Mathematica Pannonica
12/1 (2001), 133-138

ON LAGRANGE INTERPOLATION
FOR FUNCTIONS OF BOUNDED
VARIATION

Michael Revers

Department of Mathematics, University Salzburg, Hellbrunner-
strasse 34, A-5020 Salzburg, Austria

Received: January 2001
MSC 2000: 41 A 05,41 A 10
Keywords: Polynomial interpolation, equidistant nodes, bounded variation.

Abstract: The study of Lagrange interpolation based on equidistant nodes
has not been a popular subject in approximation theory. This is due to
some famous divergence results discovered by C. Runge and S.N. Bernstein.
Howevver, in 1942, P. Szész established the surprising result that if a function
f is of bounded variation on [~1, 1] and continuous at zero then the sequence
of the equidistant Lagrange interpolation polynomials converges at 0 to f (0).
In this note we prove that only the local behavior of f around the zero point
contributes to this positive convergence phenomenon.

As is well known equidistant Lagrange interpolation polynomials
need not provide a good tool in approximating a given (continuous)
function on a certain interval. For a survey of contributions in this
direction see, for example, Bernstein [1], Faber [2] and Runck [6].

To begin with, let us consider the equidistant interpolatory matrix

2
E= {“" 1+—g—01 n;nEN}

and let f be an arb1trar11y defined function on [—1,1]. Then, to each
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such f there corresponds a unique interpolating polynomial L,, (f,.) of
degree at most n coinciding with f at the nodes m§n), that is

L, (f,xg-")) =f (xg.n)) , j=0,1,...,n;neN.
We refer to L, (f,.) as the Lagrange interpolating polynomial of order
n corresponding to f. In 1942, P. Szasz [7] established the following
surprising result: L
Theorem 1. Let f be of bounded variation on [—1,1] and continuous
at 0, then
L, (f,0) — f(0), asn— .

Note that the point 0 may not be replaced by any other point
zg € (—1,1),z9 # 0 in order to get a corresponding result, since then
we have the following well known Bernstein example [1]:

Theorem 2. Let f(z) = |z| on [-1,1]. Then

(1) nli)n;o |Ly, (f,z0)| =00 Vzp € (-1,1),z29 #0.

In other words (1) exhibits a particularly simple function for which
the interpolating polynomials diverge throughout [—1, 1], except at a
few points. On the other hand, it is important to see, that continuity of
f (even on the whole interval) is generally not strong enough in order to
establish convergence at any fixed point in the interval. This is easily
to be seen from the fact that the sequence of operator norms of the
linear functionals

L, (@) : C[-1,1] = R, f— Ly (f, o)

is unbounded for every fixed —1 < z¢ < 1. Here, C'[—1,1] denotes
the Banach space of continuous functions equipped with the usual uni-
form norm ||.|| .. This fact has the somewhat disappointing conse-
quence that there exists a continuous function f, such that the sequence
(Ln (f,0)),,~ is unbounded itself and hence cannot converge to f (0).
An interesting exposition of this topic is given, for instance, in G4l [3]

Now, keeping this facts in mind, one should be inclined to think
that bounded variation on [—1, 1] as well as continuity at 0 is a minimal
assumption in order to develope positive convergence, i.e., L, (f,0) —
— £ (0), as n — oo.

But surprisingly again, this is not the case. We shall prove the
following result which generalizes the result of P..Szész:
Theorem 3. Let f be of bounded variation in an arbitrary e- nezghbor—
hood around the zero point and let f to be bounded on the rest of the
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interval [—1,1] as well as to be continuous at 0 then

L,(f,0) — f(0), asn— co.

Before we are investigating into the proof we mention that similar
investigations have been performed in case of Hermite-Fejér (HFI) in-
terpolation based on equidistant nodes. We refer the interested reader
to Mills and Smith [5] and the citations therein.

Proof of the theorem. First we introduce some definitions and no-
tation. For f to be a function of bounded variation on the interval
[—e,e],e > 0 we write f € BV [~¢,€]. Further, if f : [-1,1] = R is
bounded, and 0 < ¢ < 1, define

wo (f;6) = sup |f () = f(0)].
[#1<8 |

Note that f is continuous at 0 if and only if lims_,owp (f;6) = 0. By
[z] we denote the usual upper integer part of z. Next, we employ
Lagrange’s interpolation formula. Let m € N, n =2m —1 and -1 <
<z £1 then

2m=—1

(2) - Lowi_i (f, 1:) — Z f (¢§2m—1)> l§~2m_1) (:U) :

=0

where the l§n) are the fundamental polynomials of exact degree n de-
fined by '

1 () = (:; (m), v U=01..,m),
(a—al)w (=)
w(z) = (:1: - x(()n)> . (m — :c,(l")) .
An easy computation reveals that
| _ : 2m, — 1)!
S ($§_2m 1)) _ (et @m=l)

B

. )
| (j=0,1,..,2m —1).

By a more technical but also standard calculation (for the general
method see Runck [6], pp. 56-57) we establish
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wie) = (o elrim ozl
4
(4 T+ (m-3)0+a)|Ti+(m-1) (-2
2m '
(m—-3)
Combining (3) and (4) together with the well known duphcatlon for-
mula for the gamma function (see [4], p. 946)

T (2m) = (27) "% 22™3T (m) T <m + %) ,

we calculate the fundamental polynomials (evaluated at O) to the fol-
lowing expression. For all 5 =0,1,...,2m — 1 we have

<2m - 1>
(5) l(2m—1) (0) — (_1)771 r (m + :"12) (~1)J+1 J .
J VL3 I (m) 4m=1 9m —1-2j
Next, without loss of generality, we may assume f € BV [—¢, €] for some
g > 0, f continuous at 0, f to be bounded on [~1,1], even and f (0) = 0.
To see this, consider the function f1 (z) =  [f (z) + f (—z)]— f (0) and
note that by (2) and (5) we have Loy, —1 (f1,0) = Lam—1 (f,0)— f (0) for
all m € N. Now, since f € BV [~¢,¢], f continuous at 0 and f(0) =0
recall that f can be represented on the interval [—¢, ] by the expression

(6) f =g h’v

where g, h are both increasing, continuous at 0 and g (0) = A(0) =
= 0. This special representation will be important later. From (2),
(5) and the fact that we may assume f to be an even function an easy

((:o)mputation reveals that
7

' j{2m—1
Lom—_1 (£, ) 8 F(m+ mez—: ( (2m—1)) 1) (m+]>

Jr I'(m Fmti 1+25

We embark now on our study of the properties of (7). To this end, we
select an arbitrary but fixed number n with 0 < 7 < %— and we denote
by M = ||f||,- For each integer m € N and every such 1 we define the
sets

A(m””g{je{o,l,...,m—'l}:ogjg [m%ﬁﬂ},

A routine argument shovvs that for all e > 0 there exists mg (¢) such that
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for all m > mg () the set of nodes consisting of { x4, : 7 € Agm’")} is

contained inside the interval [0,e]. We estimate (7) to the expression
(8)

MMA%WS%;Eiii_ S e 3

Il

r 4m
8 T(m+1) 1
T VF T(m) am 1T

We begin with the sum S;. Since in this case we may take advantage
from the property (6) we estimate the latter quantity to

2m—1)

N(— j(_mii_
Sisl D (omy) ((1) L
JEAgm’")

(Zm—-l)
N (1) Am+]
jeAgm.n)

Upon employing Abel’s partial summation to both parts of (9) we find
after some routine computations (with N = {m%“’-’) that

2m—1
51 < 3< ) [9 (Zm4n) + h (Tman)] <
< 3<2m B 1) [wo (g; SM"_%) + wo (h; Sm”_%ﬂ .
- m
Now, we turn to the second sum S,. From (8) it is easily to be seen

that
2m — 1 1
So < M ) - <
2= Z (m+]>1+2j*
jEAgm'")

M = 2m -1 4m
< Z(m .)SM— .
1+2(m%+n] o \mt 8 mztm

(10)

(11)

Employing the duplication formula for the gamma function to (10) and
combining together with (8) and (11) one establishes the estimate
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12T (m+ )T (m+3)
|L2m—1 (f,o)l < —;‘_— I‘(m) (m+1) ..

1 1 T'(m _
oo (o5 - (1smo3)] + 2D B

Next, we employ the asymptotic relation (see, for example, in [4],
p. 945) ‘

(12)

F'(n+c) _.
nlin;o——r‘—(—)——n =1, (ceR),

to conclude that
|Lam—1 (£,0) = F(0)] £
<0(1) [wo (g; 5m"_%> + wp (h; 5m’7'%> + m’”] X

which holds for all m > my (). Obviously, the O (1) constant is inde-
pendent of m. From this fact and since 0 <7 < 3 L it follows that the
r1ght -hand side of (13) tends to 0, as m — 00. ¢

(13)
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