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claim stated in [12] that every semisimple class is hereditary in the old theory,
has not been substantiated, and is still open. In the new theory, however, not
every semisimple class is hereditary and so not every radical class has the
ADS-property.

In Part | we present the new general theory and in Part II (cf. [14]) we
compare the old and new theories and deal with special features of the new
theory.

1. Introduction

A proper semifield is defined as a semiring (A4, +, -) such that (4, -)
is a group (cf. Section 2). In contrast with the case of fields, such a
semifield may have various non-trivial homomorphic images. Moreover,
similarly to rings and groups, each congruence & of a semifield (A, +,-)
is determined by a kernel K, a particular substructure of (A, +,-) (cf.
[6]). Based on this, a Kurosh—Amitsur radical theory dealing with ho-
momorphic images and kernels was developed in [12] for proper semi-
fields.

The kernels of a proper semifield (A, +, ) are normal subgroups
of (A4,-) with an additional property. Among these kernels, in gen-
eral, there are those which are additively closed and so subsemifields
of (A,4+,-), as well as those which are not additively closed and hence
merely certain groups. Therefore, a radical theory for arbitrary proper
semifields has to deal simultaneously with semifields and groups. More
precisely, the frame for such a theory is a suitable universal subclass
H of &* U B, where G* denotes the class of all proper semifields and
& the class of all groups. Beyond that certain interrelations between
semifields and groups were assumed in [12]. (For instance, the axioms
defining a semisimple class S of ) given there include the property that
(A,+,-) € S implies (A,-) € S.) However, applying this radical theory
only to additively idempotent semifields as done in [13], all kernels of
such semifields are again semifields. Hence, in this case the use of groups
is unnatural and apparently superfluous (but not avoidable as long as
semisimple classes have the above mentioned property).

This and several other possible improvements motivated us to
present here a more general radical theory for proper semifields. It is
based on a weaker interrelation between semifields and groups which
becomes vacant when working merely with idempotent semifields or
merely with groups. Our new theory contains that given in [12] as a
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special case. Nevertheless, the old theory remains of interest inasmuch
as there are general results which depend on the stronger assumptions

used in that theory. For this reason and for comparing both theories |

without the fear of confusion we shall use all notations, concepts and
terminology introduced in [12] also here in the meaning of that paper.
This concerns, in particular, the concepts universal class, radical class,
radical operator and semisimple class, and we speak now of universal
classes in the new meaning, briefly n-universal classes, and use likewise
the terminology n-radical class, n-semisimple class, etc.

For the sake of selfcontainedness, we repeat in the next section
concepts and statements on semifields and their kernels which are used
throughout the paper. In Section 3 we describe the frame of the new
theory, namely n-universal classes $ of &* U®. Such a class § contains
is general semifields and groups, but it may consist merely of idempo-
tent semifields or merely of groups. In Section 4 we investigate two
kinds of subclasses R and S of §, defined by properties which, inter-
preted accordingly, characterize radical classes and semisimple classes
of rings or of groups. In particular, we obtain a bijective correspondence
between these classes. However, these classes are in general not yet n-
radical classes and n-semisimple classes. To define the latter (cf. Defs.
5.1 and 7.1) one needs a further condition in both cases, denoted by
(Rc) and (S7), respectively. They assure the simultaneous occurrence
of semifields and groups in n-radical classes and n-semisimple classes,
but only under certain conditions which become void if the considered
n-universal class §) consists only of idempotent semifields (or only of
groups).

In the subsequent Sections 5~7 we develop the new radical theory
for proper semifields dealing with n-radical classes, n-radical operators
and n-semisimple classes, their properties, interrelation and with several
other characterizations of these basic concepts. Apart from conditions
as (Rc) and (S7) and a corresponding one for n-radical operators, which
clearly occur in various statements, the obtained results are very similar
to those in the radical theory of rings or groups.

In the first part of Section 8, we prove that one needs exactly
property (Rc) to assure the following property for an n-radical class R
of $: for each A € 9, all R-kernels of A are contained in a greatest
R-kernel of A. Clearly, this property is indispensable for a Kurosh—
Amitsur radical theory where congruences are determined by kernels,
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and (Rc) for n-radical classes yields (S7) for n-semisimple classes. We
give in Th. 8.3 also a set of properties (similar to those used in a torsion
theory) which characterize a pair of subclasses of § as an n-radical class
R and the corresponding m-semisimple class S. From this we obtain
examples of such non-trivial classes which satisfy RUS = §, a special
feature of this radical theory which occurs neither for rings nor for
groups.

Sections 9 and 10 will appear as part II of the present paper in
the forthcoming issue of this journal (cf. [14]).

In Section 9 we consider the radical theory for proper semifields
developed in [12] as a special case of the new theory presented here. We
show that all statements of the latter (apart from a particular excep-
tion) yield statements of the former theory just by replacing the new
concepts and conditions by the corresponding former ones. Moreover,
as a simplification of the old theory we obtain that one condition in the
definition of a radical class in [12] is superfluous (cf. Prop. 9.3). We also
show by the somewhat complicated Ex. 9.9 that another simplification
of that definition is not possible. This solves a problem posed in [12] in
the negative (cf. Remark 9.2 and Th. 9.8).

In the last section we deal with the question whether n-semisimple
classes and in particular semisimple classes are hereditary. We have to
correct our paper [12], where we claimed in Th. 6.5 that every semisim-
ple class S of a universal class §§ C 6* U ® would be hereditary. In the
meantime, however, we discovered a gap in the proof of the auxiliary
Prop. 2.11 b) of [12] used in proving Th. 6.5 in that paper. Despite of
all attempts, up to now we could not decide as whether these assertions
in [12] are true or false. (The same applies to some minor statements
of that paper, namely to the Supplement of Th. 5.7, part b) of Cor. 6.3
and Ex. 7.2, which also depend on the questionable proposition.)

Therefore, starting with this question again from the beginning,
we present several sufficient conditions for the hereditariness of n-semi-
simple classes and semisimple classes. The most far-reaching results
are that semisimple classes of universal classes are hereditary if all in-
volved semifields have commutative addition, and that the correspond-
ing statement for n-semisimple classes of n-universal classes is false (cf.

Ths. 10.11 and 10.12).

Before going on, we remark that our new theory fits to the frame-
work of the general radical theory of [7] as the old theory does. We fur-
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ther note that there is a Kurosh-Amitsur radical theory for semirings,
more precisely, for additively commutative semirings with an absorb-
ing zero (cf. [8], [4], [5], and the references given there). It deals with
semiring-ideals as kernels, regardless of the fact that a semiring has in
general more congruences as those described by such a kernel. However,
common objects of this theory and that of proper semifields are just
semirings which consist of one element, since other proper semifields
have no zero.

2. Kernels of proper semifields

The background of our considerations is a rather general con-

cept of semiring, defined as a universal algebra (A,+,-) where (A4,+)
and (4,-) are arbitrary semigroups connected by ring-like distributiv-
ity. Such a semiring (A, +, ) is called a semifield, if (A,-) or (A\{0},")
is a group, the latter in the case when (A, +) has a neutral element 0.
The former one, called proper semifield in this paper, deserve particular
interest, since all other semifields are either fields or skewfields, or are
obtained from proper semifields by adjoining one element, an absorbing
zero 0 (cf. [3, 1.5]).
Definition 2.1. a) A semiring (4,4,) is called a proper semifield
if (4,-) is a group. Note that neither (A4,+) nor (A,-) are assumed
to be commutative and that a proper semifield may consist of a sin-
gle element. The class of all proper semifields (which clearly may be
considered as a variety) is denoted by &*.

b) If not specified, we write e for the multiplicative identity of a
semifield A € 6%, and we call A idempotent if e + e = e holds. The
latter implies a4+a = a for all a € A. The class of all idempotent proper
semifields (a subvariety of G*) is denoted by &GP,

¢) A non-idempotent semifield A € G* consists of at least two
elements, and we denote the class of all these semifields by &°.

The following results of [6] are used throughout this paper. As
for arbitrary universal algebras, each homomorphism ¢ : (4,+,) —
— (B,+,-) of proper semifields corresponds to a congruence s of
(A,+,-), and the homomorphic image (p(A),+, ) € &* is isomorphic
to the algebra (A/k,+, ) of congruence classes [a].

Theorem 2.2. Let (A,+,) be a proper semifield. Then each con-
gruence k of (A,+,-) is determined by the congruence class K = [e],
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according to

(2.1) arxb = aK =bK & a b e K,

where K is a normal subgroup of (A,-) with the property that
(2.2) s+t=ce fors,te Aimpliess+tk € K for allk € K.

Conversely, each normal subgroup K of (A,-) which satisfies (2.2) de-
termines by (2.1) a congruence s of (A,+,-).
Definition 2.3. For each (4, +,:) € &*, a normal subgroup K of (4, )
satisfying (2.2) is called a kernel of (A,4+,-), and we denote by K(A)
the set of all kernels of A. If K € R(A) corresponds by Th. 2.2 to the
congruence £ of A, we use (A/K,+,-) synonymously with (A/k, +, ).
In this context we note that (2.2) can be replaced by several other
properties which characterize a normal subgroup of (A4, -) as a kernel of
(A,+,-). For this and various examples of kernels of proper semifields
we refer to [6]. Here we give only one example which, apart from later
use, illustrates that a kernel K of A € G may be a subsemifield of A
or merely a (normal) subgroup of (A,-).
Example 2.4. The direct product A = [] B; of proper semifields
iel
B;, i€ 1, is again such a semifield. For (A,+,)=(B1,+,) x(Ba,+, ")
we consider the natural projection ¢; : (4,+,:) — (By,+, ) which
maps each (by,b2) € A onto by. Then K; = {(e1,b2) | by € Ba} is the
corresponding kernel of A, where e; denotes the identity of B;. Now,
let By be idempotent. Then e; + €1 = e yields that Ky = (K1,+,-) is
a subsemifield of (A, +,-), clearly isomorphic to (B, +,-). However, if
By is not idempotent, then K is not additively closed. Hence in this
case K is only a subgroup K; = (K4, ) of (4, -) isomorphic to (Bs, ).
Proposition 2.5. As a consequence of Th. 2.2, the set R(A) of all
kernels of A € &% is a complete lattice (R(A), C), isomorphic to the
lattice of all congruences of A. We further state
KVL=KL={k-£|keK,Le L}
for the supremum of K, L € R(A), and KAL = KNL for their infimum.
Moreover, each subset S C A is contained in a smallest kernel of A
which is denoted by hull4(S5).
Remark 2.6. Let (A,+,:) be a proper, non-idempotent semifield.
Then each element a € A has infinite additive order. Moreover, the

proper semifield (H,+,-) of positive rational numbers is an operator
domain for the semigroup (4, +), if one defines the action of a = 2 ¢
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€Honae Aby
(2.3) aa = (ne) (ma) = (e+ - +e) (a+-- +a).
This yields that (He,+,-) for He = {ae | a € H} is the smallest sub-
semifield contained in (A4, +,-), which is isomorphic to (H, +,-). Fur-
thermore, (H,+,-) can be considered as operator domain also for an
idempotent semifield A where (2.3) yields aa = a for all & € H and
a € A and thus He = {e}.
Theorem 2.7. For each kernel K of a proper semifield A the following
statements are equivalent:

a) K is a subsemifield of A, i.e. h+k e K forallh,k € K.

b) There are elements h,k € K satisfying h+k € K.

c) (A/K,+,-) is an idempotent semifield.
Corollary 2.8. a) A proper semifield A is idempotent iff the smallest
kernel of A is the one element semifield () = ({e},+,-). In this case
each kernel K € R(A) is an idempotent semifield.

b) A semifield A € G* is not idempotent iff the smallest kernel of
A is the one element group (e) = ({e},-). In this case each kernel K €
€ R(A) is either a non-idempotent subsemifield of A or merely a group,
and K 1s a subsemifield iff K contains the subsemifield (He,+, ) =
= (H,+, ).

c) For all A € G*, hully (He) is the smallest kernel of A which is
a subsemifield.
Example 2.9. a) A semifield A € &* is called simple, if R(A) consists
of A and (e) or (e). Using (2.2), one can verify that the proper semifields
of positive rational and of positive real numbers are simple, and the
same holds for every proper subsemifield of an algebraic number field
(cf. [6, Th. 6.9]).

- b) Later we need the following example of a simple idempotent

semifield B € &*. Let (B,-) be an infinite cyclic group generated by
b € B and define

b4+ b =pm2x(3)  for all b, b € B.
It is clear that (B,+,-) is an idempotent proper semifield. To show
that B is simple, let K € R(B) contain an element b® # e. Choosing
i > 0, we obtain b° + b1~ = b% and b° + b1 %' = b! € K by (2.2), that
is, K = B.
Since a kernel L € R(A) need not be a subsemifield of A and a
subsemifield U of A need not be a kernel of A, the First Isomorphism
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Theorem has two versions: ‘ ]
Theorem 2.10. Let A be a proper semifield and K a kernel of A.

a) If U is a subsemifield of A, then UNK is a kernel of U and K
a kernel of the subsemifield UK = {u-k |u e U,k € K} of A, and one

has the isomorphism
U/(UNK)=UK/K.
b) If L is a kernel of A, then LNK 1is a kernel of L and K a kernel
of LK € R(A). Now, one has in general only the group isomorphism
L/(LNK)=LK/K,
which 1s a semifield isomorphism exactly in the case when L is also a
subsemifield of A.
Remark 2.11. For A € &%, let ¢ : A — B be a surjective homo-
morphism. Then L € R(A) implies o(L) € &(A) and L € A(B) yields
0 (L) € R(A). A corresponding statement holds for subsemifields U
of A and U of B. ‘
Theorem 2.12. Let A be a proper semifield and L and K kernels of
A satisfying K C L. Then L/K is a kernel of A/K and one has the
semifield isomorphism

A/L= (A/K)/(L/K).

We close this section with two propositions. The first one was also
proved in [12], whereas the latter is unpublished so far.
Proposition 2.13. Let A be a proper semifield and (N,-) a normal
subgroup of (A,-). Then K = hull4(N), the smallest kernel of A con-
taining N, consists of all finite sums ) s;n; of elements n, € N and
s; € A satisfying > s; = e.
Proposition 2.14. Each non-trivial (cf. Def. 3.1) proper semifield A
has a non-trivial homomorphic image B with the property that each
non-trivial kernel C of B is a subsemifield of B.
Proof. If A itself has this property, there is nothing to prove. Oth-
erwise, there are non-trivial kernels K; € R(A)N&. Let € be a chain
... C K; C... of those kernels. One easily checks that K=U(K; | K; €
€ €) is a kernel of A, and we show K € & by way of contradiction.
Indeed, k1 + ko = ks for elements of K yields that these elements are
contained in some K; € €. Hence K; would be a subsemifield of A
by Th. 2.7, whereas K; € & was assumed. So we can apply Zorn’s
Lemma and obtain that £(A) N & has a maximal element, say again
K. This yields that B = A/K is a homomorphic image ¢(A) of A as
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* claimed above, since a non-trivial kernel I = &(B) N & would yield
L=y YI)e A(A)N& and K C L (cf. Rem. 2.11). Moreover, K C A
shows that B = A/K is non-trivial. ¢

3. Universal classes in the new meaning

Recall that & denotes the class of all groups and G* that of all
proper semifields. We further have introduced &9 for the class of all
idempotent proper semifields and &° for the class of all non-idempotent
proper semifields. Moreover, we shall deal with a suitable subclass
of &* U & which, in general, contains semifields and groups. Hence
A € $ means that A is either a semifield (4, +, ) € &* or a group
(4,-) € &. As already done in [12], in the following we consider three
types of morphisms ¢ : A — B:

1) All semifield homomorphisms ¢ : (A,+,-) — (B,+,) for
A, B e G*.

2) All group homomorphisms ¢ : (4,-) — (B,-) for A, B € &.

3) All group homomorphisms ¢ : (4,-) — (B, +,-) for A € & and
B € &%, where one does not care about the addition in B.

In particular, we call a morphism injective, or surjective or bi-
jective if the set theoretical mapping of the underlying sets has this
property. Moreover, ¢ : A — B is called an isomorphism if o™1: B —
— A exists and is a morphism, too. Hence an 1somorphlsm has to be
of type 1) or 2).

Clearly, we may consider &* as a category with all morphisms of
type 1), & as a category with all morphisms of type 2), and &* U & as
a category with all morphisms introduced above.

Again, for each morphism ¢ : A — B, its kernel is defined by
K = ¢~ 1(p(e)) for the identity e € A, and we write £(A) for the set of
all kernels of A. Recall from Cor. 2.8 that &(4) C &i9P C &* holds for
each A € &' whereas each A € G° has kernels contained in G° (at
least A itself) as well as in & (at least ({e},-)). For each group 4 € &,
the kernels are, of course, its normal subgroups.

Definition 3.1. a) For each non-empty subclass M of G*U® we define
the following properties:

I) M is closed under surjective homomorphisms of type 1) and
2): A € M implies p(A) € M for all A € 6* U®& and all morphisms
@ : A — B of these types.
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IT) M is hereditary: A € M implies R(A) CMfor all A € G*U®.

b) A non-empty subclass ) of &* U & is called a universal class
in the new meaning, briefly an n-universal class of &*U®, if § satisfes
I) and II). ‘

As a consequence of I), each n-universal class §j of G*U® contains
all one-element semifields (e) = ({e},+,-) whenever § N &* # {}, and
all one-element groups (e) = ({e},-) whenever $ N & 5= 0, called trivial
semifields and trivial groups, or trivial objects henceforth. Moreover,
depending on §3, we denote by ¥ the subclass of trivial objects contained
in .

Later on we use also the concept of a universal class $ of G* U &
as defined in [12, Def. 3.1] by § # 0, I), II) and

I11) A+, )en=(4,)efHforall (A+, ) e &*

This additional condition looks natural and has some advantage,
but it involves sometimes too many superfluous group as, for instance,
in the case of N &* C &ldp,

The following statement, however, shows that many reasonable
n-universal classes are already universal classes.

Proposition 3.2. Let $ be an n-universal class in &* U & which is
closed under taking finite direct products. If § contains at least one
non-idempotent semifield, say (B,+, ) € H N &°, then §H satisfies also
IIT), and hence it is a universal class in G* U &.

Proof. Let (A, +,-) be any semifield contained in §. Then § contains
also the direct product (B, +,:) x (4,+,-). Since B € &°, by Ex. 2.4
this direct product has a kernel Ky = {(e;,a) | a € A} = (4, ). Hence,
taking into account I) and II), we get (4,-) € 9. Thus also III) is
satisfied. ¢

4. Subclasses satisfying (Ra) and (Rb) or (Sa) and (Sb)

Definition 4.1. Let §) be an n-universal class of 6* U &.

a) For each A € § we denote by B<A that B is a non-trivial
kernel of A, and by A-> B a surjective homomorphism ¢ : A — B of
type 1) or 2) such that p(A) =B ¢ %.

b) For a subclass R of §) we define the following properties (Ra)
and (Rb) which refer to condition
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(4.1) VB(A->B)dC(C<B AC € R).

(Ra) Forall Ae §, (4.1) implies A € R.
(Rb) All A € R satisfy (4.1).

c) For a subclass S of §) we define the following properties (Sa)
and (Sb) which refer to condition

(4.2) VB(B<A)3C(B—+>C AC €8).

(Sa) For all Ae 5, (4.2) implies A € S.

(Sb) All A € S satisfy (4.2).

A class S with property (Sb) is called a regular class. Each hered-
itary class is clearly regular.

Note that there is a kind of duality between b) and ¢) inasmuch
as they are related to each other by interchanging XY and Y <X
for all X,Y € . Moreover, these notations and properties correspond
in an obvious way to well-known ones used in the radical theories for
rings and for groups. The same applies to all statements of this sec-
tion. They deal with subclasses R and S of §) = &* U® where R stands
for a subclass satisfying (Ra) and (Rb) and S for a subclass satisfying
(Sa) and (Sb), and are, in fact, independent on the concrete mean-
ing of B<A and A-> B. However, whereas these statements already
characterize radical classes R and semisimple classes S in the radical
theories for rings and for groups, one needs further properties to define
corresponding concepts for arbitrary proper semifields (cf. Defs. 5.1
and 7.1 and Section 9 for the theory of [12]). In this context we refer
also to Section 8, in particular for cases where these further properties
are trivially satisfied and thus superfluous.

Using only (Ra), (Rb) and the fact that A—> B is a transitive
relation, one obtains at first
Lemma 4.2. a) A subclass R of $ which satisfies (Ra) and (Rb) has
the following property:

(Rn) R is closed under surjective homomorphisms of type 1) and 2).

b) Conversely, (Rn) implies (Rb) for every subclass R of . Hence
(Ra) and (Rb) are equivalent to (Ra) and (Rn) for every R C 5.
Definition 4.3. For each subclass M of $ we define dual operators U
“and S (more precisely: Uy and Sg) by
(4.3) UM ={A e §H|VB(A+> B = B ¢ M)}
and
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(4.4) SM={A€§|VB(B<A= B ¢M)).

Note that M; C M, implies UM, C UM, and SMy C SM;.
Moreover,
MNUM =% and MNSM = ¥ are satisfied.
Proposition 4.4. a) If (Ra) and (Rb) hold for a subclass R C §, then
S = SR satisfies (Sa) and (Sb).

b) If (Sa) and (Sb) hold for a subclass S C §, then R = US
satisfies (Ra) and (RD).

c¢) The operators U and S provide a bijective correspondence be-
tween the subclasses of § considered above, that is, USR = R and
SUS = S. Moreover, R and S = SR satisfy RNS = %.
Proof. a) Using only (Ra) and (Rb) for R, one obtains from (4.4)

A€ SR & VB(BaA)AC(B->CAC € SR) forall A € §,

which states (Sa) and (Sb) for S = SR.

b) This is the dual statement of a), but also a consequence of the
subsequent Lemma 4.5.

c¢) Applying (4.3) and (4.4) to any subclass S C §j, we obtain

A€ SUS & VB(B<A)AC(B>C AC€S) forall A € §,

that is, A € SUS < A satisfies (4.2). This yields SUS =S if S satisfies
(Sa) and (Sb), and, for later use,

(4.5) S C SUS & (Sb) for S, S D SUS < (Sa) for S.

Dually, one obtains A € USR & A satisfies (4.1), hence USR = R
holds if R satisfies (Ra) and (Rb), and

(4.6) R CUSR & (Rb) for R, R DUSR & (Ra) for R. {

Lemma 4.5. Assume only (Sb) for a subclass S of . Then R =
=US satisfies (Ra) and (Rb). Moreover, R’ C R =US holds for every
subclass R’ C § which satisfies (Ra), (Rb) and R’ NS = %.

Proof. The transitivity of A—>B yields (Rn) for R = US, in fact,
without any assumption on S. Now, assume (Sb) for S. Then S C SUS
holds by (4.5). The latter implies US D USUS and thus (Ra) for R =
= US by (4.6). Hence (Ra) and (Rb) hold for R = US by Lemma 4.2
b). For the last assertion we need only (Rn) for R’ to show R’ NS C
C T = R CUS. Otherwise there would be some A € R’ satisfying
A ¢ US, and so A-> B for some B € S. Now, B € R’ by (Rn) for R’
and B € S contradict R NS C %. §
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Remark 4.6. In the following we always assume tacitly that every
subclass of an n-universal class §) denoted by R or by S is abstract (that
is, closed under isomorphisms) and contains all trivial objects of §. In
most cases this assumption does not require anything since e.g. (Ra)
and (Rb) for R or (Sa) and (Sb) for S imply these properties, but we
want to avoid any ambiguity on this matter.

5. Radical classes in the new meaning

Definition 5.1. A subclass R of an n-universal class § C 6* U & is
called a radical class of §3 in the new meaning, briefly an n-radical class
of 9, if R satisfies (Ra) and (Rb) and the following axiom

(Rc) Forall (A,+,))€fHif (4,) e Rthen (4,+,-)eR.
Remark 5.2. Note that (Rc) demands nothing if one deals only
with idempotent semifields in an m-universal class § which contains
no groups, and also if one deals merely with groups.

Conditions (Ra), (Rb) and (Rc), together with a further one, have
already been used in [12] to define a subclass R of a universal class § C
C 6% U & as a radical class of § (cf. Def. 9.1 and Remark 9.2).
Lemma 5.3. Let R be an n-universal class of § and A € §. Then
K e R(A)NR and L € R(A) imply (KL)/L € R. .

Proof. By Th. 2.10b), (KL)/L = K/(KNL) holds always with respect
to the multiplication, and also with respect to the addition if both sides
are semifields. Hence, if both KL and K are either groups or semifields,
(KL)/L € R follows from K/(K N L) € R, where the latter holds since
R satisfies (Bn) by Lemma 4.2 a). Otherwise, we have K € & and KL €
€ &* (where L may be a group or a semifield). However, (KL)/L,")
is contained in R, since its isomorphic image (K/(K N L),-) is in R as
stated above. Applying (Rc) to ((KL)/L,+,-), we obtain (KL)/L € R
also in this case. ¢

Lemma 5.4. Let R be an n-radical class of § and U € . If U ¢ R,
then there is a kernel L # U of U which satisfies |R(U/L)NR| =1 and
K CL forall K€ RU)NR.

Proof. If U ¢ R, then (Ra) implies the existence of some B satisfy-
ing U+ B and |[R(B)NR| = 1. Hence B = U/L yields L # U and
|R(U/L) NR| =1 for the corresponding kernel L € &(U). Now we as-
sume K € R(U) NR. Then (KL)/L € R follows from Lemma 5.3, and
KL € &(U) implies by Remark 2.11 that (KL)/L € &U/L)NR C %.
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This shows |(KL)/L| =1 and thus K C L. {
Proposition 5.5. FEach n-radical class R of $ is closed under exten-
sions in ), which means for all A, K € §,

(Re) K e RA)NR and A/K € R imply A € R.
Proof. We show (Re) by way of contradiction, and assume that A ¢ R.
Then, applying Lemma 5.4 to A = U, there would be a kernel L # A
of A satisfying |[R(A/L)NR| =1 and K C L for all K € K(4) NR.
So we have A/L = (A/K)/(L/K), regardless whether A is a group
or a semifield (c¢f. Th. 2.12). Hence A/K € R and (R7y) for R imply
A/L € R. Now |R(A/L)NR| =1 yields L = A, contradicting L # A. ¢
Lemma 5.6. Let R be an n-radical class of 5 and A € . Then
K,Le R(A) NR implies KL € R.
Proof. From (KL)/L € R by Lemma 5.3 and L € R we get KL € R
in view of Prop. 5.5. §
Theorem 5.7. Let R be an n-radical class of §. Then

(Ro) | J{K € &(4) | K e R} =U € &(A) NR holds for all A € 5.

This property implies \/[{K € R(A) | K € R} =5 € R for the supre-
mum in the lattice (R(A),C) and U = §. Moreover, (Rp) is equivalent
to the statement that each A € § has a unique largest R-kernel U which
contains any R-kernel of A, called the radical of A determined by R.
We write U = prA for this R-radical of A and refer to Section 6 for
the operator pr used in this notation.
Proof. At first we show that (U, ) is a normal subgroup of (4,-), and
assume that k,/ € U. Then k € K and £ € L hold for some kernels
K,L € R(A) N R, and we get KL € R(A) NR by Lemma 5.6. This
shows that k- ¢ € KL C U. Hence (U, ") is a subsemigroup of (4,-),
which clearly satisfies k=1 € U and a~'ka € U for each k € U and all
a € A. So we have U € R(A) if A € &. To show U € R(A) for A € &*
we assume that s+t =-efor s, € Aand k € U, that is, k € K for some
K € R(A) NR. This yields s+ tk € K by Th. 2.2, and thus s+tk e U
for all k € U, which in turn implies U € £(A) by the same theorem.
To prove U € R, note that each K € 8(A) NR satisfies K C U €
€ R(A), which yields K C R(U), and thus K € RU) NR. Now, by
way of contradiction, assume that U ¢ R for some U € §. Then by
Lemma 5.4, there would be a kernel L % U of U which contains all
K € R(U)NR, that is, all K € K(A) NR as just stated. This yields the
contradiction U = U{K € R(A) | K € R} C L.C U, and completes the
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proof of (Rp). The other statements of Th. 5.7 are now obvious. ¢
Proposition 5.8. Let R be a subclass of $ which satisfies (Rp). Then,
clearly for each A € §,

(5.1) \/ K; € R holds for any set of kernels K; € R(A) NR.
iel
This yields the inductive property for R, which means that

(R)K; C---CK; C... for K; € RA)NR, i €I, implies |J K; € R.

iel

Proof. For each set of kernels K; € R(A)NR, the supremum B = \/ K;
iel
is a kernel of A. This yields K; € 8(B)NR for each i € I, and we obtain
B=\/K; C\/{K € &(B)NR} C B.
i€l

Applying (Rp) to B =\/{K € &(B) "R}, we get B € R. {
Theorem 5.9. For any subclass R of §3, each of the following sets of
properties characterizes R as an n-radical class of $:

i) (Ra), (Rb) and (Rc),

ii) (Ra), (Rn) and (Rc),

i) (Re), (Re), (Bn) and (Rc),

iv) (Ri), (Re), (Rn) and (Rc).
Proof. We know i)«ii) by Lemma 4.2, further i)=-iii) by Prop. 5.5
and Th. 5.7, and iii)=-iv) by Prop. 5.8. We complete the proof by
iv)=-ii), and show that (Ri) and (Re) imply (Ra). So we assume
VB(A-> B)3dC(C <«BAB € R) and, by way of contradiction, A ¢ R for
some A € . By (Ri) for R we can apply Zorn’s Lemma and obtain
the existence of a maximal kernel M in R(A) NR. Then A ¢ R implies
M # A, and thus ¢ : A-> B = A/M. By the other assumption on A,
there is some C <B such that C € R, and ¢~ 1(C) = D is a kernel of 4
by Rem. 2.11 which satisfies M C D. Now D/M =C € Rand M € R
imply D € R by (Re), contradicting the maximality of M. {
Remark 5.10. According to this proof, the implications i)<ii) and
iif)=iv)=rii) remain true if one considers the sets i)-iv) in Th. 5.9 with-
out property (Rc). Concerning the implication i)=-iii) we note that
(Re) as well as (Rp) need not be true for a subclass R of § which
satisfies only (Ra) and (Rb) (cf. Th. 8.1).
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6. Radical operators in the new meaning

In Th. 5.7 we have already introduced the R-radical prA of A €

€ $ by an operator ggr. We now characterize such an operator o by
properties not depending on an m-radical class R of §, and deal with
the bijective correspondence between these concepts.
Definition 6.1. An operator p in an n-universal class § € &G*U &
which assigns to each A € § a kernel pA € R(A) is called a radical
operator in the new meaning, briefly an n-radical operator, if it satisfies
the following axioms for all A € §:

(pa) @(0A) C B holds for all surjective morphisms ¢ : A—>B of

type 1) and 2).

(ob) |o(A/0A)| =1, or equivalently, p(A/pA) € Z.

(oc) VB(pB = B<1A = B C pA).

(ed) 00A = oA.

(ow) For all (A,+,-) € 9, if (A4,-) € H and (4, ) = (4,-) then

o(A+,) = (A,+,),
We emphasize that Remark 5.2 applies likewise to (ow). Moreover,
n [12] a radical operator g in a universal class ) € &*U & was defined
by (0b), (oc), (od) and a further axiom (pa). The latter reads as (o),
but it includes also morphisms ¢ of type 3) (cf. Section 9).
Theorem 6.2. Let R be an n-radical class of $. Then the operator
or in 5 defined in Th. 5.7 for all A € § by

6.1) orA=|J{KeRA)|KeR}=\/{KecR4)|KcR}

is an n-radical operator in §. Conversely, let o be an n-radical operator
in $. Then o defines an n-radical class R, of § by
(6.2) R,={AeH| A=A}
Moreover, the correspondence between these concepts given by (6.1) and
(6.2) is bijective, that is, Ry, = R holds for each R and ggr, = o for
each g.
Proof. Let R be an n-radical class of . Then gr assigns by Th. 5.7
to each A € ) a kernel gpA € £(A) NR which contains all K € R(4) N
N R. This yields immediately that gg satisfies (oc) and (od). Further,
o(orA) € A(B) NR follows from Remark 2.11 and (Rn) for R, Whlch
yields ¢(orA) C orB and thus (o).

Next we show that (Rg) and (Re) for any subclass R of § imply
(ob) for or, and assume by way of contradiction that pr(A/orA) ¢ T for
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some A € 5. The latter yields the existence of a kernel B <A /grA with
B € R and thus B 2 C/prA for a kernel C € R(A) satisfying gpA C C
(cf. Remark 2.11). But C/grA € R and grA € R imply C € R by (Re)
for R, and thus C C grA follows, contradicting orA C C.

Finally, (Ro) yields ppA = A & A € R for each A € §. The
latter shows that (ow) is just a reformulation of (Rc) for R, and also
that Ry, = {A € §| orA = A} according to (6.2) coincides with R.

Now let ¢ be any n-radical operator in $ and define a subclass
R, of § by (6.2). To show that R, is an n-radical class of §), we use
Th. 5.9 and check (Ra), (Rn) and (Rc). For (Ra), we go by way of
contradiction, and assume VB(A->B)3C(C<B A C € R,) for some
A€ $H, but A ¢ R, The latter yields pA C A by (6.2) and thus
A-> B = A/pA. Applying the first assumption on A, there is a kernel
C <B satisfying C € R,, that is, oC = C. Hence (oc) for p implies
C C oB, and (gb) for g yields pB = g(A/pA) € T and thus C € %,
contradicting C' <B.

Turning to (Rn), let ¢ : A= B be a surjective morphism of type
1) or 2), and assume A € R,, that is, pA = A. Then B € R, follows
from (pa) for g by B = ¢(A) = ¢(pA) C pB. Finally, again by A €
€ R, & 0A = A, one obtains (Rc) for R, from (ow) for o.

It remains to show that g, A = U{K € R(A) | K € R,} and oA
coincide for each A € §. Since each non-trivial kernel K € R(4) N R,
satisfies p K = K <A, we obtain K C pA by (oc) for ¢ and thus gr, 4 C
C oA. For the other inclusion we use (pd) for g, by the way, for the first
time in this proof: p(pA) = pA implies pA € R,, and pA € R(A) N R,
shows pA C gr,A. O

We close this section with proving a further equivalence, which

yields another characterization for n-radical classes in addition to those
in Th. 5.9.
Proposition 6.3. a) Assume (Rg) and (Rn) for a subclass R of §.
The former yields that each A € §) has a greatest R-kernel, which we
denote by orA. Then (Re) holds for R if and only if this operator or
satisfies (ob), that is, or(A/orA) € T for all A € H.

b) A subclass R of § is an n-radical class if and only if R satisfies
(Ro), (eb), (£in) and (Rc).

Proof. a) In the second step of the proof of Th. 6.2 we have shown
that (Ro) and (Re) for R imply (gb) for gr. To show that (Ro), (En)
and (ob) imply (Re), we assume that K € R(4) "R and A/K € R for
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some K, A € . Then K C prA holds by (Rp), which yields A/opA &
~ (A/K)/(orA/K) by Th. 2.12. Now A/grA € R follows from (R7),
and so A/orA C or(A/orA) € T by (Rp) and (ob). This shows A =
= orA € R what we were to prove.

b) Since (Rp), (ob) and (Rn) < (Ro), (Re) and (Rn) holds for
each R C § as just proved, we obtain b) from iii) in Th. 5.9. {

7. Semisimple classes in the new meaning

Now we include semisimple classes into our considerations, the

third basic concept for each radical theory.
Definition 7.1. A subclass S of an n-universal class § € &* U &
is called a semisimple class of $ in the new meaning, briefly an n-
semisimple class of £, if S satisfies (Sa) and (Sb) and the following
axiom:

(S87) For all (A,+,") € ,if (A,+,-) € Sand |(A,+,-)| # 1, then

(4,-) ¢ US,
that is, (4,4,) € S\ ¥ implies either (A4,-) ¢ H or the existence of a
group B such that (4, ) (B,-) and (B,-) € S hold.

Again we emphasize that Remark 5.2 applies also to (S7v), and
we refer to Section 9 for the interrelation between (S7) and the axiom
(Sc) considered in [12].

Theorem 7.2. a) Each n-radical class R of § determines an n-
semisimple class S = SR of §.

b) Each n-semisimple class S of § determines an n-radical class
R=US of 5.

c) For all these classes one has USR =R and SUS = S.

Based on Prop. 4.4, this theorem follows from

Lemma 7.3. Already (Ra) and (Rc) for a subclass R of § imply (S7)
for S = SR, and alone (Sv) for a subclass S of § yields (Re) for R =
= US.
Proof. To show (Sv) for S = SR, we go by way of contradiction, and
suppose that (A,+,-) € S\ T but (4, ) € US for some (4, +,-) € H.
Since (Ra) for R implies US = USR C R by (4.6), we obtain (A4, ) € R,
and thus (4, +,-) € R by (Rc), which contradicts (4,+,-) € S.

To show (Rc) for R = US, again by way of contradiction, we
assume (A, ) € R but (4,+,-) ¢ R for a semifield (4, +,-) € $. Then
(A,+,:) ¢ R =US implies (A, +, ) (B,+,-) for some (B,+,-) € S,
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which yields (4, -)—> (B, ). So we can apply (Sv) to (B, +,) and obtain
(B,-) ¢ US. This contradicts (4,-) € R =US and (A, ) (B, ), since
US satisfies (Rn) for each subclass S of §. ¢

Remark 7.4. Combining the second part of this lemma and Lemma
4.5, we obtain: if a subclass M C § satisfies (Sb) and (Sv), then
R = UM 1s an n-radical class of $), the greatest one which satisfies
RNMe%.

As a consequence of Ths. 7.2 and 6.2, each n-semisimple class S
corresponds via R = US bijectively to an n-radical operator p = gg. In
the following we obtain a description of this operator directly in terms of
S together with an important property of n-semisimple classes. For this
end we state that for a subclass S of §j and each A € § the intersection
(WK € R(A) | A/K € S} is meaningful and, clearly, a kernel of A.
(Note that at least A/A € S holds by our convention in Remark 4.6.)
Definition 7.5. A subclass S of $ may satisfy the following property

(So) nsA=(|{K € R(A) | A/K € S} implies A/nsA € S for all
Ac 9.

This property states that nsA is the smallest kernel K of A which
satisfies A/K € S, and it yields, in particular,

(7.1) AeS&nAeXTforall Ae §H.

Theorem 7.6. Let S be an n-semisimple class of 5 and R = US
the corresponding n-radical class. Then S satisfies (Sp) and ns coin-
cides with the n-radical operator or. Moreover, pr characterizes the
n-semisimple class S = SR by

(7.2) AceS& rAcT forallAc 9.

Proof. For S and R = US as assumed, A € S = SR holds if and only
if A satisfies VB(B<A = B ¢ R), that is, if and only if the greatest
R-kernel of A is trivial. This shows (7.2) and yields A/K € S &
< or(A/K) € . Using the latter, we prove that

orA={K € 8(4) | K e R}
and
nsA =K € R(4) | er(4/K) € T}

are equal for each A € §. Since prA is a kernel of A which satisfies
or(A/orA) € T by (0b), K = grA ocurs on the right-hand side such
that ngA C orA holds. For the converse inclusion we show opA C K
for each K € R(A) satisfying or(4/K) € %.
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Indeed, applying (oa) to the natural homomorphism ¢ : A — A/K, we
get p(orA) C or(A/K) € %, and so grA C K. This shows ns = g,
which implies (Sg) for S since A/grA € S for each A € ) follows from
or(A/orA) € T and (7.2). ¢

We note without proof that one needs only (Sa) and (Sb) to show
(Sp) for a subclass S of £, but more assumptions on S to obtain 7s =
= pys where the latter is, in fact, the main statement of Th. 7.6.
Proposition 7.7. For any subclass S of ), each of the following prop-
erties is equivalent to (Sp):

(7.3) For all A€ $ and any subset {K; | i € I} of {K € R(4) |

| A/JK €S}, (| Ki = B implies A/B € S.
i€l

(74) N K; € ¥ implies A € S for all A € $H and any subset
il
{K; | i €I} as above.
(7.5) S is subdirectly closed in $, that is, each subdirect product
A€ 9 of groups A, € H NS or of semifields A; € H N &*
satisfies A € S.
Proof. The implications (Sp) = (7.4) and (7.3) = (Sp) are clear. For
(7.4) = (7.3) we use (A/B)/(K;/B) =2 A/K, € Sforall i € I (cf. Th.
2.12), and apply (7.4) to A/B. Then () (K;/B) = B/B € ¥ implies
i€l
A/B € S. Finally, (7.4) & (7.5) is well known for groups and can be
obtained in the same way for subdirect products of proper semifields. ¢
Note that (7.3) implies that S has the coinductive property, that
is,
Ki2---2K;D--- for K; as in (7.3) implies A/ [ K; € S.
iel
Proposition 7.8. Fach n-semisimple class S of $ is closed under
extensions, which means for all A, K € $:
(Se) K € R(A)NS and A/K €8 imply A€ S.
Proof. We show that, for each B <A, the assumption of (Se) implies
B-—C for some C € S, which yields A € S by (Sa) for S. If B C K
holds, B<K € S implies the existence of such a C € S by (Sb) for
S. Otherwise, for B € K, the natural homomorphism ¢ : A — A/K
yields B+ ¢(B)<A/K. Applying (Sb) to A/K € S, we get o(B)—+>C
for some C € S, and thus B>C €S. §
Theorem 7.9. Let S be a subclass of . Then each of the following
sets of properties characterizes S as an n-semisimple class of H:
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i) (Sa), (5b) and (57);

ii) (So), (Sb), (Sv) and nsnsA =nsA for all A € $;

iii) (Sg), (Sb), (S7) and gusA € T = nsA € T for all A € H;

iv) (So), (Sb), (S7), (Se) and nsnsA € R(A) for all A € §;

v) (So), US is an n-radical class of $H and ousA € T & nsA €
€% forallAe 5.

From these characterizations for an n-semisimple class S of 9
several other ones can be obtained as follows:

a) Replace (Sp) by one of the equivalent properties given in Prop.
7.7, in particular, by S is subdirectly closed in $.

b) The last condition in iii) can be replaced by nsA C ousA, and
also by the weaker condition nsA € US, clearly for-all A € 5.

c¢) The last condition in v) can be replaced by ousA = 1sA.

d) The implications nsA = ousA = nsnsA = nsA = nsnsA €
€ R(A) can be used to replace the last condition in ii) or in iv).
Proof. At first, let S be an n-semisimple class defined by i). Then US
is an n-radical class and S satisfies (Se), (So) and ns = oys (cf. Th. 7.2,
Prop. 7.8 and Th. 7.6), and the latter equality yields all other properties
occurring in this theorem (either trivially or by goA = pA € K(A), cf.
Def. 6.1).

For the converse considerations we note the following: each of the
assumptions ii) — iv) on an arbitrary subclass S of § implies that US
is an n-radical class, since the latter follows from (Sb) and (S7) by
Remark 7.4. Hence the n-radical operator gys can be used in iii) and
also for other replacements formulated in b), ¢) and d). So it remains
to show that each of ii)—v) implies i).

iii)=-i) As just stated, (Sb) and (Sp) for S imply that R = US is an
n-radical class of §), and hence SUS is an n-semisimple class. Applying
Th. 7.6 to SUS and USUS =US =R, we obtain A € SUS & pysA € X
for all A € § by (7.2). On the other hand, (Sp) for S yields A € S &
& ngA € T by (7.1), again for each A € §. Hence the assumption
ousA € T = 1A € T implies SUS C S, which in turn yields (Sa) for S
by (4.5), and thus i) for S.

v)=-1) In the above proof, (Sb) and (S7) have been used only to
get that R = US is an m-radical class. Hence, if S satisfies v), we
obtain A € SUS < pgysA € T and A € S & nsA € T as above. This
yields SUS = S by the last condition of v), which shows that S is an
n-semisimple class.
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ii)=>1) We assume ii) for S. Then (Sp) yields nsA € T & A€ S
for all A € 9 by (7.1). We show (Sa) for S by way of contradiction,
and assume (4.2) for some A € § but A ¢ S and hence nsA ¢ T. We
write 77 for ns and apply (4.2) to B = nA<A. This yields nA—+>C =
=nA/K € S and K C nA for some kernel K of nA. Applying (Sp) to
nA/K € S, we obtain 7(nA) C K. Now the condition nmA = nA yields
the contradiction nA C K C nA.

iv)=+ii) We show that iv) for S implies nsnsA = nsA for all A €
€ £, and we write again n for 7s. Since nmA € K(A) is assumed, we
have (A/nnA)/(nA/mmA) =2 A/nA by Th. 2.12. Now A/nA € S and
nA/mmA € S, both by (Sp) for S, imply A/nnA € S by (Se). The latter
yields nmA 2 nA, again by (Sp), and so nnA =nA. ¢

8. Some remarks and supplements to the new the-
ory

As already noted in the previous sections, the assumptions (Rc)
for an m-radical class, (Sv) for an n-semisimple class, and (gw) for an
n-radical operator demand nothing if the considered n-universal class
H C G* UG satisfies § C G19P or §§ C &. The first case allows to deal
with idempotent semifields without involving groups. This was one reason
for us to generalize here the theory given in [12], in which idempotent
semifields can be considered only together with groups, regardless of
the fact that such semifields have no groups as kernels. The second case
means that the radical theory for semifields includes the radical theory for
groups as a special case.

As a third special case, (Rc) demands nothing for those n-radical
classes R of an arbitrary n-universal class § C &* U & which satisfy R N
N® C %. Assuming the latter, also (ow) and (S7) are trivially satisfied
for the corresponding n-radical operator gr and the n-semisimple class
S = SR. In all these cases, the radical theory of semifields developed so
far is a further step closer to the radical theory of rings or groups. In
particular, an n-radical class R of §) is then already defined by properties
(Ra) and (Rb) and an n-semisimple class S of § by (Sa) and (Sb).

Next we show that one needs really more than (Ra) and (Rb) to
define a suitable concept of a radical class in an arbitrary universal class
of proper semifields. Such a class R, clearly, has to have the property
that each A € % under consideration has a greatest R-kernel prA as
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described in Th. 5.7, a property equivalent to (Rp).
Theorem 8.1. a) Let $ be an n-universal class of &* U & which
contains a direct product A = By x By of non-idempotent semifields.
Then the properties (Ra) and (Rb) for a subclass R of $ do not imply
(Ro) for R.

b) The same holds if § contains a direct product A = B x C of
a non-idempotent semifield B satisfying hullg(He) = B with a non-
trivial idempotent semifield C. In this case there is even a subclass R
of $ which satisfy (Ra) and (RD), but neither (Rg) nor (Re) nor (Rc).
Proof. a) At first we show that, for any n-universal class §, the subclass
R = (8N$H)UT satisfies (Ra) and (Rb). The latter is obvious, and (Ra)
for R is clearly true for each group A € §. If A € §\ T is a semifield,
then by Prop. 2.14, A has a homomorphic image B which satisfies C' ¢
¢ & for each C < B, and so C ¢ R. Hence each A € (§\ T) N &* does
not satisfy the assumption (4.1) of (Ra), which completes the proof of
(Ra) for R. Now, we apply Ex. 2.4 to A = By x By € §. Then the
natural projections ¢; : A — B; have kernels
(8.1) K= {(61,[)2) l by € BQ} and Ky = {(bl,eg) l b € B}
By B; € 6°, both K; and Kj are groups, and hence in R. Since
K1V Ky =A¢R, the considered class R does not satisfy (Rp).

b) Here we consider the class R obtained from M = &l9P 0 § by
R = UM. Since M is hereditary, R satisfies (Ra) and (Rb). Again, R
contains both kernels (K, ) = (C,-) and (Ky,+, ) = (B, +, ) of A =
= B x (| the former by & N § C R, the latter by hullg(He) = B which
excludes non-trivial homomorphic images of (B, +,-) in M. Moreover,
(C,+,-) € Mimplies (C,+,-) ¢ R, and so (4,+,") ¢ R. Now it follows,
as above, that R does not satisfy (Rg). Further, (Re) is disproved by
K1 € R and A/K; = (B,+,-) € R and A ¢ R. The latter disproves
also (Rc) for R, since (Ra), (Rb) and (Rec) would imply (Re) by Prop.
5.5. ¢

The crucial point of this proof is, of course, that each of the con-
sidered classes R satisfy (4,) € R and (4,+,-) ¢ R for a semifield
(A,+,-) € $, which is just excluded by (Rc). An other indication to
assume this property for n-radical classes is the following
Proposition 8.2. Let § C &* U B be an n-universal class which is
closed under taking finite direct products, and contains a subclass R
which satisfies (Rg) and (Rn) but not (Rc). Then each such subclass R
does not contain non-idempotent semifields, that is, RN &* C &P,
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Proof. By the last assumption on R there is a semifield B in $ which
satisfies (B,-) € R and (B,+, ) ¢ R. By way of contradiction we
assume (C,+, ) € R for a semifield C € &°, and consider the cases
B € 6° and B € &P, In the first case, we use the direct product
A = By x By for B; = By = B. Then, as in the last proof, the kernels
K; of A given in (8.1) are again groups, obviously isomorphic to (B, ),
and so in R. Now (Rp) for R yields prA = A and thus A € R, which
contradicts (Rn) for R by (4,4, ) (B, +,-) ¢ R. Inthe case B € &GP
we consider the direct product
A=DB; xBy for Bi=Bec &% and By=C e &°.

Now we obtain from Ex. 2.4 that K is a semifield isomorphic to (C,+
+,-) € R, whereas K, is a group isomorphic to (B,:) € R. Again
(Ro) implies grA = A, and so (4,+, )+ (B,+, ) € R, contradicting

In this context we note that the assumption of (Rc) in Def. 5.1
corresponds to the assumption of (pw) and of (S7) in the Defs. 6.1 and
7.1. Indeed, a subclass S of § satisfies (Sa) and (Sb) iff R = US satisfies
(Ra) and (Rb) by Prop. 4.4, and for these classes the equivalence of (S7)
for S and (Rc) for R follows from Lemma 7.3. Moreover, (gw) is just
the formulation of (Rc) in terms of the radical operator gr (cf. the third
step in the proof of Th. 6.2).

We close this section with the following theorem and correspond-
ing examples.
Theorem 8.3. Let R and S be any subclasses of H C G*UB. Then R
is an n-radical class of $ and S the corresponding n-semisimple class
SR iff the following properties hold for all A,B € $:

a) RNSC %.

b) A€R and A+ B imply B ¢ S, that is, R CUS.

c) A€S and B<A imply B ¢ R, that is, S C SR.

d) There is a kernel K € R(A) satisfying K € R and A/K €°S.

e) R satisfies (Rc) or S satisfies (S7).
Proof. We already know that all these properties hold for an n-radical
class and its n-semisimple class S = SR. For the converse we apply d)
to each A € SR. Since the latter yields B ¢ R for all B <A, we obtain
K € %, and hence A € S. This shows SR C S, and so S = SR by ¢).
Likewise one proves R =US by d) and b). Now R = UYSR and S = SUS
imply (Ra) and (Rb) for R and (Sa) and (Sb) for S by (4.6) and (4.5).
Hence, by Th. 7.2, R is an n-radical class iff S = SR is an n-semisimple
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class, where the former holds whenever R satisfies (Rc), and the latter
whenever S satisfies (Sv). ¢

Example 8.4. a) For each n-universal class  C G* U &,
R=(6PNHHUT and S=(6°NH U(BNHUT

are corresponding n-radical and n-semisimple classes of 5.

To show this, we check the properties listed in Th. 8.3. Whereas
a) is clear, b) holds since R is homomorphically closed and c) since S
is hereditary. For d) we use RUS = § and choose K = A for A € R
and K € ¥ for A € S. Finally (Rc) holds for R by lack of non-trivial
groups in R.

b) We emphasize that RUS = § holds for the above classes and

also R # T # S by a suitable choice of H, in particular, for § =
= 6% U &. So the radical theory for semifields provides examples of
“non-trivial complementary radical classes” in the new meaning. This
peculiar phenomenon cannot occur if all the trivial objects are isomor-
phic as in the case of rings or groups (cf. [9)).
Example 8.5. a) An idempotent semifield (M, +,-) is called rectan-
gular if (M, +) is a rectangular semigroup. The latter is equivalent to
a+b+a=aforallabec Mandinturntoa+b=>b+a = g =
=b. As shown in [11], each idempotent semifield A contains a greatest
rectangular subsemifield M. The latter is a kernel of A and A/M is an
additively commutative semifield.

b) Now, let § be an n-universal class contained in &9, Then
R ={A €% | A is rectangular}
and
S={4e€$H| (A +) is commutative}

are corresponding n-radical and n-semisimple classes of $. Using a),
one obtains this easily from Th. 8.3. In particular, for each A € §, the
greatest rectangular subsemifield M is the R-radical pp A = M of A.

¢) More generally, one obtains that
R={4cH5N6&P | Aisrectangular} UT
is an n-radical class in each n-universal class § C &* U &, where
S=®\6P)u{degne® | (4, +) is commutative}

18 the corresponding n-semisimple class.
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