
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Fo=ab+0?(1—9?) (zy’+y—z)=ab+T.

Generation 1
In generation 1 there are two polygons similar to the starting
configuration. Fig. 11 shows the situation.

Fig. 11. Generatlon 11.

We calculate the area.
To the right -

F| = abz? +z2b2( )(a:y +y—x)=2*(ab+T).
To the left

FY = aby® +y20* (1 —?) (zy® +y — z) =y’ (ab+ T).

Together
Fy=F +F = (ab+7T) (z> + %) .
Generation 2
Now we obtain 4 polygons similar to the starting configuration
from generation 0. Because of this similarity we have
Fy =2?F +y*F, = (ab+T) (332 + y2)2
Generation n |
Using complete induction it follows
CF, = (ab+T) (z? +¢7)"
b) Summing up

Fo+Fi+--+F :(ab+T)(l+(m2+y2)+(:ﬁ—kyz)’—’-{-

(.’E +y )n—l-l

—@+v)

-{----—i—(wz-{—yz)n) (ab+T)

Because of 5.3.3 finally we have
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)‘ﬁ.—l—l

, 1— (2 + 2 ab+T
F= nh_)ngo(ab—l—T) 1- (@ +12) 1- (@ +12)

¢) Equivalence

Now it remains still the most difficult part of the proof. It must

be shown the following equivalence from 6.2:

Cab+T 1Y = 2y + 28
| o 1—(2 4y (2=
; Doing this needs a lot of effort and many tricky transfdfmations.
We transform

+T 7
1—(22+¢%) N
With a = 52% from 5.3.4 and with (7) we have

2 .2\
= 0=V)
, ~ 2y -1
The numerator is
. b2 (1 _ ,y2)

Z:ab—!—b2(1—y2)(a:y2+y~m): [1——4y + 6y* —9y}

y(2y2—1)
the denominator

Cod 1 (92 a2
~N:1_($2+y2):3y 2y 1:(2?/ 1) (1-v%)

and together

Z ab+T

z Py [1 — 49> + 6y* — 2]
N 1—(z2+y? '

(2y2-1)2 4
Py Yy

b
_ (L‘;JL> 9) ylelds

—4y +6yt—2y°]
3 B

VA

N : e e
(o2 — (1=¢2
(- (52))

Now we use a second trick o
1 1-3%\ 1-4%\°
&3[1—4y2+ﬁy4—2y6]:y_( yy> y+(' y) '

Finally with (7) we obtain

)

2 2
The trick (2yy41) = {1y
pelt
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b2
=g v Tyre). 0

2N

8. What about dimension?

8.1. Definition. Let the rectangle (az,bz) together with the smaller
touching rectangle be trunk of a tree to the right (Fig. 11) — in an
analogous way with (ay,by) to the left. The two subtrees magnified
with factors % and % gives the starting tree. We take over the definition
of fractal dimension in the case of extended selfsimilarity from [8]. Then
the dimension d of our model is given by

1—y2 @
2 +y?=1 or ( ” )—I—jy’d:l.

8.2. Are there solutions of the last equation?
Answering the question we define a very special function:

1—y? .
f(d):( . > +y¢=z%+y? with d>0

The function has the following properties:
a) f(d) >0 (because z >0 and y > 0).

b) f(d) is continuous (because the two functions z¢ and y¢ are con-

tinuous in d).

c) f(0)=2.
d) limgeo f(d) = 0 (because z < 1 and y < 1).
e) f/(d) = z%Inz + y%lny < 0 (because z, y < 1 and therefore

Inz < 0 and Iny < 0). ,

We use the “intermediate value the-
orem”. Then with all the properties (a)— fld)y
(d) it follows that each function value be-
tween 2 and 0 occurs at least once. Be-
cause of (e) the function f(d)-is strictly
decreasing over 0 < oo. Therefore each 1—
function value — including number 1 - is
reached exactly once. So the proof for : ) >d
the existence of exactly one number d is )
finished. Fig. 12 explains the situation.

Fig. 12. The graph of f(d).
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8.3. Theorem. If d is the fractal dimension of our model, then we
have 1 < d < 2. This means d ¢ N. Due to our definition in Sec. 1
Demand D is therefore fulfilled. o

Proof. Let be d = 1. Then it follows

: i ,;_[2 o
== 1'

+y=—.
_—

With \}— <y<1from532weobtam\/—>f( ) > 1. Now let be

d = 2. Then it follows :

F(2) = 2® + 92
With z2 + y? < 1 from 5. 3.3 and property (a) we obtain 0 < f(2) <

In Fig. 12 the two casesd =1, d = 2 are drawn With this the theorem
is proved. ¢ i ,

9. Summary — outlook

9.1. What we did S

First of all in this paper a very special- plane point set was con-
structed. Then it was proved that this point set fulfils Demands A
(embedded, Sec. 3), B (completely filled, Sec. 7), C (no overlapping,
Sec. 4.2) and D (fractal, Sec. 8). Due to our definition in Sec. 1 we
found a physiological fractal.
‘ If we restrict ourselves to the construction of only a finite number
of generations (in case of the human lung about 23) then we have a
so-called near-fractal, an unfinished fractal. Our near-fractal can be
considered as an imprecise model for a X-ray picture of the human
lung. Fig. 13 shows the result.

9.2. What remains to do?

0.2.1. For anatomists :

In an empirical way the fundamental values a, b and y are deter-
mined, for instance in [7]. Starting with these parameters the results of
our paper allow to calculate not only z and p but a lot of other things:
length of bronchial tubes between two ramification points, breath of
tubes in each generation, area of the limit region, length of the limit
curve,

9.2.2. For mathemathans
Our model certainly needs still some improvements. We give an
example: The ramification angle in reality is certainly not 180° as in
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Fig. 13. Our modél.

the model. But the main problem for mathematicians is to extend our
model in the 3-dimensional space.
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