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Abstract: We consider the two-parameter generalization of the dyadic de-
rivative with respect to the Vilenkin system. In the dyadic case it is known
that the so-called integral function is a.e. differentiable in this sense. This
is a simple consequence of a weak type inequality, i.e. that the maximal op-
erator of the derivative of the integral is of weak type (1,1). Moreover, the
maximal operator is bounded from certain Hardy-Lorentz spaces HP'9 into
the Lorentz space LP:9. To this end it is enough to show that this operator
is p-quasi-local. The aim of this paper is to give the generalization of these
results for the Vilenkin system. For simplicity we formulate all theorems in
the two-dimensional case, only. Of course, they can be extended to higher
dimensions in a natural way.

1. Introduction

The concept of the so-called dyadic derivative and integral is due
to Butzer and Wagner [1]. Later the generalization of this concept
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with respect to the Vilenkin system was introduced by Onneweer [6]
(see also P4l and Simon [7], [8]). In the Walsh case Schipp [9] proved
the boundedness of the maximal operator of the dyadic integral from
LP[0,1) to LP[0,1) (1 < p < o0). Moreover, he shown in his work that
this maximal operator is of weak type (1,1). The dyadic analogue of
the classical differentiation theorem of the integral function follows from
this in a simple way. The Vilenkin analogue of the Schipp’s results was
proved by P4al and Simon [7], assumed the bounded structure of the
Vilenkin group in the question. ‘

For the Walsh system some results of more general characters were
given by Weisz [15], [16], [17], in the two-parameter case, too. Namely,
he considered the maximal operator mentioned above as mapping from
the Hardy-Lorentz space HP'? into the Lorentz space LP+9 and proved its
boundedness under the assumption pg < p < 00,0 < g < oo with pg =
= 1/2 in the one dimensional case and py = 2/3 for the two-parameter
system, respectively. Note that in the case p = ¢ the usual definition of
Hardy spaces HP"P = HP is obtained. In particular, the Weisz’s bound-
edness theorem implies the weak type (1,1) of the maximal operator,
from which the a.e. (dyadic) differentiability of the integral function
follows in the usual way (see also Gat [4]). The a.e. differentiability for
two-dimensional Vilenkin systems (in the so-called bounded case) can
be found in Nagy and Gét [5).

The Weisz’s results were extended to the one-parameter Vilenkin
system in Simon and Weisz [13]. In the present work we consider two-
parameter Vilenkin systems of bounded structure and give the gener-
alizations of the corresponding results of Weisz [15]. As in the one-
parameter case the atomic structure of the Hardy spaces plays an im-
portant role. By well-known results on interpolation it is enough to
prove only the p-quasi-locality of the maximal operator. To this end
we need some estimations and also their modifications from the one-
parameter case.

First we establish the results that will be used later. In this con-
nection we refer to the books written by Schipp, Wade, Simon and P4l
[10] and Weisz [14]. The main results are formulated in Section 3.

2. Preliminaries and notations

In this section the most important definitions and notations will
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be introduced. Furthermore, we formulate some known results with
respect to the Vilenkin system used in this note, too.

To the definition of the so-called Vilenkin group G,, let m =
= (mo,M1,...,Mk,-..) be a sequence of natural numbers such that
mg > 2 (k € N:={0,1,...}). For all £ € N we denote by Z,,, the
my th discrete cyclic group, where Z,,, is represented by {0,1,...,m;—
— 1}. Then G, is the complete direct product of Z,,,’s, which is a
compact Abelian group with Haar measure 1. The elements of GG, are
the sequences of the form (zo,z1,...,2k,...), where z, € Zp,, (k € N).
The group operation + in G, is the modmy (k € N) addition of the
corresponding coordinates. Let the inverse of + be denoted by —. It is
~ clear that the topology of the group G, is completely determined by
the sets

I, :=1,(0) := {(mo,xl,...,xk,...) €Gm:2;=0 (j:O,...,n—l)}

(0#n € NIp:=I(0) := Gp). If I(z) :=z+ I,(0) (n € N) is the
coset of I,,(0) by a given = € G, then I,,(z)’s will be called intervals.
The Haar measure |I,(z)| of I,(z) is My,, where the generalized powers
M, (n € N) are defined in the followmg way: Mo =1, My, := [[;- rm
(0<neN).

The characters of GG;,, form a complete orthonormal system @m
in L'(Grm). To the description of Gy, let

(n e Nz = (z9,21,...) € G, % :=+/—1) and
n = H,,.Zk,
k=0

Where n=73 poonkMi (nk € Zm, (k €N)). It is not hard to see that

= {¥, : n € N}. This system of the functions ¥,, (n € N) is the
so- called Vilenkin system.

The kernels of Dirichlet type will be denoted by

n—1
Dp:=> T, (neN).
k=0

The most important property of Dn’s is the equality .



108 P. Stmon and F. Weisz

M, (ze€l,) .
1 Dy (z) =
0 w@={ " oo
The two-parameter Vilenkin system is defined on G2, as the Kro-
necker products of the functions ¥; and Uy, i.e. for (j,k) € N? let

\I]j,k(zv y) = \Ijj (:E)\IJk(y) ((ZL‘, y) € G?n)
The symbol LP(G2)) (p > 0) stands for the usual Lebesgue space,
i.e. for the set of all complex valuable functions f defined on G2, such
that f is measurable with respect to the product measure generated
by the Haar measure of G,, and the norm (or quasi-norm) ||f||, :=

= (ff[flp)l/p (p < 00) or ||flleo := inf{a : |f| € a a.e.} is finite,
respectively.

If f € L*(G2)) then the maximal function f* is defined by
m
fr(e,) =suza) | [ 1
1,0 IxJ

where (z,y) € G2, and the supremum is taken over all intervals I,J C
C G, such that (z,y) € I x J and |I| = |J|. Then the set I x J will
be called m-adic square.

Let p > 0 and denote by HP(G2,) the (Hardy) space of f’s for
which

(n € N)

3

[fllzre = [|7]lp < o0
The Lorentz- and Hardy-Lorentz spaces LP4(G2 ) and HP9(G2))
(0 < p < 00,0 < g < oco) with the norm (or quasi-norm) ||f|lp 4 < 00
- and || f||ge.e < 00, respectively, will be taken in the usual way. That
is, if f is a complex valued measurable function given on G2, and f is
the non-increasing rearrangement of its distribution function then for
0 <p<00,0<gq< oo let the Lorentz norm (or quasi-norm) || f||5,q be

defined by
*© di\1/a
— q+9/p 2"
I fllp,q == (/0 ft)% ,t) .

If0 < p < 00,¢ = oo then let ||f|lpoo := Supssot/Pf(t) (for details
see e.g. Weisz [17] or Simon [12]). As special case we get HP'P(G2)) =
= HP(GZ),LPP(GZ) = LP(G2,). We remark that the extensions of
these spaces in view of martingales can be accomplished in a usual way
(see e.g. Weisz [14]). ‘ _

The following result on interpolation plays an important part in
the investigations concerning mappings between the above mentioned
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spaces. «
Theorem A [14, Weisz]. Suppose that T is a sublinear operator which
is bounded from HP°(G2)) to LP°(G2) for certain 0 < py < oo and
from L>(G2,) to L°(GZ%). Then T is also bounded from HP(G2.) to
LP9(G2,) if pp < p < o0 and 0 < q < co. In particular, if po < 1 then
T is of weak type (1,1).
A function a € L?(G?)) will be called p-atom if

(i) suppa C I x J for an m-adic square I x J;

(i) lall < T x J|7H2 = |1]72/7;

(iii) [ [a=0.

To the application of Th. A we need the next statement on the
so-called p-quasi-local operators (for details see the above items).
Theorem B. Let T be a sublinear operator and assume that for each
Po < p <1 it is p-quasi-local, i.e. there exists a constant Cp, such that

sup/ / |TalP < 0.
a JGm\IJGm\J

(Here 0 < po < 1 is fized, the supremum is taken over all p-atoms a
and suppa C I X J (see (i)). If T is bounded from L*(G2,) to L*°(G?,)
then it is also bounded from HP(G?2)) to LP(G2,).

Throughout this paper the symbols C,C, and C,, will denote
positive constants depending at most only on p, g, o, m, which are not
always the same in different occurences.

3. The derivative

In Butzer and Wagner [1] a concept of the so-called dyadic deriv-
ative was introduced. Its generalization for the Vilenkin analysis is due
to Onneweer [6]. To the definition let f be a real or complex valued
function given on G, and for all n € N introduce the function d,, f as
follows: :

n—1. . mj—1 mji—1
dnf(2):=Y M; > km;' Y rille))™ Ff(zdle;)  (z € Gm)
=0 k=0 1=0

If there exists lim,, o, d, f(x) at some point £ € G, then this limes is
called the (pointwise) derivative of f at z and is denoted by df(z). It
is not hard to see that d, ¥, (z) = ¥;(z) Y7—) ;M (n,] € N,z € Gr).
Moreover, d¥,(z) = n¥,(z) (n € N,z € Gy,).
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Furthermore, Butzer and Engels [3] introduced the two-dimen-
sional dyadic derivative, too. This concept can be extended to the
two-parameter Vilenkin system in a simple way. Namely, let (z, y) €
€ G%,n,s € Nand

n—1s—1 mi=1m;—1 kt )
dn,sf(xs y) = MJMI Z Z ma:1mn '
=0 1=0 k=0 t=0 3"

m;—1m;—1
Y r(ue) ™y (ve)™ T f (x4 uey, y  ver),
u=0 wv=0

where f is an arbitrary real or complex valued function defined on G2,.
The function f will be said differentiable at (z,y) if the limit df (z,y) of
dn s f(z,y) exists as min(n, s) = co. Especially, d¥y; = kI, (k, €
€ N).

We remark that the definition of df can be extended to higher
dimension in analogous way, but for the sake of simplicity we deal only
with the two-dimensional case.

 Furthermore, let W,Wx € L?(Gn) (0 < K € N) denote the
functions
) o] . o]
' Y v
VVO::VV::\IIO—I—Z—ﬁ Wk = ——ﬁ,
k k
k=1 k=Mg
respectively. The system G i8 complete, therefore the functions W, W
are (in L%-sense) uniquely determined. For f € L*(G2)) define the
integral If := f« (W x W) of f as

If(z,y) //f(t w)W(z=t)W(y+u) dtdu ((z,y) € GZ,).

Then dp, s(If) = f * (d,W x dsW). Let us define the two-parameter
maximal function I*, f in the following way: for o > 0 let

I*of := sup |dns(If)| (f € L*(GZ)).

In—s|<a

We introduce the notations
Co m;-—1

ZM Z DM,(:E—i-qu) (n,l e Nz € Gp),
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Bu(z) =) (n—k)MiDy,(z) (n€Nz€Gn),

mkl

F.(z) := i (n—1 ZMk Z Dy, (z + leg) (neNz € Gp).
i=1

Then we get the followmg estlmatlons for d,Wgk (n,K €N).
Lemma 1 [13, Simon and Weisz]. Assume that m is bounded, n, K €
€ N. Then in casen < K :

|anK|SC( ZA z+l;1 l+1MKBn+M~1;Fn),

while forn > K
ld WKI<DM +C(Z nz+1+DM +— L B +—LFn)
K M; M, M,

=n

In Simon and Weisz [13] we proved the next estimations. Namely,
let K € N and for N> n < K we choose an a,rbitrary function

nKe{ ZA"“ Z M Anty 37~ Bn —J\/}_KF”}

l—n I=K+1
Analogously let K < 7 € N and

— 1 1 1
W',K € '—“A',i-l—l,DM'a;""B'a'——'F' .
J {;M ! M M; J}
Then for all 1/2 < p <1

(2) MK/ (sup/ I@n,K(IE—'—t)ldt)pd.’ES Cp

Gm\Ix n<KJIg

and
(3) MK/ (sup / |,k (z=t)| dt)’dz < Cp.

Gm\IK i>K
(Here we recall the definition of Ik, that is, Ix is the set of all
(zo,21,...) €EE G such that xp =21 =+ =zx_1 =0.)

Of course, the inequalities (2), (3) and Lemma 1 imply that -
P

(4) MK/ (sup/ |anK(:U—'—t)[clt> dz < Cp.

Gm\IK n Ig

As a special case we get from Lemma 1 the next estimation for
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|d W + 1]
' 1

[o¢]
1 1
W +1] < C( Y = Anis1+Dig, + = Ba + ——F).
K

My, My,

i=n

Taking into account the previous inequalities it follows immedi-

ately for all K € Nand 1/2 < p <1 that
M,

5 M / (su - /

©) ® Gm\Ix n<§{ Mk

and

(6) My / ( sup / |do W (z=t) + 1| dt)’dz < C).
Gm\Ig n>KJIg '

Furthermore, we get

(z=t) + 1} dt)pd:c <C,

1 1 1
Idn + 11 < O(3 37 1Anssalls + 1 g7 IBally + g7 1Bl ).

i=n
where

n—1

usrils = [ |30, N Dot aep) e <

m  j=0 g=0

that is, Y o0 M || Aq, i+1ll1 < C and

n—1
| Bnlly = IIZ n—k)MgDg |1 < Y (n— k)M, <
k=0 k=0

< ¥t <om,

n—1 i—1 MK — -1 —_
IFalls <> (n—14) > My Z <C Z n —i)M; < CM,.
i=1 k=0 =1 i=1 '
In other words we have - ﬁ
(7) sup ||d, W + 1|1 < 0.
n

Some estimations for the integrals [ I ‘anK(x;t)] dt (r € Ig,n, K €

€ N) will be needed, too. To this end let n < K. Then forl =n,...,

K
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mji—1

/ Ap iz~ t)dt_ZM Z/ Dy, (=t + qe;) dt =
Ix Ix

n—1
Ml MM,
= E D g M; <

Whileforl:K+1 K+2,...

Apg(z=t)dt = ZM/ D, (z=t) dt = ZM < CM,,.

Furthermore, by (1) wegetforalli=1,...,n—1land k=0,...,5 —
-1 and I =1,...,mg — 1 that [; Da(z=t+leg)dt = 0 and so
[, F 1, Fn(z=1) dt— 0. Finally “
- n—1
Bp(z=t)dt= (n—k)My | Da(z=t)dt=
Iy k=0 Iy
1 n—1 M2
k=0

Therefore in the case n < K the next estimation is true:

/IanK(az;tﬂdth ( ZAnl:Et

Kln
[e 0]
1 1 1
— A, — —— B, (z=t —F,(z=t)) dt <
+ D G AnaEt) g Bale 1) + g Fa(o )
I=K+1
M? M,
oy ) ol
<C(MZZM1+M N +M2)_OMK,
lK+1
ie. ifn,K € NNn < K and z € Ig then
M,
; [ <ol
® | lanWic(o o) di < O3

On the other hand, for the above K,z but forn = K+1, K +2,... we
get [, Du,(z+t)dt =1 and
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my—1

Apiti(z+ t)dt-ZM Z/ Dy (z=t +gej) <

n—1
<CY M; <CMn,
j=0 '

Ipe

n—1

/ B (z~t) dt:Z(n—k)Mk/ Dag (z=t)dt <
Ig k=0 Ik
n—1
<> (n— k)M < CM,,
k=0

Ig

mr—1
Fo(z=t)dt = Z(n——z)ZMk / Dy, (z =t +leg)dt <
k=0

< CZ(n — 1) ZM,; < C’Z(n — i) M; < CM,.
i=1 k=0 i=1
Thus it follows obviously that

/ |anK(a:;t)tdtg/ Digy (z~t) di-+
Ig Ix

21
— A =t
g} (zzzn vz ari(z=t)+

1 . 1 .

ie.ifn, KeNn>Kandz € Ig then
21
23 ;t < 1 T — < .
(9) /IK|d Wic(=t)|dt < O(1+ M ;znj ) <cC

Taking into account the inequality (8) with respect to the case n < K
it follows also

(10) f 4 Wx(@=t)|di<C (K €N,z € Ix).
I

Now we show some estimations analogous to (2) and (3) for the slightly
modified functions
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m;—1
nlfﬂ) *‘Z\/ ZDM,$+QGJ) (n,leN,z € Gp),
g=0 .
B L _p E L r (n € N)
n = "= Lnp, n— —m==1n (n ,
VM, VM,

:L,l =V MnAn,l7 B:;, =+ M,B, (nal € N);
F*:=+/M,F,, D*s. :=+/MiDy. (n€N).

To this end let K,n € Nyn < K and

1 ~ 1 =

®nK€{MK§Anl7l;{-1M nlaM Bny_M";Fn}-

Furthermore, for K,n € Nyn < K let

=1 1 |
>* { L A* i1~ F*,. D* }
n,K € ; Mz 1,441 Mn n My,

Then for these functions the next assertions are true. ,
Lemma 2. If m is bounded then for all 2/3 < p < 1 and for an
arbitrary K € N we have

(11) MK/ (sup/ O, x (z=t) dt)’dz < C’I,MI}]D/2
Gm\Ik

n<K JIg
and ;
(12) MK/ ( sup / *, x(zt) dt)pdw < CpMﬁ/z.
Gm\Ix n<KJIg
Furthermore, the inequality
(13) MK/ sup/ —B* (z-t) dt) Pdz < CpMy P
ik  n<K J1e M
holds, too. _ B
Proof. First we prove (11) in the case @, x = —Az,l;zﬁn Ap g, le.
when -
/ &, x(z=t)dt =
Ix
K n=1 ‘
ZZ,/—}:/ Du(z+ae;~t)dt (2 € G\ Ix).
K l=n j=0 Ik
Let k=0,...,K—1, Jk,K——l = {x € Ik\Ik+1 Tl = = TR-1 =

=0} and
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Jk,stz {:L' € Ik\Ik-H 1Tpy1=.. . =T =O,£Es+17é0} (3=k, .. .,K—Q),

then

‘ / ( sup 571,;{(:5;75) dt)p dr =
Gm\Ix nSK JIg

K1 ~
= Z/ (sup/ P, x(z=t)dt)" dz <
k=0 Y Ik\Ixt1 Ik

n<K

K—

< O, x(z=t)dt)" dz+
Z (x/I‘k\Ik+1( ng / ,K(iﬂ ) ) o

—o k<n<K JIk

—

—|—/ (sup/ 571,1{(:5—'—75) dt)p dm),
I \Ixy:r n<kJIg ;

where

K-1

Z/ ( sup / 5n’K($—t)dt)pd,’E:
k=0 Y Ie\kt1  B<nsK JIx

K-1K-1

:Z Z/Jk ( sup’ /IK &)n,K(w;t)dt)p;ix.

k=0 s=k ¥ ko E<nSK

Ifz € Jygon>kand j#korl>s+1 thena:-i—qejéi ¢ Ij for
allt € Ix,q=0,...,m; — 1, ie. by (1) fIK Dy, (z + ge;=t)dt = 0.
. Therefore

~ P 1 M \?
su B xl(zt)dt) <C— > MPP(ZLY) <
(Lo, ), Bateta)” <05ty Saar () <
< CMPME*M?P.

This implies the next estimation:
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K-1K-1 _ D
/ ( sup / PP (z=t) dt) dz <
k=0 s=k Y Jk,s ~R<nSK Ik
K-1 K-1
<CME™® S MYy Mrl<
k=0 s=k .
, K—1 ~
CiMi* Y~ (K — k)M, < CiMg™? (p=1)
k=0
< K—-1 V
- CPMI?ZPZMg/lef”l < CPJMI?pMIs{p/Z_l =
k=0
y = G, Mg/ *™ 2/3<p<1).

Letk=0,...,K—-1,x € Ix\Iy41andn < k. Ifl > kthenz+qge; -t ¢
¢Liforallt € Ig,j=0,...,n—1and for all¢g=0,...,m; — 1. Thus
by (1) we get Dy, (z + gej~t) =0, i.e.

] koin-t M [k
) ) dt < —— M —L < k.
/IK naclo i) di < MKZZ T Mg _CM?{

I=n j=0

It is not hard to see that the above inequality holds for n = k, too, so
K-1

K-1
~ P
> / (sup/ O, g (z1) dt) dz < CpMEg™ Y~ MPIP! <
k=g ¥ Ie\ k1 NSk J Iy k=0
< CpMP* !,
This proves (11) in the first case. _ _
Now, we investigate (11) for ®n g = > 12 x4 M%An,l. In this case

/ &, k(=) dt =
Ix

mj—l

[ors] n—1 :
=Y VLY, [ Dulte s (€ Gn\ I,
I=K+1 j=0 g=0 K

Iftelg,k=0,....,.K—1and z € Iy \ Ix+1,] > K + 1 then for all
n<kandj=0,...,n—1wehavex+qge; -t ¢ I; (¢=0,...,m; — 1),
i.e. by (1) Du,(z + gej~t) = 0. The same conclusion holds if n > &
and j #korn>kand j=Fkbut z ¢ Jg k-1, resp. Therefore it can
be assumed that z € Jy x-1,n > k and j = k when for ¢ = my — z,
by (1) '
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Dy, (z + ge —t) dt:/ Dy, (z + gex~t) dt = 1.

Iy Il(-'t'i'qek)

This means that fIK Eﬁn,K(m—lt) dt =Y o ki1 —A}T;\/Mk < C’———% from
which :

~ P
/ ( sup @, x(z=t) dt) dz =
Gm \IK n<K

Ik

~ P
= / sup / P, x(z~t) dt) dz =
o0 Y Ie\lr+1 k<n<K Ik
K-1 _
= / sup / D, x(zt) dt) dr <
k:<n<K Iy
K~ p y
k —p/2-1
<Cp 17 <Gy MKP ]
k=0 "TK

Now let <I)n K== L B Then it follows analogously for f 1 2n, x(z=t)dt
(x € Iy \ Igy41 (k 0,...,K — 1) n<K) that

~ 1 |
/IK(I) k(z=t)dt = MK\/_Zn——l)Ml/IKDMl(m_.t)dt____

0 (I>k)

1 n-—1
= VT, ,Z___%(”"”Ml{ = G<h)

In other words we get

/ B x(z=t)dt <

I
( 3/2
M,
TAVIE 2 Z<” DM < O (n < k)
< — 1) M, k
MK\/*ZW )MP < C(n — >MK\/__
Ma/z

\ <C(K —k) M2 (n > k)

The last inequality implies
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/ (sup/ ?ISH,K(:L';t)dt)pdm:
Gm\Ix nlK'J]Ig

K-1 .
= Z/ (sup/ Bk (z-1) dt)pd:c <
k=0 Y Ix\Iky1 "n<K JIg
K-1
< oM S (¢ - e <
k=0
K-1 3p/2—1
< CpMI_cp/z_l Z (K — k)p(zfcl-k) < CPMI—{MZ_I-
k=0

As above it follows for 5,%1{ = ]}—Kﬁn that for z € I \ Ixy1 (K =
=0,...,K—-1)and forn < K

/ 5n7K($ ~t)dt =

Ik
1 n—1 i—1 mji—1
S n—1 M; / Dy, (z+le; ) dt =
e ,_..Mn; >§ ; . Da(o e =)
1 n—1 )
—— n—iM/Di:c~E—m—a: er~1) dt.
MK\/mizzk;rl( ) kIK m; (x + (my — zx ) e ).

Furthermore, it can be assumed that n > k+ 1. If z € Ji, (s =
=k,...,K —1) then

min(n—1,s+1)

~ ; 1 M;
o, “t)dt = ———— n—1)M <
[, Bttt g S i

i=k4-1
VM S : v My
S, MZ Z (S— Z)MZ S W-Ms
K g1 ‘ K

Thus we can say that
/ ( sup / 5n,K(:c;t) dt)’ dz =
Gm\Ixg n<KJIg ‘

K-1

= Mg / ( sup / P k(zt)dt)" dr <
;; I\Ixy1 n<KJIg
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= / (sup / B c(z=t) dt)? do <
k=0 s=k Jk,s n<K JIg
1K-1 p/2
ZZM M2t < CMPP
k=0 s=k

Now we prove inequality (12) for @}, = D*m, -

/ ( sup VN D, (1) dt)lb dz =
Gm\IK

n<K JIg

K— .
Z / (sup VM Dy, (z=t)dt)’ dz <
II\I1+1 n<K IK

K-1

1 372 1 2-1
<G, M(M/ MK) < C,ME71,
Tol=0

Furthermore, if

nK—Z A'minn (KE;neNn<K),

i=n

then for z € G, \ Ik

/CI)*nKx t)dt—\/_ZM IZM Z/ DMiJrl(zJ‘rqe;;t)dt'.

As above £ € Jy x-1,(k=0,...,n—1),j = k and ¢ = my — 2 can
be assumed in which case |, 1 Dmiyi (2 4 gej~t)dt = 1. This leads

to the next estimation: fIK O x(zt)dt = VMpy oo, Mz-_le <
< C'Mk]\/_fn_l/2 < C+v/My. Therefore we get

/ (sup/ *, g(z=t)dt)’ dz =
Gm\Ix n<KJIg

= Z/ sup / CID*n,.K(:l:;t)dt)pde
Ji, k-1 Ik

k<n5K
K~1 y y
<G, Z MPPMt < CpMY -1
k=0

Let us investigate the estlmatlons (13) Ifz e Gm \Ik,n < K,
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then

1
—B* (z=t)dt = (n— 1M, Dy, (z=1) dt.
/IK B n@=0) r_z | et

First we note that, by (1), DM,(x—t) =0(tclk)ifz € I \
\Ikt1 (E = 0,...,K — 1) and [ > k. Furthermore, if [ < k then
Dy (z+t) = M, (tEIK) This yields the equation fI *ni(z=t)dt=

=M;? ;mg{n 1k}( — )M?M3'. Therefore

1
A —B*, (z=t) dt
1 min{n— l,kz} 1 min{n—1,k} I 1 , 1
= n ST T < C ?
/M, g Ml2 ; Ml2 Mg — Mg

which implies

1 , 1
sup/ — B (z=t)dt)" dz < Cp——=.
-/m\IK (sop e 3, P ) " Mg

Finally, we need to show (12) in the case ®*, x = M7'F* Let z €
€ Gm \ Ix,n < K, which 1mp11es

my—1
/ g (zt)dt= —= Z(n—z ZMl /DM (z+ je~t)dt.
Ix iz

Assume € Iy \ Iy41 (k=0,..., K — 1). If 2 < k then, by (1),
Dy (z + jer~t) =0 foralll <i-1,t € Ix,j=1,...,m; — 1. The
same conclusion follows when k < i but [ # k or ¢ Jk K—1. Thus it
canbeassumedthatk<z<n——1l-kmEJkK 1,j—mk—mk,
in which case we have [; Dy, (z + je;~t)dt = M;Mz* (i < K) and

Ji Dasi (x4 jer~t) dt = 1 (i > K). Therefore we get for n > k -+ 1

Z (n— ) MpM;Mz* =

(I)*n,K(SC ;t) dt =
‘/IK Y T oi=k+1

o \/Man nz—:l (’I’L—Z)]Wz
- Mk i Mmoo T VM

The last inequalities implies
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/ (sup/ ®*, x(z=t)dt)’ dz =
Gm\Ix n<KJIgk ,

K-1 -
= Z ( sup / * k(=) dt)p dx <
k=0 Tk

Ji k-1 nSK

Mlzc) p/2-1
M”/2 Z < CpME .

This completes the proof of the inequalities in Lemma 2. ¢
Let f € LY(G2,),n,s € N and

An,sf(a:,y) =
://f(t,u)(an(m;t)—l-l)(dsW(y—‘—u)-{—l) dtdu ((z,y)€Gr)-

For all a > 0 we introduce the maximal maximal operator J*, defined
by
J*of = sup IAn sfl (f € LYGZ)).
In—s|<a :

If0 < p <1 and a is a p-atom supported on the square I X
x J,|I| = |J| = My" with a suitable N € N then [ a(t,u)Vi(z-
~ )W (y~u)dtdu = 0 for all k,l = 0,...,My — 1 and 7,y € Gnm.
Furthermore, for n € N let d,,W be written in the form

My—1

1
W = dn(To+ D 7 Uk +Wy) =i Pan +daWi,
k=1
where P, y = E;.V‘r:"é_l B;¥; with some complex coeflicients f§;’s. By

these observations we get for all n,s € N and (z,y) € G2, that
A salz,y) = / / a(t, 4) (Wi (1) + Pav(a 1) + 1) x
x (ds Wiy (y =) + Py w(y=—u) + 1) dt du =
= //a(t, w)d, Wi (z-1) (ds W (y=u) + 1) dt du+ |

+ //a(t, w) (Pon(z=t) +1) (ds Wi (y ~u) fPs,N(y;u) +1)dtdu =

- //d(t, uw)d, Wi (z+t) (dsW(y;U) + 1) dt du+
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* //a(t’ u) (Pr,v(z=t) + 1) d Wi (y=u) dt du =
= //a(t, w)dn Wiy (z =) (ds W (y~u) + 1) dt du-+ |
- / / a(t, u) (dnW (2 ) + 1) ds Wiy (y+u) dt du—

_//a(t,u)anN(:z:ét)dsWN(y-'—u) dt du =:

=: Al a(z,y) + Al a(z,y) — Af)a(z, y).
This decomposition implies the next estimation
J*qa < sup }A(l)al + sup ]A(Z)a] + sup {A(?’) |
[n—s|<a jn—s|<a In—s|<a
=: J¥q 10+ J* g 00+ J*4 0.
Applying these observations we will prove the next lemma.
Lemma 3. Let m be bounded, 2/3 < p < 1 and o > 0 be arbitrarily

given. Then the mazimal operator J* is p-quasi-local, i.e. for every
p-atom a supported on the square I x J the estimation

// (']*aa)p < Cp
an\(IxJ)
15 true.

Proof. It can be assumed that I = J = Iy for some N € N. Then we
shall investigate first the integral of (J*4,1a)” on the set G2, \ (I x J).
To this end let us decomposed this integral as follows:

J Lo e = [ [ (e
G2,\(IxJ) Gm\In /I
+/ / (J*a,la)p+/ / (J*a,10)7,
In VG \IN Gm\IN J G \IN

/ intg,, (J*a,la,)p <
Gm\IN

/ / SUD/ / Ia(t,u)llanN(m;t)HdsW(y;u)+1]dtdu)pdmdy_<_
m\IN I In JIn

N’ILS

where
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< Mlz\]/ / sup/ |dn Wi (z =1 |dt/ |ds W (y—u) + 1| du)?dz dy,
Gm\IN 1IN In
from which it follows by (4), (/ that

/ / (J* 10)? < CpMy
Gm\In JIN

(We remark that for this estimation it is enough to assume 1/2 < p <
<1)
Now we deal with fI fG \In ( a, 1a
= / sup / / la(t,w)
Ipn Gm\IN In siKa Iy JIn

x|dn Wi (z=1)||ds W (y—u) + 1| dt du)Pdz dy <

SMzz\r/ / ( sup / |anN($;t)]dt/ ldsW(y;u)+1|du)pda:dy‘
IN /Gm\IN In

[n—s|<avIy

(sup/ |anN(m;t)] dt)pdw < Cp.
Gm\In n JIN

Applying the estimations (5), (6), (8), (9) we can easily deduce the

inequality
/ / (J*ana)” < .
IN Gm\IN

To the estimation of me\IN me\IN (J*a,la)p we write it as

Lo ey

Gm\IN Gm\IN

g/ / (  sup IAgl)sa(z,y)l)pdxdy%—
Gm\y JGm\Iy  In—s|Sa,s>N "

—I—/ / (  sup lA(l) )I)pda; dy.
Gm\IN VG \INn |n—s|<a,s<N

Here the first integral in the sum can be estimated by (4) and (6) as

follows:
/ / sup AN a(z,y)|) dzdy <
G \IN v G \IN |'n, si<a,s>N

< C’lezv(/ (sup/ |anN(z;t)|dt)pdax)x
G \IN In

n

><</ (sup/ |dsW (y = t) + 1| dt) dy><C
Gm\IN s>N

(again for all 1/2 < p < 1.) We get analogously that
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1 P
/ , / ( sup lAg’la(m,y)l) dz dy <
G \IN VG \INn |n—s|<a,s<N

SM]%,/ / ( sup //]anN(x;t)l-
Gm\IN Gm\IN |’I’L——S!SC¥,SSN IN IN

JdsW (y=u) + 1| dt du)’dz dy <

2 1 . P
<[,z iglemic-tarad

x(/ sup / 2.7} ]dWy u—i—lldu) dy)
Gm\In

s<N+a
It is clear that, for n = 0,..., N,
1
anN(IL'—t <
OGS At 3 At L Bas L)
= Y 7,1 7 4in,l n n
My = I=N+1 M, My My

and for Nos< N+«
VM,|d W+1[<C(§:—1—A* : }LB*JFJ—F*)
s|Us > i Mz n,i+1 Mn n Mn nf*

Taking into consideration our previous estimations (11), (12) and (13)
we get the following inequality for all 2/3 < p < 1:

My [ s (AR ddy <
Gm\IN VGu\IN |n—s|<a,s<N

< CpME (MG > (MY + MzP) < C,.

At the same time this means that [ [, 2\ (Ix.J) (J*a 1a)p <Gy if

2/3 < p < 1. It follows in analogous way the same estimation for J*, 2a
instead of J*, ia.

It remains to prove the inequality [ [ G2\ (Ix) (J*a,30)" < Cyp for
2/3 < p < 1. We write as above

/ (Fas) = [ [ (ase)+
G?n\(IXJ) Gm\IN IN
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+ / / (Jas0)’ + / / (J*as0)”.
InN VGm\IN G \INn VG \IN

/ (J*oz,3a)p S
Gm\IN

g/ / Sup/ / |a(tu||anN:v )||ds Wi (y—u)| dt du)Pdz dy <
Gm\IN JIN InNVJIN

<M2/ / sup/ lanN(m4t)|dt/ ldsWN(y;u)|du VP dz dy,
Gm\IN JIN IN

7,8

Then

from which it follows by (4) and (10) that

/ (J*a,30)F < CpMN/ (Sup/ |dn Wi (z=t)| dt)Pdz < Cp.
Gm\Iny VIN , Gm\Iy = ™ JIy

Of course, by symmetry we get the analogous inequality for the integral
on the set Iy X (Gm \ INn) :

/ / a 3(1, S Cp.
Iy \IN

Finally, to the estimation of me\ In me\ In (J *a,3a)p we apply
the inequality (4) twice, namely ‘
J*a30)’ =
Gm\In JGm\IN (7o)

. - uwYPdz
/Gm\IN /Gm\IN(STEE/IN /;Ila(t,u)i[anN(m )| ds W (y )| dt du)Pdz dy <

< M?V(/ (Sup/I |anN'(m-'—t)|dt)pdm)x

Gm\IN n
dsWi(y~u)du)Pdy) < Cp.
(s oy ol 7)<

This completes the proof of Lemma 3. {

Ths. A and B imply by Lemma 3 the next statement for J*,.
Theorem 1. Let m be bounded and o > 0. Then for all 2/3 < p < o0
and 0 < g < oo there exists a constant Cp 4 such that

1 fllpa < Coallfllams (F € HPA(GL)).
In particular, J*, is of weak type (1,1).

We remark that J*,f can be defined also for martingales f be-
longing to HP'4(G2,) by density argument. (For the analogous (dyadic)
situation see Weisz [17].)

Now let f € L'(G?2,) and assume for almost all z,y € G, that



On the two-parameter Vilenkin derivative 127

(14) /. o) du= /G S o=

Then it is clear that dp s(If) = Ansf (n,s € N) a.e. which leads to
I*of = J*of a.e. Therefore Th. 1 implies

Theorem 2. Suppose that m is bounded and o > 0. If2/3 < p < o0
and 0 < g < oo then there exists a constant Cp, 4 such that

”I*af“p,q < Op,q“f”Hf"q

holds for all f € HP9(G2,) satisfying the assumption (14). Moreover,
I* is of restricted weak type (1, 1) i.e. if f € LY(G?2)) such that (14) is
true then |

mes (I*of > A) < C’”le

(A>0).

Finally, we note that the weak type part of Th. 2 implies by
standard density argument
Theorem 3. If m is bounded, f € L*(G2,) having the property (14)
and o > 0 then dp s (If )= f a.e. asn,s — 00 and |n — 5| < a.
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