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Abstract: We prove that a bijection of a (finite dimensional) hyperbolic space
which preserves an adjacency of its k-dimensional subspaces (any one from
among four distinguished in the paper) is determined by a collineation of the
underlying space and, at the samie time, every one of these adjacencies can
be used to express hyperbolic geometry. The results are obtained, in fact, in
the framework of, more general, quasi hyperbolic geometry.

1. Introduction

"The problem if a particular geometry can be expressed in terms
of (some) adjacency? of its subspaces has three, mutua]ly equivalent, in |
fact, aspects: ~ |

E-mail addresses: malgpraz@math.uwb.edu.pl, krzypra,z@math;uwb.edu.pl |

1We stress on the term some adjacency used here since, as right at the be- |
ginning of the paper we show that, an arbitrary geometry admits at least three
relations of ‘adjacency of its siibspaces, and there are geometries where these three
adjacencies are pairwise distinct. A
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— is every bijection on subspaces preserving this adjacency deter-
mined by an automorphism of the underlying geometry? (an al-
gebraic approach),

— can we characterize basic relations of the underlying geometry in
terms of the considered adjacency? (a logical approach), and

— can we develop (in a special case: axiomatize) the underlying
geometry in terms of this adjacency? (a metamathematical ap-
proach).

Problems of this kind were studied and solved for many (more or less
classical) geometries in at least one of the above distinguished aspects.
As an example we can quote the Chow Theorem (a bijection of k-
subspaces of a projective space ¥ which preserves the adjacency is
determined by a collineation and, if 2k + 1 = dim(B), by a duality, see
[4]) and, in the particular case k = 1 its metamathematical counterpart
consisting in axiomatization of projective geometry in the language of
line intersection (see [7], [21], [14]). Analogous (in most cases algebraic)
results remain valid for affine geometry (cf. [7], [36], [1]), the geometry
of polar spaces (formalizing geometry on quadrics, cf. [25], [10]), the
geometry of Segre products of Grassmannians (cf. [2]), and many others,
which are related to exotic, not yet axiomatized, geometries (cf. [37],
[9], [11], [3], or [32] for example).

In this paper we study the questions stated at the beginning in the
context of (classical) hyperbolic geometry and some its extensions. One
of the old fundamental results of this theory states that (over Euclidean
fields) the (ternary) relation of collinearity of points can be used as a
primitive notion (cf. [15]). Therefore, hyperbolic geometry, which in a
“full” language with orthogonality, equidistance, betweenness etc. was
invented in analogy to Euclidean geometry, can be considered simply
as a linear geometry as well. Some axiom systems characterizing hy-
perbolic geometry in terms of collinearity can be found, e.g. in [33], a
survey of results on this subject can be found in [16], [20], and [17]. Rel-
atively early the problem to characterize hyperbolic geometry in terms
of relations on lines was solved (see e.g. [29], [30], [23], [12], and the
survey [16] together with [20]) and, among others, pencils (proper and
hyperparallel) turn out to be sufficient.

As an example of applications of one of our results (cf. 3.14) we get
now that line intersection can be used as a prumtlve notion in at least 3-
dimensional hyperbolic geometry; but also e.g. pencils of planes (proper,
parallel, and hyperparallel, in dimension at least 4) are sufficient to
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characterize hyperbolic geometry. Similarly, results of ‘[22] mostly follow
from our 5.10.

In fact, most of the results of the paper are formulated and proved
in a more general framework of (some variant of) the quasi hyperbolic
~ geometry. A model §) of the quasi hyperbolic geometry can be charac-
terized as an open convex subset S of an ordered affine space 2 with
lines interpreted as suitable parts of lines of %. A hyperbolic space
(the Klein Model) appears in a special case when S is a projective
sphere in the projective completion B of 2. Two main reasons forced
us to choose this apparatus, generalizing classical hyperbolic geometry
First, the trick (consisting in defining the notion of asymptotic triangle
and considering copunctuality defined by means of Desargues configu-
rations) which enables us to define hyperbolic parallelism, betweenness,
and the surrounding projective space ‘B in terms of collinearity of 9,
can be applied in the quasi hyperbolic geometry setting. C'onsequently,
this geometry can also be considered as a pure linear geometry Sec-
ond, some standard techniques of projective Grassmann spaces used to
define pencils (also stars and tops) of subspaces can be easily adopted
here (subspaces of § are restrictions of subspaces of 3 (of %) to S) and
in most cases fundamental characterizations do not rely on the specific
type of geometry of . Only in the last part, when we consider paral-
lelism of Subspaces do we assume that $ is a hyperbolic space and use
some techniques of Mobius geometry. In the general case the geome-
try of the boundary S of S becomes too complex to find sufficiently
elegant regularities. ' '

A quasi hyperbolic space 5 resembles some features of affine ge-
ometry. In particular, two of its hyperplanes may stay disjoint (being
parallel or hyperparallel) and therefore the geometry admits two nat-
ural adjacencies: its k-subspaces A and B are adjacent if they have a
common (k — 1)-subspace (in symbols: A ~_ B), or — less restrictively
— if they are contained in a (k -+ 1)-subspace (then we write A ~* B).
We prove that (under certain natural dimension assumptions) any one
of these two adjacencies suffices to characterize pencils of subspaces
and then to characterize points of ) and its collinearity relation. At
the same time we show that “hyperadjacency” (A, B are hyperadja-
cent if they are in one hyperparallel pencil) is also sufficient. This
immediately yields that the automorphism groups of the corresponding
adjacencies ~_ and ~* coincide with the automorphism groupof $ act-



198 M. Prazmowska and K. Prazmowski

ing (faithfully) on k-subspaces of §j. Analogous results appear valid for
parallelism (of subspaces) of a hyperbolic space. This does not mean,
however, that we formulate an axiom system for quasi hyperbolic (or
hyperbolic) geometry in terms of an adjacency.

2. Quasi hyperbolic spaces and t“heir Grassmannians

'Let $ = (S, F) be a quasi hyperbolic space. What does it precisely
mean? Passing over axiomatic characterizations of such a geometry we
start from its analytical representation (cf. [34], [35], [13], [26], [27]).
Let 2 = (Py, Lo, ||) be an orderéd affine space (of dimension at least 3),
in the standard way completed to the projective space P = (P, L); let
A> be the set of improper points of 2. ' ' '

(1) We assume that S C P, is open and convex in 2.

(2)  Moreover, S is regular, i.e. every halfline of 2 with origin in §

' either crosses the boundary Fr(S) =: S*, or is entirely contained
in S. The points of S can be defined in terms of the geometry

of $ as the ends of lines (comp. [26], [27]).

(3) The elements of F are suitable parts of lines in Lg: F = {L N
NS:L € Lo, LNS #0}. From the above, for every I € F, either
lisin Lo, or [ is an open segment, or ! is an open halfline of .

A quasi hyperbolic space § is a hyperbolic space if the coordinate field of

2 is Euclidean, and S™ is a projective sphere in ﬂ3 (1 e. 1t isa nonruled

quadric determined by a polarity 7).

In fact, condition (1) can be replaced by the following: S is an
open convex subset of an ordered projective space P such that some of
hyperplanes of 8 misses S. In the sequel we shall use a more general
condition:

(4)  Ifa subspace Y of ¥ misses S, then there is a hyperplane Y’ of
B missing S such that Y Cc Y'.~

Note (cf. (2) that following this projective approach some points of A

can be elements of S* as well (some ambiguity may appear if § admits

so called Euclidean directions i.e. when Lo N F # ). In particular, if

A® = 8% then §) is simply the affine space 2. Adjacencies of subspaces '

of an aﬁ'ine space were already investigated in the literature (cf. [24],

[8]) and therefore we pass over this case. ‘

Note, also, that if S* is (e. g) an open polytope (compare [6]),
then Condition (2) is always valid; if S is defined by means of some
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nonlinear equations, then (2) may force the underlying coordinate field
to have some additional specific propertles (like in the case of hyperbolic
geometry).

To avoid trivial or already studied cases we assume that

(dim(P) =)dim(H) ==n>2and I <k <n-—1,
(5) and

S # A, ie. § is not an affine space.

Every subspace of §) is a quasi hyperbolic space as well. .

In the sequel we write P(P) (#($)) for the class of the subspaces
of P (of $ resp.); if m is a nonnegative integer we write £, (P) (P (H))
for the m-dimensional subspaces of P (of § resp. ). The term hyperplane
is used to denote a maximal proper subspace. For Z C P we write Z for
the least subspace of B which contains Z; after that for YY"’ € ©()
we put YUY’ :=Y UY’ and we shorten Y L {a} with a € P to Y Ua.

For every X € £(%) there is the unique Y € () with X =Y NS;
namely ¥ = X. We write X* = X N S*.

Below we quote without proofs some technical lemmas concermng
the geometry of § which will be used in the sequel.

Lemma 2.1. If Q is a subspace of B such that Q@ N S< = {, then
QNS =0.

Lemma 2.2. Let Q1.Q2,Y be subspaces of B such that Q; CY and
Q:NS* =10 fori=1,2. ThenY contains a subspace Q' such that
dim(Q') = dim(Q1), Q; # @, and Q'NS* = 0. If, moreover, Q1 # Qs
and dim(Q1) = dim(Qz), then there are at least two such @', both two
containing Q1 N Qs.

We say that a hyperplane G of a quasi hyperbolic space ) separates
two subsets D’ and D" of the points of £ if D’ and D" lie in two distinct
open half-spaces of § with boundary G.

Lemma 2.3. Assume that a hyperplane Xy of $ sepamtes hyperplanes

X1 and X5 in 9. If X1™ and X3= have a common point q, then q €

c Xooc ; .

, In accordance with the standards of classical hyperbolic geometry,

subspaces of P are classified as follows. Let M € £,,('B).

M€H,, (M is an inner subspace)  iff M NS # 0; then (M NS) €
€ Pm(9). |

MeT, (M isatangent subspace) lff MNS =0and MNS®#{
(in hyperbolic geometry this is equivalent to: |M N.S%| = 1).
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M €&, (M is an exterior subspace) iff M N(SUS™) =10 (equiva—
lently: M N S’°‘ =0, cf. 2.1). We set, finally H := Ui H
T :=U—oTm: and € =, _qEm.

The following is evident now. , :

Fact 2.4. The map P(H) > X — X € H is an inclusion- and
dimension-preserving bijection. Its inverse is the restriction map H >
5Y —YNS.

Thanks to the maps given in 2.4 we can identify the subspaces of
$ with some subspaces of 3 and, after that, use some standard notions
related to the geometry of projective Grassmann spaces.

In the family #5(9) we introduce two adjacency relations. Let
X,Xo5€ Pk(ﬁ) we write:

(6) Xy~ X') <':> XlﬂXngk 1(5’))

(7) - X7 ~T X5 ‘. = Xl LI X5 € ,SO;H_l(f)).

Clearly, if X1 ~_ X5 then Xy ~+ Xp.
Then we introduce on the set (%) the block structure Py () =
= (Pk (), Pr($)) with the blocks (elements of P (5))) defined as pencils
3 ‘

p(A B) {X € Pp(9): AC X C B}, where o
A CB, Ae Sok__]_(f)), and B € Sok_;_l(fj). '

The structure Pr($)) will be referred to as the k-th Grassmann space
over 9.

In the analogous way we define projective pencﬂs p(Q, R) for Q €
€ Pu_1(P), R € ©r11(P), the projective Grassmannian P(P) — the
k-th Grassmann space over 93, and the adjacencies in the family @k B
(note, however, that over a projective space the two relations ~* and
~_ coincide, so we write simply ~=~7).

A block structure B = (Z,B) is called a \ partial linear space (the
elements of Z are points of B and the elements of B — subsets of Z
— are lines of B) if two distinct lines of B have at most one point in
common, every point of %5 is in at least one line of B, and every line
of B contains at least two points. Points z1,...,2 of B are collinear
if there is a line of % which contains them all. Both structures P(%)
and P (‘B) are partial linear spaces. .

With a slight abuse of language we say that ~_ and ~* are defined
in Px($). Clearly, if X1, X5 € #x($) are distinct then X; ~_ X if
they are collinear in Py(9).
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Fact 2.5. Let X1, Xa € Pi($). Then X1 ~ Xs iff X1 ~ X,
Let Q € #x—1(B) and R € Pr1('B); we define
S(Q) :={Y € P(P):Q CY} - thestar with vertex Q, and
T(R) :={Y € ©x(P):Y C R} = — the top with base R.
Write - k ; S
9 - S6(Q) == {X € Pi(%):Q Cc X} and
(10) - ToR)={Xe Pk(ﬁ) X C R}

for restrlctlons of suitable stars and tops of projective Grassmannian
over P to subspaces of §). After that we put

1) po(@R)=Se(@NTo(R) for @C R

Tt is seen that S (Q) # 0 for every Q € Pp_ 1(B). For R € Pri1(P) we
have To(R) # 0 iff R = B for some B € #511(%) (i-e. iff R € H); if this
is the case then To(R) = T(B) := {A € #x(9): A C B}. Similarly, for
B € 9_1(5) we write S(B) 1= {A € £(%): B C A}.

Consequently, po(@,R) # 0 if R € H; in this case po(@, R)
consists simply of the nonempty restrictions to S of elements of the
projective pencil p(@, R). This yields a natural structure of a partial
linear space in Hx.

Next, in analogy to the ordinary hyperbolic geometly we classify
stars and pencﬂs

proper: 82 - {SD(Q):QEHE—:[}: g2 == {PO(Q1R):QEHR:——1, REHk+1: QCR}a

parallel: S = {So(Q): Q€ Ti—1}, G* = {Po(Q, R): Q€ T_1, REHp41, QC R},
hyper-
parallel 8% = {S0(Q): Q€E;_1}, G°= {PO(QaR):QEEk—l; ReHpy1, QCR}.

We set S := S2US'US? and G :=G2UG*UG°. Clearly, G* is the
“set of the lines of Px($). The structures (R($),G) and (Px(H),S) are
partial linear spaces. In fact, (#x($), ) is, up to the bijection defined
in 2.4, the restriction of P () to He.

' Let us fix o

5 =Pr(9), H=(Pc(5),6), and P=Pi(P).

The classification of geometries on stars and tops of a hyperbolic space
is rather easy (cf. 2.7 below). It becomes more complex in the case of a

quasi hyperbohc space, but in the sequel we do not need such a detalled
classification.
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The projective Veblen axiom (formulated in the language of a par-

tial linear space B) is the formula
V: if two lines L1, Ly of 8 with a common pomt z are crossed by two

other lines M7, M3 missing z, then M7, M> have a point in common.
For our purposes the following classification will suffice.
Proposition 2.6. Let $ be a quasi hyperbolic space, R € #x11(B),
and Q € Pr_1(P). Set X = To(R) and Y = So(@). Clearly, X and Y
are both subspaces of §. The geometry of X (i.e. of the restriction of
9 to X) does not satisfy V, and the geometry of YV satisfies Vif and
only if Q €H.
Proof. It is a folklore that the set @ = S(Q) carries the structure of
a (n — k)-dimensional projective space. Consequently, to prove that J
satisfies V for Q € H it suffices to use 2.4 and identify the elements of
Y and of Q via the restriction map. '

Fig. 1.

Next, let us consider Y when Q € EUT. Let ¢ € S, then dim(QU
L g) = k and dim((Q U ¢) N A®) = k — 1. Therefore, there exists
pE .A°° \ (Q U ). Moreover, from (4) there is a hyperplane H through
@ missing S and we can choose p € A® N H. Next, since dim(Q U
UGP) =k + 1 we take a point b € S\ (QUT, D). On the halfline with
origin ¢ passing trough p we take a point a € S, and then we take any
point b between a and b and let b” be the parallel projection of b’ in
the direction of p on g,b (cf. Flg 1a?).

2Most of the figures in the paper 111ustrate the proofs in the caseof k =1
_in the Klein model of hyperbolic geometry. It is not too hard to note that in the
general case the schema of constructing corresponding points and subspaces remains
unchanged. '
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It is seen that the following four lines of Y
Po(Q, QUb,a), Po(Q, QUb,q), Po(Q, QUT;3), Po(Q, QUIY,B")

satisfy the premises of V, but they do not satisfy its conclusion.

Finally, we prove that X does not satisfy V. To this aim we take on
R two subspaces Q1,Q2 € Hj1 which are affine-parallel; this means
Q:NQy C A®. Since dim(Q; N Qs) = k — 2 and dim(R N A®) =
= k, there is a projective line L C A® N R skew to Q1 N Q2. We take
any two distinct points a1,as € L. Let M; ; = Q; Ua;; we observe that
VSJ' = .Z\/Il’j ﬂ]V.[g)j = (Ql ﬂQz)Uaj C A for j = 1, 2 so, S8y € EUT
(cf. Fig. 1b). Thus, finally, the following four lines of A"

pO(Qla R): pO(QZ: R): pO(Slv R)) pO(S2J R)

satisfy the premises of V; but they do not satisfy its conclusion. ¢
Remark 2.7. Let § be a hyperbolic space and X, Y be as in 2.6. First,
X is a dual hyperbolic space; let us symbolize its geometry by H°. Next,
if Q € T_1, then QN S = {g} and Y is an (n — k)-dimensional affine
space (in symbols, it carries the geometry A). Finally, if @ € £,_1, then
'Y is simply a (n — k)-dimensional hyperbolic space, isomorphic to the
restriction of $ to 7(Q) N S (in symbols: its geometry is H).

Let X1,Xs € P($9), Y; = X; fori = 1,2, and let X; ~F Xo;
Clearly, then Y1 NYs € £5_1(B). We write ’

’ (Yl N Yz)e Hi-1 (i.e. if Xq~_ Xg) for'j =2,
(12) X7 ~ X3 iff (}/1 ﬂYg) € kal . for j — 1"
(YiNYs) €&y ~ forj=0.

In other words, distinct X, X satisfy X1 ~; Xo iff they are in one
“pencil in §7, i.e. iff they are collinear in the structure (#5(9), G7). Sim-
ilarly, X1 ~* X3 iff X3, X5 are collinear in £. ‘

In the subsequent sections we shall examine whether it is possible
to recover -the linear structure of § from any of the adjacencies ~%,
~_=rvg, ~1, and ~g, what are their automorphisms, and whether we
can interpret the underlying geometry of §j in terms of corresponding
adjacencies. The general schema of our considerations goes as follows:

— to characterize the geometry of § in terms of ~* (in 3.2),
to characterize ~_ in terms of ~* (in 3.10),
to characterize the geometry of § in terms of ~_ (in 3.9),
to characterize ~* in terms of ~q (in 4.3),
to characterize ~* in terms of ~; (in 5.6)

|

f
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under some additional assumptions, if necessary.

In the most “classical” case of hyperbolic geometry the main re-
sults of Sections 3, 4 and 5 (i.e. Thms. 3.13, 3.14, 4.4, and 5.10) give us
the following
Theorem. Let § be a hyperbolic space, 1 < k <n—1, and ~ be any
one of the following relations: ~*, ~_ (mazimal proper intersection
of k-subspaces of §3), ~o (the hyperparallelism of k-subspaces), and ~1
(the parallelism of k-subspaces). If ~#~1 we assume, additionally, that
k< n—1, and if ~=~1 we assume that 1 < k. Then the geom-
etry of § can be expressed in terms of the relation ~ and the group
Aut((#x(9),~)) consists of the automorphism of § acting on its k-
subspaces.

Hyperbolic geometry can be also expressed in terms of pencils of
k-subspaces, i.e. § is interpretable in Py($), in Pr(H) = (Pr(H),G?),
and in (Pr(9),G°) when k < n—1, and it is interpretable in (Px($),G*)
when 1 < k.

3. ~* and ~_-adjacencies in quasi hyperbolic spaces
and the automorphisms of Grassmann spaces over
quasi hyperbolic spaces

In this, main section of the paper we shall examine the possi-
bility to define the geometry of a quasi hyperbolic space §) in terms
of the adjacencies ~* and ~_ and in terms of the Grassmann space
P4 ($). To this aim one more auxiliary notion, related to arbitrary bi-
nary relations will be used. For a symmetric relation pC Zx Z and a
positive integer n we introduce two new relations (p(zy,... ,z,) stands

for Mi<i<j<n [zi p zg])

AP(z1,...,2n) < p(z1,.- - 20) N F# (21, -+, 2Z0) A

13

(13) NV, 2" € Z 2,2 pa1,... 2 => 2 p2' V2 =2"];

14) KP(z1,. .. y2n) = plz1,...,2n) N F (21,00 20) A
=R Z[z 2" pz1,... ,2n /\-1(z'pz”) Az # 2]

For z1,...,2n, € Z we write

(15) [21,-- ,2n]p ={2€Z:2p21,... ,2n}

A subset Zy C Z is a p-clique iff 2’ p 2"’ holds for any distinct 2/, 2” € Zg.
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Thus A?(z1, ... ,2,) states that the set {21,... ,2,} can be in a unique
way extended to a maximal p-clique (which coincides with [z1,... , zu],
in this case), while X? (21, ... ,z,) states that this set has at least two
distinct extensions to a maximal p-clique. ‘

In view of 2.5 and known properties of Grassmannians defined
over projective spaces we have
Fact 3.1. Both To(R) with R € Hit1 and So(Q) with @ € Pr_1(P)
are ~%-cliques. (Consequently, if @ C R then the intersection of the
corresponding cliques is simply po(@, R).)

Let X1,X2,X3 € Pr(9) be pairwise distinct. Assume that ~F
(X1, Xo,X3) holds in Pr($). Then two possibilities occur:

(a) There is Q € Pr_1(P) such that X1, Xs, X3 € So(Q), or

(b) there is R € Hyq1 with X1, Xa, X3 € To(R).

In the corresponding cases we have
(16) [X1, X2, X3]o+ =S0(Q) in the case (a) &—(b),

(17) [X1, X2, X3]o+ = To(R) in the case (b) & —(a).

Fact 3.1 yields immediately, like in projective geometry (and many
others, cf. [5]), the following
Proposition 3.2. Let X1, X2, X3 € Pr(9), X1 # Xa, and let Xy ~
~% Xo hold in §. The following formulas define the collinearity relation
Lo of P restricted to $, i.e. the collinearity in § (Lo(X1, X2, X3) iff
Xl,Xg,Xg are collinear in P):

18 Lo(Xl,XQ,,X‘g,) T~ (Xl,X‘) Xg) /\VX [X ~T Xl,Xo
( ) ' = X ~7 X3]

=~ (Xl,XQ,Xg)/\
(19) A _:jX,, X”[XI, X" ~t X1, X9, X3A
A (X~ X,

Loosely speaking, 3.2 states that % is definable in terms of ~™.

To define the lines of § in terms of ~_ the above trick is insuf-
ficient: the lines of § are intersections of stars and tops, but tops are
not ~_-cliques of the form [Xi,... ,Xi]~_. Thus we need some more
complicated methods to handle the relation ~_.

Tt is immediate from definition that the following holds.
Fact 3.3. Let Q € P_1(P) and let S = So(Q) € 87 (j =0,1,2). The
set S is a mazimal clique of ~;.
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Let X1, X3, X3 € 9(9) be pairwise distinct and let ¥; = X; for
i=1,2,3. Assume that ~; (X7, X2, X3) holds in Py(%). In particular,
one of (a) and (b) of 3.1 holds as well. In the case (a) we consider
Y1 NY; = Q. Assume that j = 2; thus A:=Q NS € Pr_1($H). Then
So(Q) = S(A), which, by 3.3, is a ~g=~_-clique. Analogous reasoning
can be repeated for Q € £x_1 and Q € T;_1. Finally, we get

(20) [X1, X2, Xsl, = So(Q)in the case ((a)) & —(b).

The following is nearly evident .
Fact 3.4. The set T(B) with B € ©511(9) is never a ~_-clique, since
it contains a pair of nonmeeting subspaces. k
Fact 3.5. Let P,_1(B) > Q C R € Hyt1. Then So(@) \ To(R) # 0.
Proof. It suffices to take any b € S\ R and put Y = b6UQ, X:=YNS5. ¢
Lemma 3.6. Let X1, X2, X3 € po(Q,R) € G7 for some j € {0,2}.
There is X € To(R) \ So(Q) such that X ~; X1, X2, Xs.
Proof. Without loss of generality we can assume that X, X», X3 are
pairwise distinct. It is seen that the required comstructions are per-
formed, in fact, in the quasi hyperbolic geometry determined by B =
= SN R in the projective space R, and from this point of view the
points of § which take part in the reasoning are hyperplanes of R (of
B, if one prefers this way of thinking). ' ‘
j := 2. The hyperplane X; divides B into two open halfspaces D+
and D~. Let i € {2,3}. Since X; crosses X; in @), there are points
at; € X, N DY a~; € X;NnD; clearly, a™;,a7; ¢ Q. Moreover,
there is a point a; € X7 \ @ which lies between ay and a”3. We take
any (k — 2)-subspace D of R missing the line L = at3,a73, we put
Y =DUL, and then X =Y NS is a required (see Fig. 2a).
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 :=0: Every one of the X;, as a hyperplane of B, divides B\ X, into
two open half-spaces D*; and D—;. One can choose i such that X; C
C D™y, for i # ip; without loss of generality we take 79 = 3. From 2.2,
Y3 = X3 contains a hyperplane Q' which is distinct form @ and misses
S*. We take any point p € D, ; let Y be the hyperplane of R through
pand @ and X =Y NS (see Fig. 2b). Evidently, X ¢ S¢(Q) (since
otherwise we get X = X3), but X € To(R) and X C D3. Clearly,
X ~q X3. Since X3 separates in B the sets X and X; U Xy, from 2.3
we obtain X ~q X1, X5, as required. ¢
Remark 3.7. The statement 3.6 does not remain valid for j = 1. It
suffices to consider three lines X7, Xs, X3 in a (hyperbolic) parallel pen-
cil on a hyperbolic plane. A line X required in 3.6 yields an asymptotic
triangle X1, X3, X, and thus it cannot be parallel to Xs.

Nevertheless, under assumptions of 3.6 with j = 1 one can find
X € T()(R) \ SQ(Q) such that X ~q XI,XQ,Xg or X ruq kX1,X2,X3.

Slightly generalizing 3.4 we note :
Lemma 3.8. Let X1, Xs, X3 € () pairwise satisfying ~; belong to
T(B) for some B € Pr11(9) and j € {0,2}. Then [X1, Xa, X3]~, is
not a ~-clique, which means that X537 (X1, X2, X3) holds.
Proof. Take R=B,Y; = X; fori =1,2,3, and Z = Y1 N Y2, NY3.
Then one of the following holds.

— 7 € Pr_1(B); then Y3, Ys, Y3 lie in one pencil of /B, and

Xl,Xg,X3 - po(Z, B), or

— Z € 95_2(B). i
In the first case, directly from the definition we get So(Z) € S7. It
suffices to take, in accordance with 3.6 a subspace X’ € To(R) \ So(Z2)
such that X’ ~; X1, X2, X3, and from 3.5 a subspace X" € So(2) \
\ To(R) so, X" ~;j X1, X2, X3. We have X' £ X", which closes this
part of proof.

In the second case we have to consider two possible values of j.
We write Q; = Yj, NY;,, where {1,2,3} = {i, 1,2} Clearly, Q1 # Q2.
j =2 Let X’ be a subspace of §j which: is contained in B, contains
X, N X, and crosses X3 in a subspace distinct from X; N X3, X2 N X3.
Put ¥/ = X’ and let Y be parallel to Y/ (i.e. formally, let Y/ NY" C
C A®). One can choose Y such that X" =Y" NS crosses the X; (see
Fig. 3a). Clearly, X' o4y X", which is our claim.. ,
j =0: Every one of the X; is a hyperplane in B (considered as a
quasi hyperbolic space) and it divides B\ X; into two open half-spaces
Dj and D; . One can find ig such that X; C D;Z for i # ig; without
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Fig. 3.

loss of generality we can take ig = 3. From the assumptions @; and Qs

both miss S*. We take a point g € Dy ;let Y = Q1 lUq, Y =Q2Ugq,

and X', X" be the respective restrictions of Y’,Y” to B (cf. Fig. 3b).

Then, clearly, X', X" ~g X3 and X' g X", X' # X". Tt is seen that

X', X" are contained in D3 and therefore X3 separates X "UX" and

X1 U X5. From 2.3 we conclude with X', X" ~g X1, X2. O

Thus 3.3, 3.1, and 3.8 yield immediately the following characteri-

zations for 7 =0, 2: ' R, ‘

A7 (X1, Xa, X3) iff Xy, Xs, X3 are not collinear in $), but they are in
a star in S7; ‘ '

X377 (X1, X2, X3) iff X1, X5, X3 pairwise satisfy ~; and lie in a top
either spanning (prbjectively) this top, or being col-
linear;

(21) SJ = {[XI;X27X3]N]': # (lekX27X3)7 ABNJ (Xla—XQa-X?))}-

As a consequence of the above observations we get

Proposition 3.9. Let X1,X0, X3 € #x(9), X1 # Xa, and let
Xy ~; Xa hold in § for j € {0,2}. The following formula defines
the collinearity relation Ly of 9

Lo(X1, X2, X5) <=~ (X1, X2, X3) A
(22) A XXX, X!~y X1, Xo, XA
: A (X"~ XY A AT (X, Xy X))

Proof. Let X1, Xy € L, where L is the restriction to §) of a projective
pencil p(Q,R), Q € Ex—1 UHy-1, and R € Hpy1. Assume the right-
hand side of (22). In view of 3.3 and 3.8, X’ € So(Q), and thus X" €
€ TO(R) Thus, finally, X3 ~t Xl,Xz,X’,X“'giVGS X3 € SO(Q) n
NTo(R) = L.

Next, let X3 € L. From 3.5 we take X' € So(Q) \ To(R);
then X’ ~; X1, X2, X3 and A77 (X1, X3, X'). Next, from 3.6 we find
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X" eTo(R)\So(Q), such that X" ~; X1, Xo, X3, clearly, ~(X'~; X").
0

Recall that ~g=n~_; therefore the formula (22) defines (with j =

= 2) simply the collinearity relation L of § in terms of its adjacency.
Finally, let us consider the following

?e‘mma 3.10. Let X1 # Xy and X1 ~* X5. We have (cf. 2.6)

23) :

Xy~ Xy = 3X3[AF" (X1, X5, X3) A ([X1, X2, Xa]or, Lo) = V]

(the formula like B l: P states that B is a model of ).

Since the Veblen aziom V is elementarily expressible3, we get that
the relation ~_=~s is definable in terms of ~t, and the families G*
and Gt U G® are definable as well. '

From 3.2, 3.9 and 3.10 we read that the structure § is deﬁna.ble
in terms of ~ ¥ and in terms of ~_.
Remark 3.11. Assume that § is a hyperbolic space. Let X7 # Xo
and X; ~T X5. We have (cf. 2.7)
(24)

X1~y Xo <= 3X3[A3" (X1, X2, X3) A {[X1, X2, X3]t, Lo) = P,
X1~ Xy <= 3X3 [A3N+(X1,X2,X3) A ([X1, X3, X3]o+, Lo) = Al
X1 ~g Xz <= 3X3[A5" (X1, X2, X3) A ([X1, X2, X3}, Lo) = HI.

Since the geometries P, A, and H are elementarily distinguishable we
get that the relations ~g, ~1 and ~g are definable in terms of ~*, and
the families G2, G, and G° are definable as well.

Let us quote the known result, fundamental in the context of the
considered geometries.
Fact 3.12 ([35]). The structures $ and (P,L,S) are mutually defin-
able, where P = (P, L). Conseguently, the automorphism groups of $
and of (P,L,S) are isomorphic. In particular, Aut($) is the group of
the collineations of B which leave the set S invariant.

As a nearly immediate consequence we get
Theorem 3.13. The following three groups: of the automorphzsms of
~_, of the automorphisms of ~*, and of the automorphisms of Py()
coincide. The group in question consists of the automorphisms of H
acting on its k-subspaces.

3In the language of the ternary collinearity relation L the axiom V can
be (equivalently) read as follows:  L(p,®1,%2) A L(p,y1,y2) A —L{p,z1,y1)A
/\_‘L(P,Sﬂz,fm) = EQ[L(qamlayl)AL(QIEQ:yZ)]'
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Proof. Let F be a bijection of SO;;(J’J). If F reserves the relation ~*,
from 3.10 we get that F preserves ~_ as well, so we can restrict our-
selves to this case.

Let F' preserve ~_; from 3.9, I’ preserves ma.}ﬂmal cliques i.e. 1t
preserves the family of the sets SO(Q) with @ € #,—1(5). Thus F' deter-
mines a bijection F' of £;_1 () such that (F’, F) is an automorphism of
the structure (#r_1(9), Px(H), C). Therefore F' preserves the relation

*+ in the structure Pg_1(5). From 3.2 we infer that F’ preserves pen-
cils, and from the classification 3.10 we obtain that F' € Aut(Px_1(9)).
In particular, F’ preserves ~_ in #%_1(5). Continuing, we come to an
automorphism f of §, which proves that F'is determined by f. ¢
_ Similarly, we can characterize the groups Aut({(¥x($),S)) and
Aut(9).

An elementary counterpart of 3.13 is , ; ‘
Theorem 3.14. Each one of the relations ~* and ~_ is sufficient to
express the geometry of §. Consequently, the geometry of § can be also
formalized in the language of Pg (k) and in the language of Pg (k)
Proof (a sketch). It suffices to note that Po($) = 6 and Py_1(5) is
interpretable in P ($). Indeed, the points of Pj_1($) can be identified
with equivalence classes of the triples (X1, X2, X3) € (#5())3 such that
A3 (X1, X2, X3) holds, two such triples (X1, X2, X3), (X1, X3, X3) be-
ing equivalent when X1, X5, X3 ~_ X1, X3, X3. Pairs of points which
are ~*t-adjacent in Py_1($) correspond to pairs of equivalence classes
of triples of the form (X7, X2, X3), (Xl,Xz, X%). With 3.2 and 3.10 we
recover the collinearity of Pyx_1($). ¢

Then, the natural question arises how to define (if it is possible)
the relation ~* in terms of ~; for j € {O 1,2}. The case of ~_ =rvg is
relatively simple:

Proposition 3.15. Let X1, X5 € po(Q, R) € G2, X1 # Xo, and X3 €
€ Hi. We have R=X;UXs and

X3 ETQ(R) < LI"(Xl,XQ‘,X:}) \% (ﬁ;—(Xl,Xg,Xg)/\
(25) ATX" X" [Lo(X1, Xa, X') A Lo(X1, Xa, X")A
AX A X"AX, X" ~_ Xs)),
where L'(X', X", X'") means that Lo(X', X", X") or X' = X" or

X" = X", Consequently, the following formula defines ~% in terms
Of ~egl
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Xé ~T Xé’ > dX1,X5 [X1 ~g X9 N X1 ?é X5 /\Xé,Xél €

(26) M
€ To(Xl Ll XQ)]

Proof. Clearly, if Lg(Xq, X9, X3), then X3 C R. The condition
K3 (X1, X2, X3) assures that X3 ¢ So(@). Then right-hand side of
(25) gives (since X3 ~* X', X") that X3 € (S¢(Q) U TO(R)) \ So(@).
Conversely, if @ ¢ X3 C R, we take any two distinct a,ad" € X3\ @
and put X' = QUa', X" =Qud".

Finally, the vahdlty of (26) is evident. ¢

Definition of ~* given in 3.15, though long, has a clear geometrlcal
motivation. One can verify that the following, much shorter formula is
also valid in $) for distinct X1, X5 (see Fig. 4): -

(27) X1 ~T Xy = EX/,X”[ ;‘(X',X",Xl)/\4X3N‘(X’,X”,Xg)].

Fig. 4.

4. Remarks on hyperparallelism of subspaces of a
quasi hyperbolic space

The problem to characterize the ad] acency ~7 in terms of the hy-

~ perparallelism ~jq is, in general, more complex. Note, first of all, that

$ may contain a subspace X such that no subspace of § is hyperpar-
allel to X — this happens when X* C A™; let K stand for the class of
such subspaces. Let ® be a formula in the prenex normal form, formu-
lated in the language of ~p. If the free variables of ® are interpreted
as elements of K then every one of its atomic subformulas containing
these variables is a contradiction and therefore the formula @ is true or
false independently of a particular valuation of its free variables in K.
Consequently, it is impossible to define X1 ~ X3 in terms of ~q for
X4, X, € K. To avoid this complication we assume the contrary: for
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every X € #(8) there is X’ with X ~y X' # X. In a more geomet-
rical language this property can be expressed by the phrase ) has not
a Euclidean direction (cf. [26]) and, analytically, this is assured by the
following requirement:

(28) 5% N A% =} in a suitable projective fepresentation of §.

We shall see that (28) suffices to repeat (a slightly more sophisticated
variant of) the reasoning of 3.15 for the relation ~q instead of ~z. What
we need to do is to prove the fact that for a pair X1, X2 of non hyper-
parallel subspaces contained in a top X there is a hyperparallel pencil
which contains two pairs of elements, each pair completing correspond-
ing X; to a hyperparallel triangle contained in X. Let us begin with
simple observations. _

Lemma 4.1. Let Q € &1, Q C R € Hit1, and X' € po(Q, R)
such that X' ~g X for some X € Pp($) with X C R. Then there is
X" € po(Q, R) such that X' # X" ~p X.

Proof. let Y =X,Y' =X'. Weset @' =Y NY' and U =QNY; by
the assumptions @’ N 8= = ). In the affine space Y \ A the set X™
lies in one of the half-spaces with the boundary @Q'. It suffices to take

Fig. 5.

a hyperplane Q" of Y through U “between” S and suitable halfspace
of Q' \ U; after that we put Y”=Q"UQ and X" =Y"NS (cf. Fig. 5). ¢
Lemma 4.2. For every B € Pp1(9) and distinct X1, Xo € Pi(9)
contained in B such that X1 g Xo there are X{, X5 € Pr(H) contained
in B such that X} ~q X% and X; ~o X fori=1,2.

Proof. Set R=B,Y; = X;, and U = Y1 NYa. For i = 1,2 we consider .
the family &; = {Y € Hp: Y = Yi°°} of the hyperplanes of R which
are affine-parallel to Y;. If there are Y{,Yy such that ¥ € X; and
Y/ NYy N S* = () we are done (see Fig. 6a).
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Fig. 6.

Suppose the contrary; then there are in R two open affine stripes
W1, Wa such that the boundary hyperplanes of W; are Y, Y;” in A&; for
i=1,2, and S is contained in W1 NW5 in such a way that through every
point in W; N W, there passes a subspace parallel to U which crosses S.
One can find in R a hyperplane Z which is affine-parallel to U such that
Z € Hy, and Z NY; is outside W; for i = 1,2. Set X{ = ZN B. Then
X7 U X5 is contained in a halfspace of B with the boundary X; and the
completing halfspace contains X} € Hj, such that Z and F(Z are affine
parallel (cf. Fig. 6b). It is seen that X7, X5 satisfy our claim. ¢

As an immediate consequence of 4.1 and 4.2 we obtain
Proposition 4.3. Under the assumptions of (28) the following formula
defines in §) the adjacency ~* in terms of ~o:

Xy~ Xy e X1 ~o XoV3XE, XY, Xa, X5 [X] £ XTA
(29) AX5 # X3 N Lo(X1, X7, Xa)A
 ALo(X1, XY, XYY AKX (X0, X7, XT) A K (X2, X5, X5)].

Finally, from 3.13 and 3.14 we conclude with the following.
Theorem 4.4. Under the assumptions of (28) the group of the au-
tomorphisms of ~q consists of the automorphisms of $ actmg on its
k-subspaces.

The hyperparallelism ~q can be used to express the geometry of 5.

One can note that if § is a hyperbolic space, then also (27) remains
valid with ~_ replaced by ~g. This result can be obtained in a slightly
more general case as well. Let us say that a quasi hyperbolic space £
is convex if for any two its hyperplanes X1, X there is a hyperplane X
which separates X; U X5 and a point of .

Proposition 4.5. Assume that every (k + 1)-subspace of § yields a
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convez quasi hyperbolic space. Then (27) with ~_ replaced by ~q is
valid for any distinct X1, Xo € Pr($).

Proof. Implication < is evident. Assume that X;, X, C B € Pk+i (%),
let X separate in B the set X1 U X3 and a point p € B. We take X' €
€ Hj through p such that X' =X, a point ¢ in this halfspace of B
with the boundary X’ which does not contain X, and X" € Hj, with
ge X", X7 =X (see Fig. 7). Then X separates X; U Xy and
X'UX". From 2.3 we get that X', X" ~g X1, X5. The rest is clear. ¢

|
/)

a

Fig. 7.

However, even if § is relatively regular, e.g. if S* is a polytope,
this modification of (27) may fail. Tt suffices to consider a 3-cube and
two its diagonal hyperplanes X1, Xo: there is no X’ with X’ ~¢ X3, Xs.

5. Parallelism of subspaces of a hyperbolic space

Next, we pass to the groups Aut(#:($), ~1)) and Aut(¥x($),F").
From now on we assume that § is a hyperbolic space, i.e. S* is a
projective sphere in the space 3. While in the preceding sections we
have used intensively the projective apparatus, now we shall make use
of some standard notions of Mobius geometry.

Let M = (S*,C) be the Mobius geometry on S, where C =
= {Y NS*:Y € Ha}. The class of subspaces of 0 coincides with the
set M = {Y NS*:Y € H} so as dim(Y N §%) = dim(Y) — 1 and the
map '

U{@m(ﬁ):QSmSn}S_XHYHS“ = X<

is a bijection. Let M., = {E € M:dim(E) = m}. H
Let us note the following equivalence
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X1 ~_ Xy = | X1 N Xy™| =2, for every X3, X2 € Ho.
Therefore, up to the identification X — X, the adjacency of P3($)
is definable in 9t. This observation, together with results of Sect. 3
reproves the known
Fact 5.1. The following structures are mutually definable:

$, M, and (P, L, S5%).

Consequently, they have isomorphic automorphism groups. In
particular, Aut($)) is the group of the collineations of B which leave
the sphere S* invariant.

To stress the analogy with ordinary hyperbohc geometry we write
from this moment X’ | X” instead of X' ~; X”. Our goal in this
section is to prove that the hyperbolic parallelism || of subspaces of
dimension k > 1 is sufficient to express hyperbolic geometry and to
this aim, in view of our previous results, it suffices either to define ~*
in terms of || (for & < n — 1, cf. global assumption (5)) or directly
interpret § in terms of || (when k =n —1).

Letters E, F, G stand for elements of M; let p € S, then E | ,F'
means that E and F' are tangent in the point p. We write F | Fif
E | F' for some p. This terminology is well founded, since elements
E, F are spheres on S*. Let us recall the following well known facts
Fact 5.2. Let X1 || Xo, @ = XiNXs, R=X; U X5, and E; = X;~.
Finally, let Q be tangent to S at the point p. For arbztmry subspace X3
of $ we have
(30) X3 €5(Q) <= X3*|,E,

(31) X3 €po(@,R) <= X3 CRNS™ A X3% | LB

Fact 5.3. Letp € S=. The stereographical projection of S (the derived
space of M at p) yields an Euclidean space M, such that the elements
of the set M become the subspaces and the subspheres of 9y, those
passing through p correspond to the subspaces, and the tangency in m
corresponds to the union of the parallelism and the tangency in M.
Let us begin with the trivial
Lemma 5.4. The relation || in the set ©1(8) is insufficient to express
hyperbolic geometry.
Proof. Every line L of § is uniquely determined by a pair pi1,p2 of
points on S (its ends) such that L = pr,ps- It suffices to take any
bijection f of S and put f'(p1,pz) = f(p1), f(p2); then f’ becomes an
automorphism of the relation ||. Clearly, f needs not to be projective
and thus f’ may not preserve copunctuality of lines. ¢
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Note that 3.8 is not valid for j = 1 and k& = 1. Indeed, if the
lines X1, X5, X3 form an asymptotic triangle, then [X1, Xa, X3)) =
= {X1, X3, X3} is a ~-clique. Therefore, some slightly more sophisti-
cated techniques must be used here to determine and distinguish stars
and tops. In view of 5.4, in the sequel we assume that

(32) 1<k<n-1

Under assumption of (32) we can prove an analogue of 3.8:

Lemma 5.5. Let X1, X5, X3 € P(9) lie in some top To(R) and E; =
= X;* fori=1,2,3. Assume that X1, X3, X3 are pairwise parallel and
do not belong to one star (equivalently: they are not collinear in P, or:
the F; are pairwise tangent in pairwise distinct points). Then the set
[X1, X2, X3]|| is not a ||-clique and thus 4X§(X1,X2,X3) holds.

Proof. Set D = (RNS)™, Y; = X;, and Q;; = Y;, NY;,, where
{i1,49,93} = {1,2,3}. Let Q; be tangent to S* in the point g; (see
Fig. 8a). From assumptions, the subspaces @; are pairwise distinct.
Suppose that g;, = g;,; then both @;, and Q;, are tangent to 5™ in
g, and thus Yg_(;; +4,) = @i, U @i, lies in the hyperplane of ‘B tangent
to §*. Since Xg—(i,+is) C Y6—(iy+iz), this yields a contradiction. Thus
1,92, q3 are pairwise distinct as well and, consequently, g;, ¢ Q;, for
i1 # i3. In the Euclidean space € derived from D at g; the (Mdbius)
subspaces E, and E3 become two parallel hyperplanes, and E; becomes
a sphere tangent to them both.

Fig. 8.

We take a point p of € on the intersection of E; and the hyperplane
of & parallel to By through the center ¢ of E;. Let £’ be symmetric to
E; wrt. p, and E” be symmetric to E’ wrt. ¢ (cf. Fig. 8b). It is seen
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that Ey, Ea, B3 | E', E", but —E' | E”. Finally, we take X', X" € 9()
such that X' = E' and X"™ = E"; then X', X" € [X1, X2, X3] and
X' HX”' <>

Proposition 5.6. The following formula defines the relation ~* in the
family ©,(9) (comp. (27))

(33) Xi~t Xy = 3X, XXX, X0) AKX, X, X)),

Proof. Assume that there are X’, X" as required in (33). Then
X', X" € po(Q,R) for some R € Hgy1. Set V; = X;, Y' = X/, and
Y"” = X". By the assumptions, X; || X', X" so, ¥; ~ Y/, Y". Since
X', X", X; do not yield a |-clique, Y',Y",Y; do not yield a star (cf.
3.3, and (20)) and thus ¥; C R. Thus X; € To(R).

~ Fig. 9.

Conversely, let X; ~* Xg; let X be the (k + 1)-subspace which
contains X3,Xs. Set B; = X;® and D = X*; let p € D\ (E1 U
U E2). In the derived Euclidean space of D at p the E; become hyper-
spheres; clearly there are at least two other hyperspheres E', E” tan-
gent to the given such that E’, E” are tangent as well. One can choose
E'’,E" in such a way that the corresponding points of tangency of the
spheres E1, Es, Es3, E', E" are pairwise distinct (see Fig. 9). Finally, we
take X', X" such that B/ = X' and E"’ = X"*. From 5.5 we get

g(X’ X", X;), as required. ¢

‘Now we pass to the case k =n — 1. Here we follow some ideas of
[28], [18], and [22] how to handle the tangency of hyperspheres in metric
geometries. In fact, we observe that the notion of a tangent pencil can
be expressed elementarily in terms of the tangency in Mobius geometry.
In view of 3.3, 3.8, and 5.2, every star Sp(Q) is determined by a triple
X1, Xy, X3 of subspaces with Ag(Xl, X3, X3) which, in this case yield
a (parallel) pencil. Moreover, So(Q) determines a point p € S* such
that @ is tangent to S at p. Recall: ng :=dim(MM) =n—1. If p € 5%
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and p € F € M,,_1 we write p(p, ) for the corresponding tangent
pencil of I p(p, E) = {F € Mp,—1: E| p'F}. As already noted (cf.
5.5), E1; Eg, F5 are in a tangent pencil if Ag | (E1, E2, Es) holds.

Lemma 5.7. Letp€ S*, p€ E € My,_1, and F € My _1. Then -

(34) peF <= Fep(pE) Vv -3F cp(p,E)[F|F].

Proof. It suffices to consider the stereographical projection 9,, which
makes p(p, E) a pencil X of parallel hyperplanes. If p ¢ F, then F
corresponds to a hypersphere in 9%, and thus there is in A a hyperplane
tangent to F. If p € F, then F corresponds to a hyperplane, which
either is in X, or cannot be parallel to any element of X. ¢

Let 7 be the set of all the tangent pencils p(p, E) with E €
€ My, —1. Recall that the set Z corresponds under the map X —— X
to the set G _;. The formula (34) defines, in fact, a relation A between
elements of M,,_1 and elements of Z: p(p, E)AF iff p € F. With an
elementary reasoning we obtain now
Lemma 5.8. Let Q1,Q2 € Z. The formula

(35) Q1 ~Qy <= VF[OIAF < QyAF]

defines an equivalence relation, whose equivalence classes correspond to
the points of M (clear: p(p1, E1) =~ p(p2, E2) iff p1 = p2). Then the
relation [Ql~ | F <= QAF corresponds to the ordinary incidence
relation in (8%, Mpn,_1) i.e. in the Mdbius geometry with its hypersub-
spaces distinguished.

One more classical result is needed:
Fact 5.9. The structures (S, Mp,—1) and B are mutually definable,
and thus they have the same automorphism group.

Reformulating 5.7 and 5. 8 and using 5.1, 5.9, 5.6 and 3 13 3. 14
we conclude with
Theorem 5.10. Assume (32) The relation || in the set @k( ) can be
used to express the geometry of 5. The automorphism group

Aut((£(5), ) = Aut({Px(5),G)
consists of the automorphisms of $ acting on its k-subspaces.
Acknowledgement. The authors gratefully thank the helpful
remarks and valuable suggestions of the referee.
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