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Abstract: Let L C R™ be a point-lattice of dunensxon r,1<r<n,let f:

: R — R! be a bounded real valued function vanishing outside of a bounded
set and put supp (f) := {z € R" : f(z) # 0}. In the paper periodic properties
of f w.r.t. the lattice L are investigatéd. For this two new concepts are
introduced: a special decomposition of the set supp (f) defined by L and
periodic extehdability of f to the whole space, respectively. Connections
among these two concepts as well as several characterizations of them are
proved. The characterizations are of two types. The first use the set of u € L
contained in the algebraic difference of supp (f) with itself and a restricted
“almost everywhere” form of this set. The second type characterizations are
exact conditions of equalitites in inequalities among the Li-norm of f, sums
of some other integrals and some special “Fourier-type” series, respectively,
defined by L and f.

1. Introduction

In what follows V' means the volume (Lebesgue measure, shortly
measure) in R", [-dz stands for the integral and “a.e.” stands for
almost everywhere, respectively, with respect to the V.

E-mail address: uhrin@sztaki.hu
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A+ B:={a+b:a€ Abe B} is the algebraic (Minkowski) sum
of A, B C R", in particular A— B := A+(—B). If for all z € A4 B there
are unique a € A,b € B s.t. £ = a+ b, then we write A@B:=A+ B
(the direct algebraic sum). § € R™ is the zero vector.

| -] is either the cardinality of a set or the absolute value of a real
or complex number (the meaning will be clear form the context).

Given r linearly independent vectors bi,...,b, € R?, 1 <r < n,
the set

L :=int(by,...,b,) := {ZUJL :u; integers, ¢ :‘1, e ,r}
; i=1

is the r-dimensional point-lattice generated by the basis (b;).

Let lin(L) be the linear subspace generated by (b;) and let T C
C R" be the orthogonal complement linear subspace to lin(L) (the
dimension of T' is n — 7, for r = n by definition T' = {#}). So we have
R* =lin(L)& T.

Let Q == {D> i_; Aibi : 0<X\<l,i=1,---,7}and put P := Q&
@ T. P is the basic cell of L in R” defined by the basis (b;) (as one can
easily see, P is in a one-to-one correspondence with the quotient space
R"/L).

P and L also give a direct decomposition of R*, R* = P® L, i.e.,
any z € R™ can be written uniquely as z = ¢(z) + [z], ¢(z) € P, [z] €
€ L. The functions p(z) and [z] are so called “canonical projections”.
For any A C R™ write p(A) := Uzeca{p(z)}. | ‘

If not specified otherwise, f : R® — R! is any real valued function
defined and bounded on R™ and vanishing outside of a bounded subset of
R™. The set supp (f) defined in the Abstract is the support of f.

We call the function g : R* — R! periodic (mod L), shortly L-
periodic, if

g{z)=g(z+u),z€eR*, wuel.

We have to note, that L is a point-lattice of dimension r, where
r < n, while the above concepts are usually defined for r = n (see,
e.g., [2], [3], [6], [12]). At first glance this seems to be a formal dif-
ference only, but looking at the things more closely one discovers soon
that this is not so. For example, any result where the quotient space
R™ /L is assumed to be compact (i.e., P bounded) is meaningless for
lower dimensional L, because for 7 < n the set P is not bounded. (Say,
the classical basic theorem of geometry of numbers, the Minkowski-



The inner periodic structure of a function 5

Blichfeldt theorem, is meaningless, because the volume of P is used
in it.) Luckily, refinements of some theorems (e.g., refinements of the
Minkowski-Blichfeldt theorem, see [14], [15]) extend without any diffi-
culty to lower dimensional L, see [18], [22], [24] for more details.

The situation is similar with the periodicity of a function. This
concept is usually defined for n-dimensional point-lattices, because for
multidimensional Fourier analysis the compactness of R* /L (the bound-
edness of P) is crucial (for Fourier analysis on R” see, e.g., [9], [13]). A
method how to overcome this difficulty for some problems of geometry
of numbers with lower dimensional L has been elaborated in [24].

As it is well known (see, e.g., [9]), if we consider R” as an Abelian
group (with the addition of vectors as the group operation), any discrete
subgroup L of R™ is a point-lattice of some dimension r, 1 < r < n,
and conversely, any such point-lattice is a discrete subgroup of R".
This further amphasizes that studying lower dimensional point lattices
might be important also from this more general point of view (see some
remarks on this in Section 4).

In what follows L will denote a point-lattice of arbitrary dimension
r, 1 < r < n, and the full dimensional L (i.e., when r = n) will be
denoted by A.

‘There are well known fundamental results in the geometry of num-
bers where A-periodic functions generated by f are very important (see,
e.g., [15], or [6], Section 3). Also, there are fundamental results in the
Fourier analysis where A-periodic functions generated by f are very
important (see, e.g., [9], [13]). A connection of Fourier analysis to the
geometry of numbers initiated by Siegel [11] and further developed, e.g.,
by Hlawka [10] and Bombieri [1] is also well known, see, [6] (see Sec-
tion 4 for more details). We have to emphasize, that in the results just
mentioned rather different A-periodic functions generated by f than the
periodic structure of f were important. The aim of this paper is to ex-
plore the periodic structure of f itself. Our methods proved to work not
only in the full dimensional case (r = n) but in general for L of any
dimension r, 1 <r < n.

The paper is divided into three more sections. Section 2 contains
results for general f proved by completely elementary methods using a
disjoint decomposition of supp (f) generated by f and L. In Section 3
we restrict ourselves to non-negative f and we prove several inequalities
whose conditions of equalities exactly characterize the inner L-periodic
or L-aperiodic properties of f in question. One of the inequalities con-
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tains an interesting new series of Fourier-type and here we also use the
extension of Fourier analytic technique to lower dimensional L elabo-
rated in [24]. Finally, Section 4 contains some concluding remarks.

2. Some results involving the support of f

Recall all notation and definitions from the Introduction. Remind
that L is any point-lattice of dimension 7, 1 <r <mn, and f: R* — Rl
is any bounded function with bounded support.

Definition 2.1. We call z € supp (f) a core point of f w.r.t. L, shortly
cL-point of f, if

(2.1) :c+u¢supp(f)v97éueL

We call z € supp (f) a point of inner L-periodicity of f, shortly pL-pomt
of f, if = is not a cL-point and ,

(2.2) f@)=flz+uVl#uel st :r:—i—uEsupp(f).

We call z € supp (f) a point of inner L-aperiodicity of f, shortly alL-
point of f, if

(23) F0#vel st z4+vesupp(f) and f(z)# flz+v).

Denote by c¢L(f), pL(f) and aL(f) the sets of cL-, pL-, and aL-

points of f, respectively. Any of these sets may be empty, but not all
of them, because these sets give a mutually disjoint decomposition of
supp (f).
Definition 2.2. We call f extendable to an L-periodic function
(shortly: f is L-extendable), if there is an L-periodic function g such
that f(z) = g(z), =z € supp (f). We call the latter function g an L-
extension of f.

If f is measurable, then we call f almost extendable to an L-
periodic function (shortly: f is almost L-extendable), if there is an
L-periodic function g such that f(z) = g(z) for a.e. z € supp (f).
We call the latter function g an almost L-extension of f. For any set
A C R™ denote

(2.4") L(A) :==(A—A)NL.
One can check easily that
(2.4) L(A)={ueL:AN(A-u)#0}.

Remark 2.3. It seems that the simple identity (2.4) was recognized
first in [16] (for L := A), and lead immediately to improvements of
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a result of Hadwiger,[7], concerning the number [{u € A : AN (4 —
—u) # (0}|. It is clear that the dimension of the the lattice L does not
matter, as concerns the equality of the two sets in (2.4). The equality of
the two sets in (2.4) was (and still is) a source for some improvements
of several other results for the cardinality of the set on its right hand
side (see, [18], [20], [21], and also some remarks on this phenomenon in
Section 4 ). :

The identity (2.4) plays an interesting role also in this paper, e.g.,
using it we have
Proposition 2.4. The function f has no pL-points and aL-points,
i.e., supp (f) = cL(f), if and only if

(2.5) L(supp (f)) = {6}-

A connection of L-extendability with aL-points is given by
Theorem 2.5. The function f has no aL-points, i.e., supp (f) =
= cL(f)UpL(f), if and only if it is L-extendable.

Proof. The “if” part follows immediately from the definitions.

As to the “only if” part, assume that for any z € supp (f) ei-
ther (2.1) or (2.2) is true. Denote for short A := supp (f). Define the
function g : R* — R! as follows:

f(z), z € A, -
g(z) =< fly),z¢ A JyeAd st. y—zcL, zekR".
0, z¢ A, (A—z)NL =40,

This function is well defined, because if y,z € A,y # z, such that
y—x,z—1x € L, then also 2 — y € L, hence (2.2) implies that f(z) =
= fly+(z—y) = ).

To prove that g is L-periodic, first let z € A. For any v € L
we have (z — (u -+ z)) € L, hence, if z +u ¢ A then we have g(z +
+u) = f(z) = g(z), and if z + u € A then the property (2.2) implies
9(z) = f(z) = f(z +u) = g(z +u).

Secondly, let z ¢ A. Then, for any u E L we have either z+u € A
or z +u¢ A

In the first case g(z) = f(z + u) = g(z + u). In the second case
g(z+u) = f(y) for some y € A with (y — (z+u)) € L and g(z) = f(2)
for some z € A with 2 — z € L, hence by (2.2) f(y) = f(2), yielding
9(z) = f(z) = f(y) = 9(z + u). o

Both Prop. 2.4 and Th. 2.5 are too “stiff” in  the sense that after
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changing values of f at a few points, the conditions (2.1), (2.2), (2.3)
and (2.5) occuring in them may not be true.

A plausible idea how to get statements that are insensitive to such
small changes is to consider everything “almost everywhere”. However,
it is not quite clear e.g. how to define the a.e. version of the set (A—A)N
NL. It is again the identity (2.4) that suggests a useful a.e modification
of the latter set.

Namely, for any measurable A C R™ introduce the following set

(2.6) LA):={ueL: V(AN (A+u)) > 0}. |

As the identiy (2.4) shows, this set is a natural “restriction” of
L(A).
It is clear that if A is open then
(2.7) L(A) = L(A)
and if A" is a measurable subset of A such that V(A') = V(4), then
(2.8) LAY = L(A).

These imply that if e.g. A has got an open kernel A°, i.e., there
is an open set A° such that A° C A and V(A°) = V(A), then
(2.9) L(A) = L(A°).

So for functions f such that supp (f) has got an open kernel, using
the latter relation and the Prop. 2.4 one get a result with £(supp (f))
instaed of L(supp (f)) at once.

In the general case we have the following flexible versions of the
Prop. 2.4 and Th. 2.5, respectively.

Theorem 2.6. Let f be measurable and assume V (supp (f)) > 0.
Then

(2.10) V(supp (f) \ cL(f)) = 0
holds if and only if
(2.11) L(supp (1)) = {6}.

Theorem 2.7. Let f be measurable and assume V(supp (f)) > 0.
Then f s almost L-estendable if and only if

(2.12) V (supp (f) \ (cL(f) UpL(f))) = 0.

The proofs of these theorems depend on exploring the finer struc-
tures of the sets
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B(f,u) = supp (f) N (supp (f) —v), v € L,
induced by the values of the function f.
By (2.4) we see that

(2.13) B(f,u) = ,Yu € L\ L(supp (f))-
‘ For our purposes the following disjoint decomposition of each
B(f,u), defined by the values of f, are useful:

(2.14) B(f,u) = E(f,v) U F(f,u), u € L(supp (f)),
where

(2.15) E(f,u):={z € B(f,u): f(z) = f(z +u)}
and

(2.16) F(f,u):={z € B(f,u) : f(z) # f(z +u)}.
It is clear that F(f,0) = @, consequently E(f,0) = supp (f), and, of
course, any of E(f,u), F(f,u), may be empty (but not both, by (2.4)),
depending on the “fine” structure of f.

Now, one can easily check, using the definitions, that

(2.17) oL(f)=  |J  Fw
8£ueL(supp (f))
and
(2.18) pL(f) = U (E(f,u)\ aL(f)).
8#ueL(supp (F))

If G is any subset of supp (f), then, denoting by f | ¢ the restriction
of f to G, the identity (2.17) easily implies that

(2.19) aL(f | &) C aL(J).

After above preparations the proofs of both theorems are quite natural
and easy.
Proof of Theorem 2.6. One can easily check that -

(2.20) cL(f)=swp(H)\ U  B(fiw).
6FueL(supp (f)) - ;
For measurable f the sets B(f,u) are clearly measurable. The
identity (2.20) shows that ¢L(f) is also measurable and that (2.10) is
true if and only if

(2.21) V(B(fyu)) =0, 6#ue€ L(supp(f)),
which condition is, taking into account (2.4) and the definition (2.6),
clearly equivalent to (2.11). ¢ :




10 B. Uhrin

Proof of Theorem 2.7. The sets B(f,u) are measurable, so the re-
strictions of both functions f(z) and f(z + u) to B(f,u) are measur-
able functions. This implies that the sets E(f,u) and F(f,u), as “level
sets” of measurable functions, are measurable as well. Consequently,
by (2.17) and (2.18) we see that both aL(f) and pL(f) are measurable.

Assume first that (2.12) is not true, i.e., that V(aL(f)) > 0. The
representation (2.17) shows that there is § # v € L(supp (f)) such that

(2.22) V(F(f,v)) > 0.

If now f were L-extendable, then there would be an L-periodic function
g such that g(z) = f(z), a.e. = € supp (f), hence ‘

(2.23) g(z) = f(z), ae. z€ B(f,v)
and
(2.24) gz +v) = f(z+v), ae z¢€B(fv),

that is by (2.22) and the definition (2.16) of F(f,v) impossible.
This proves the only if part of the theorem. ;
To prove the converse direction, assume that (2.12) is true, i.e.,

that

(2.25) V(aL(f)) =0.

Take the set

(2.26) A :=supp (f) \ aL(f).

A has the same measure as supp (f), hence by (2.8) we have
(2.27) L(A) = L(supp (£)).

The conditions (2.26) and (2.19) imply that for the restriction f | 4 of
f to A we have

(2.28) aL(f | 4)=0. |

This implies by Th. 2.5 that f | 4 is L-extendable, hence (2.27) shows
that f is almost L-extendable.

By this the theorem is proved. ¢

The identities (2.14) and (2.17) show that L-extendability of f
can be given also the following characterization.
Corollary 2.8 (of Th. 2.5). The function f is L-extendable if and only

if

(2.20) f@) = Fz+u), 0%#ueL(supp(f)),

z € supp (f) N (supp (f) — u).
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Proof. The condition (2.29) is equivalent to the condition

(2.30) aL(f)=0.
Indeed, using (2.17) and (2.14) we see that (2.30) holds if and only if
(2.31) B(f,u) = E(f,u), 6% u€ L(supp(f)),

which condition is, taking into account the definition (2 15) of E( f, u),
nothing else than (2 29) ¢

We shall need in the next section the following a.e. version of thls
characterization

Corollary 2.9 (of Th. 2.7). Let f be measurable and V(Supp (f) >0.
Then f is almost L-extendable if and only if

fz)=f(z+u), 0#ueL(supp(f)), ae

(2.32) z € supp (f) N (supp () —u).

Proof. The condition (2.32) is equivalent to the condition

(2.33) V(aL(f)) = 0.
Indeed, using (2.17) and (2.14) we see that (2.33) holds if and only if
(2.34) V(B(f,u)) = V(E(f,u)), 0% u e L(supp(f)),

which condition is, takmg into account the definition (2.15) of E( ' u),
nothing else than (2.32). ¢

3. Results involving integrals and sums defined by f

Let us fix again that L is an r-dimensional point-lattice of R®,1 <
<r<mn, f:R* — R' abounded function vanishing outside of a
bounded set and denote :

f(z): Zf:c+u z € R".

uelL

The function f is clearly L-periodic.

In what follows, if not specified otherwise, f is assumed to be non-
negative and measurable. Denote g(z) := (f(z))Y/?,z € R?, and recall
what the three properties of f, i.e, V(pL(f)) =0, V(aL(f)) =0and L
is almost L-extendable, respectively, mean.

It is clear that the condition
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(3.1) /g(:c)g(a:+ uydr =0Vu e L, u#0
A .

is equivalent to the condition

(3.2) V(supp (f) N (supp (f) —u)) =0 VYue L, u##6.
Using this, Ths. 2.6 and 2.7 easily give
Corollary 3.1. Assume V(supp (f)) > 0. Then

(3.3) [ 1@z < [ g@gtoyis
R™ R™

and equality is in (3.3) if and only if f is almost L-eztendable and pL(f)
has measure zero.

In fact, the inequality (3.3) is a special case of a whole “continu-
ous” hierarchy of inequalities. For this hierarchy we need the following
notation. Let a,b,a, A be real numbers such that a,b6 > 0,0 < A <
< land — o0 < a < 00, # 0. Then we define M(Q‘)(a,b) to be
equal to zero if one of a,b is zero and to the number (Aa® + (1 —
— A)b*)1/@ otherwise. Taking limits in o one arrives at three more
numbers: MQ‘))O(Q, b) = min{a,b}; Mj_i‘))c(a,b) = max{a,b} if a,b >
>0 and =0 ifa-b=0; MM (a,b)=a* b1~ (These numbers
might be called “extended means” of a,b. On “usual” means (Aa® +
+ (1= A2 —00 < a < 400, see, e.g., [8].)

The properties of usual means (see [8]) show that MY (a,b) is
for positive a, b, a # b, a strictly increasing continuous function of « on
[—o0, +00].

Now, we have
Theorem 3.2. Let —oo < a < 8 < +o00 and assume V (supp (f)) > 0.

Then
/f dx<1Z/M(’\) f(z +u))dz <?
(3.4) uelkn
<> [MP @), fe+ wys
u€l gn

<1 is equality if and only if f is almost L-extendable and pL(f) is of
2ero measure.

For a < 8, <? is equality if and only if f is almost L-extendable.
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Proof. The inequalities are clear. <! is clearly equality if and only if

(3.5) /jﬂM m+mmx=mmeL u # 6.

The non-negativity of f and the definition of Mé)‘) ensure that the
condition (3.5) is equivalent to (3.3) and by Ths. 2.6, 2.7 we get the
assertion on the equality in <1I.

Let a < 8. In this case <2 is equality if and only

(3.6) MO (f(2), f(z +w) = MEY(/(2), F(z+w)

for all u € L and for almost all = € supp (f) N (supp (f) — w).

By the basic properties of means mentioned above, the latter con-
dition is equivalent to the condition

f(z) = f(z+u),0 #u € L(supp (f)), ae.

(5.7 z € supp (£) N (supp (F) — ).

Now, using Cor. 2.9 we get the exact condition of equality in <2. ¢

We see that Th. 3.2 is also a simple consequence of the Ths. 2.6,

2.7, but now the Cor. 2.9 also is needed.
Remark 3.3. Notice that exact conditions of equalities both in <!
and <2 do not depend on «, 3. These conditions show that if equality
occurs in <!, then also <? are equalitites for all [, but the converse
is not true ( f may be almost L-extendable and at the same time also
having pL(f) of positive measure.)

Recall from Section 1 that n-dimensional point- lattices in R” are
denoted by A. Let {b1,...,b,} be a basis, P be a basic cell of A and
d(A) := V(P) be its determinant. Let A* be the polar lattice of A.
A* is defined (see, e.g., [6]) as the lattice having the basis b3, b3, ... ,b*

yvYns

where {b},...,b}} is the system of vectors orthonormal to the system
{b1,...,bn}, i.e., A* is the n-dimensional point-lattice such that
(3.8) <wu,v> isinteger Yu€ A and Vv € A*.

Then we have the following identity (the generalized Parseval “for-
mula” for real functions, see, e.g., [9], [13]).
Proposition 3.4. For two fi, fo square-integrable non-negative func-
tions defined on P we have
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/ AW @)y =
P

(3.9) 1 |
= 10 Z Z!cos(%r < v,y —z>)f1(y) f2(2)dydz.

veEA*

For (3.9) it is important that A is full-dimensional, because d(A)
occurs in it.

In [24] a method has been proposed how to use the Parseval for-
mula also for lower dimensional point-lattices. Roughly speaking, the
method extends L to a full-dimensional point-lattice M so that all
points of M contained in supp (f) — supp (f) are points of L. This
can be done, e.g., as follows.

Let by,. .., b, € R™ be the defining basis of L and let b,41,...,bp €
€ R" be mutually orthogonal non-zero vectors each of which is orthogo-
nal to each by, ... ,b.. (the vectors b.41,... , by, are a basis of the linear
subspace T' introduced at the beginning of Section 1, T has been used
to define the basic cell P of L in R™). For r = n, by definition we take
T = 6, in this case by definition M := L.

If r < n then let M := L & int(by41,...,bn), be the direct sum
of the L and the point-lattice spanned by (by41,...,bn) and put D :
= {30 Abi 1 0 < A < 1,4 =1...,n} for the basic cell of M in
R"®. Now d(M) := V(D). If r = n then we take by definition M := L.
Below lin(L) means the linear subspace spanned by by, ..., 0.

Recall the meanings of £(A) and £(4) (see (2.4'),(2.6)) and let
M(A) and M(A) be defined analogously with M instead of L.
Proposition 3.5. Let A C R™ be any bounded set and assume 1 <
<r < n. If A satisfies the condition

(3.10) A Clin(L) EB{ Z ajbjtla;| <1/2,j=r+1... ,n}

j=r+1
then
(3.11) L(A) = M(A)
and if A 1is also measurable, then (3.10) implies
(3.12) L(A) = M(A).

Proof. Simple checking. ¢
In what follows we shall need point-lattices M depending on f,
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namely if f is a function occuring in Ths. 3.1, 3.2 and 1 < r < n, then
choose the above b,.1,...,b, such that

(3.13) supp (f) C 1in(L)69{ Z ajb; ol <1/2,j=r+1... ,n}.
j=r+1
If r < n then denote by M; the lattice spanned by by,...,b, so that
(3.13) holds, if 7 = n then take by definition My := L. '
Prop. 3.5 yields
Proposition 3.6. Assume V(supp (f)) > 0. Then

(3.14) M¢(supp (f)) = L(supp (f))
and - ‘ '
(3.15) My (supp (f)) = L(supp (f))-

The full-dimensional point-lattice My was used in [24] to prove
some interesting results for lower dimensional point-lattice L using
Fourier-analysis techniques. , :

 Here we have to go one step further and define one more point-
lattice depending on f, namely, the n + 1-dimensional lattice Wy C
C R**+1 as ;
(3.16) Wi = M; @ {k(0,1) :keZ'},

where 0 is the zero vector of R® and Z! means the set of integers.

For any set E C R*'! the sets W;(E) and W;(E) are defined
taking in (2.4),(2.6) the lattice W instead of L.

The last special notation we shall use is the so called hypograph
of a function, defined for non-negative functions f as :

(3.17) hyp(f) = {(z,6) eR* xR : 0< € < f(z),z € supp (f) }.

For this set the following quite interesting identity involving supp (f)
holds.

Lemma 3.7. Assume V(supp (f)) > 0. Then for any (z,0) € R+ =
=R" x R! we have

V(hyp(f) 0 (hyp(f) = (,0))) =
(318) - / min{f(y), f(y + z)}dy ,

supp (f)N(supp (f)==) .

where V is the Lebesgue measure in R*T1,
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Proof. First observe that for any set E C R**! and any z € R**! we
have :

(3.19) XEn(E-2)¥) =x5) xsly+z), yeR"™

where x means the characteristic function.
This implies

B2)  VENE-2)= [ xe) xsly+dy .
Rn+1

Now for z € R™ let G and F be the sets of elements (y, 77) € R+t
such that y € supp (f) N (supp (f) — ), 0 < n < f(y) < f(y +z) and
0 <n < fly+z) < f(y), respectively. One of the sets may be empty
and it is clear that both are empty if and only if supp (f) — = does not
intersects supp (f). It is also clear that G, F' are measurable and they
give a disjoint decomposition of the set supp (f) N (supp (f) — z)

Taking in (3.20) E := hyp(f) after some calculations we get

(3-21) V(hyp( ) N (hyp(f) /f dy + /f y+x)d

This implies that the function mm{ f), fly+ a:)} (as a function
of y) is measurable and that (3.18) holds. ¢

We shall need rather the following consequence of (3.18) than
(3.18) itself.
Proposition 3.8. If f is such that V(supp (f)) > 0 and

(3.22) 0< f(z)<1 , zesupp(f),
then

(3.23) Wy (byp(f)) = Mg (supp (f))

and

(3.24) Wi (hyp(f)) = M (supp (f)).

Proof. The definition (3.17) of hyp(f) and the assumption (3.22) imply
that for (z1,£1), (z2,&2) € hyp(f), the condition (z1,&1) — (2, &2) € Wy
holds if and only if &; = &2 and 21 — 22 € My, that gives

(3.25) Wr(hyp(f)) = Mg (hyp(f)) .
But one can check easily that
(3.26) M (hyp(f)) = My (supp (f))

which gives (3.23).
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To prove (3.24) one first observe that

(3.27) W (hyp(f)) € M (supp (f))

as a consequence of (3.23). ;
Secondly, Lemma, 3.7 shows that for any (z,0) € R**!, the con-
dition

(3.28) V(hyp(f) N (hyp(f) — (,0))) > 0
holds if and only if .
(3.29) V(supp (f) N (supp (f) —z)) > 0.

Using (3.27) this implies (3.24). ¢
We have prepared everything to prove the following
Theorem 3.9. Assume V(supp (f)) > 0. Then

(3.30) / f(a)dz <®
cos(2m < v,z —t >) mm{f(x) f(@#)}ydzdt <®
”EMf R» R»
cos(2m < v,z—t >)g(z)g(t) dzdt,
UEM*

where g is the function fl/Q.

< is equality if and only if f is almost L-extendable and pL(f)
s of zero measure.

<Y is equality if and only if f is almost L-extendable.

An interesting “feature” of this theorem is that the conditions of
equalities depend on the properties of f with respect to the lattice L
only and they do not depend on the lattice M.

The Th. 3.91is a consequenbe of Th. 3.2 and the ‘
Lemma 3.10. Assume V(supp(f)) > 0. Then the following two
identities hold.

(3.31) Z /f f(z +u)ds =

ucL Rn

S orpd //cos(27r<v,x~t>)f(m)f(t)da;dt

VEME pn gn

and
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(3.32) E:t/mm{ﬂ) flo+u)lds =

ueL Rr

cos(2m < v,z —t >) min{f(z), f(¢) }dzdt.

UEMf R™ R

Proof. As both (3.31) and (3.32) and also My are invariant upon mul-
tiplying f by a positive contant, we can assume without the loss of
generality that for f the condition (3.22) holds.

As to (3.31), it is a simple consequence of the generalized Parseval
formula (3.9) applied to the functions f, f and the lattice My, where

f(z) = Z flz+u), zeR".

uEMf

Namely, let P be the basic cell of My (defined by the basis of My
satisfying (3.13)).
The left hand side of (3.31) is equal to

/f f(z)dz

where f is defined at the beginning of this section.
On the other hand, the relation (3.14) implies that

f(@)f(z) = f(z)f(z), z€R",

consequently

(3.33) /f dx_/f F(2)dz

Using (1.4) with A := M} we can see easily that the latter integral
is equal to

[Fwyay.

P

Applying (3.9) to A := My with f1 = fo = f we get
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/ <f<y>)2dy =
P
Z //008(271' <V, Y—2 >)f(y)f(z)dydz

'UEM*

(3.34)
d(Mf

Using again (1.4) (w1th A=M f) and the fact that < v,u > is
integer for v € My and u € My, we easily derive that

//cos 21 < v,y — 2z >) (W) f(2)dydz =

(3.35)
= //cos(27r <w,z—t>)f(z)f(t)dzdt.

, R R®

This proves (3.31) via (3.33).

The proof of (3.32) needs some tricks and a deeper analysis and
goes as follows.

Denote by h the characteristic function of the set hyp(f). Let
S:=Pd{(4,¢:0< ¢ <1} be the basic cell of Wy in R**!, where P
is the basic cell of My in R® mentioned above.

Applying (3.20) to E := hyp(f) we see that

> Vibyp(f) N (hyp(f) —w)) =

wEWf
(3.36)
/(h - > K Y+ w))dy.
Rn+1 wEWf

It is clear that (1.4) is valid also in R**! and using it to the right hand
side integral of (3.36) for W¢, S instead of A, P, we get that

2
(3.37) Y V(hyp(f) N (hyp(f) —w)) = / ( > h(z+w)) dz.
weEW; g weWy C
On the other hand, (3.24), (3. 15) and (3.18) together imply that

> Vibyp(f) N (hyp(f) — w)) =

weWy ’

= Z /mm{f(x f(z+u)}dz ,
uwEL Rn

which yields by (3.37) that

(3.38)
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(3.39) Z /mm{f yJfl+u)lde = /( Z hz—i—w)

uEL pn weWy

Applying (3.9) for R*** with f1 (") = f2() = Xyew, b(- +w), P = S,
A = Wy, using again (1.4) with Wy, S and using (3.39), similarly to the
proof of (3.31) via (3.34) and (3.35), we get

(3.40) Z /mm{f flz+u)}dr =

uelL Rn

Z / / cos(2m < w, z — y >)h(2)h(y)dzdy.

WEW? prtiprtl

The scalar product < -,- > within the cosine is now understood
in the space R"*1. Here we also used the fact d(Wy) = d(M ), which
follows from the definition (3.16) of Wf :

We see that the proof of (3.40) is analogous to that of (3.31).

To prove that the right hand sides of (3.32) and (3.40) are the
same, one needs a careful analysis, the main steps of which are as
follows.

(a): The definition of A* (glven after Remark 3.3) shows that
W= M;®Z", hence < w,z—y > in (3.40) is equal to < v,z —t > +
+k(§ — 7) where v € M}, z,t € R, k € Z',¢,7 € R,

(b): The relation sin a = — sin(~c) implies that for all z,t € R®
we have ‘

sin(2nk(€ — 7)h(z, E)R(t, T)dédT = 0,
=41

(c): Taking into account the formula cos(d:tﬂ) =cos a-cos B F
F sin a-sinfB; (a) and (b) together imply that the right hand side of
(3.40) is equal to

Mf) Z //c052w<v T —t>)

EM* n T
(3.41) xR

Z //003(27#“(5_7'» (z,&)h(t, T)dédT)dzdt.

kEZ p1 p1

(d): Taking into account the definition of h, the inner sum in
(3.41) boils down to
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£(t) f(z)

(3.42) //cos 2rk(€ ~fr)))d§dT
‘ 0

keZ! 0

(e): Performing the two integrations, (3 42) turns to:

) £(0) + 1 (Z cos(27rk( f(@)) ““Z

272 ,
(3.43) | E>1 k>1
cos(2rkf(zx)) cos(2nkf(t))
B kzx Bz - Z-:l k2 )

(f): For the calculations of four sums in (3.43) we use the well
known identity (see, e.g., [5]): for —1 < 1 < +1 we have

cos(2mk 72
(3.44) 5 ST _ T 2y 4 g
k>1

(g): Finally, using (3.44) we see that (3.43) is equal to -

(45)  —3lf@) ~ F0)]+ 3 (F(&) + F(1) = min{f(z), F(0).

Putting (a)-(g) together, we see that the right hand side of (3 40)
is equal to that of (3.32). ¢
Proof of Theorem 3.9. Write the special case of Th. 3.2 with o =
= —00,8 = 0,A = 1/2 and use Lemma 3.10 with ¢ instead of f in
(3.31). ¢ | |
Remark 3.11. The identity (3.31) can be considered as an extension
of an identity due to Bombieri, [1]: if the dimension r of L is equal to
n,i.e., our lattice is the lattice A, then by definition M; = A and after
some calculations one can see that (3.31) gives the identity of Bombieri
(see Section 4).

The identity (3.32) seems to be of a different flavor even for the full
dimensional L. The most surprising is that the the same sort of a “two
variable” function created by f, namely the function min{ f (), f()}
occurs on both sides of (3.32).

The series occuring on the right hand side of (3.32) seems to be
something new, even in the case of full dimensional point-lattices A.
While the right hand side of (3.31), i.e:, that of (3.9), is for full dimen-
sional point-lattices A a sum of “scalar products” in the space L2?(P),
the right hand side of (3.32) seems to have no such a simple interpre-
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tation (an interesting task would be to find some interpretation for it
at all).

Also the following interesting question arise as concerns the ma-
terial of this section: can the results of this section be extended to any,
not necessarily non-negative f? The answer is partly yes as it is seen
from the following theorems.

Corollary 3.12. Let f be measurable with V(supp (f)) > 0. Then
the inequalities (3.3), (3.4,<1) and (3.30,< @) are true with |f| instaed
of f and with g := |f|Y/2. The conditions of equalities in these new
inequalities are the same as those being in Cor. 3.1 and Ths. 3.2 and
3.9, respectively.

Proof. According to the Ths. 2.6, 2.7, the conditions of equalities in
inequalities in question depend only on supp (f) and clearly supp (f) =
= supp (|f])- ¢

For the remaining cases only the following weaker, a little “asym-
metric”, theorem holds.

Corollary 3.13. Let f be measurable with V (supp (f)) > 0. Then the
inequalities (3.4,<2) and (3.30,<?) are true with |f| instead of f and
with g := |f|Y/2. If f is almost L-eztendable, then both new inequalities
turn to equalities. ,

Proof. Cor. 2.9 shows that if f is almost L-extendable, then the same
is true for |f]. O

Remark 3.14. It is clear that the converse is in general not true: |f|can
be almost L-extendable, while f need not. This is also a consequence of
Cor. 2.9, because |f(z)| = |f(z + u)| may mean that f(z) = —f(z+u).

4. Remarks

4.1. As the results of Section 2 shows, the two periodic properties
of a function studied in this paper are closely related to the classical
basic question of the geometry of numbers: how many lattice points are
there in the difference set of a given set? (For basic results concerning
this question in the case of n-dimensional point-lattices A C R", see,
e.g., [2], [3], [6], [12].)

The inequalities proved in Section 3 are through the two period-
icity properties of f directly connected, via the theorems of Section 2,
to the problematics of finding some consequences of the fact that A —
— A contains no non-zero lattice points. One of the classical results
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of this sort is due to Siegel, [11], which has been further developed by
Bombieri,[1] (the so called Siegel-Bombieri formula), Hlawka,[10], and
others, see, e.g., [6] for more details. Their results has been both im-
. proved and extended to point lattices of any dimension, see, e.g., [14]
for point lattices of full dimension and [22], [24] for any L. For more
details on these developments, see, [24], [25], [26]. :

4.2. The Siegel-Bombieri formula mentioned above is in fact a
Fourier-analytic identity for the volume V' (A) of A, i.e., for the integral
of the characteristic function y 4 of a bounded set A C R™. The formula
is a consequence of an identity for functions proved by Bombieri, [1] (on
the Bombieri identity see Remark 3.11). So, a natural question arise:
what about the periodic properties of the “simplest” function f := x47
It is clear that any x4 is L-extendable and also that aL(xa) = 0, so
the results around these concepts hold automatically. But it turned
out that the remaining parts of the “theory” presented here can be for
this special case both deepened and generalized. This deepening and
generalization has been done in [25].

4.3. The recent paper [26] contains interesting extensions of the
some results of the paper [25] to so called “coloured sets” (~ positive
functions f of finite range). The results of [26] are natural deepenings
of those for general functions (proved here in Section 2) to the functions
of finite range. '

4.4. Tt is clear that for any set § C R™ and any point lattice L the
condition S = () is equivalent to the condition ¢(S) = @ (of course) and
for measurable S the condition V(S) = 0 is equivalent to the condition
V(¢(S)) = 0. So all results in this paper concerning the set pL(f) (e.g.,
it is empty or have zero measure) can be formulated equivalently using
o(pL(f)). The papers [23], [25], [26] use the latter formulation, in the
latter papers the set p(pL(f)) C P is called the periodic part of f (or
of a set, if f is the characteristic function of a set).

4.5. As we have mentioned in the Introduction, in our approach L
is any discrete subgroup of R™. It turned out that (4.1) holds not only
for any L, but also in any Abelian locally compact topological group G
for any so called “sufficiently large” discrete subgroup I' of of G ( say, .
if T is torsion free, then it is sufficiently large, see [17] for more details).

A very interesting question is: to what extent can the results
proved for (R", L), say those in [18], [22], [24], [25], [26] , or those

proved in the present paper, be extended to (G,T") 7 As our techniques
~ work in many situations also for general G,T, one has a feeling that
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some of the results might be extended to these more general structures.
(We note that the results based on (4.4) or (4.5) depend on the concept
of affine dimension and on the “geometry” of R™, so the question is the
existence of some analogous “geometry” in G.)

An interesting “extension of the geometry of numbers” has been
studied in [19] : one takes instaed of L an arbitary closed subgroup of
R™. It is sure that not only (4.1) but also the “second main theorem” of
the geometry of numbers, the successive minima theorem, can, to some
extent, be extended to this more general situation, [19]. What about
the “periodic w.r.t. the closed subgroup” structure of a function?

References

(1) BOMBIER], E.: Sulla dimostrazione di C. L. Siegel del teorema fondamentale
di Minkowski nella geometria dei numeri, Boll U. Mat. Ital., Ser. III, 17
(1962), 283-288. ‘

[2] CASSELS, J.W.S.: An Introduction to the Geometry of Numbers, Springer,
Berlin-Gottingen-Heidelberg, 1959.

[3] ERDOS, P, GRUBER, P.M. HAMMER, J.: Lattice Points, Longman Sci.,
London, 1989.

[4] FREIMAN, G., HEPPES, A., UHRIN, B.: A lower estimation for the cardi-
nality of finite difference sets in R®, In: K.Gyéry, G.Haldsz, Eds., Number
Theory, Budapest; 1987 , Coll. Math. Soc.  J. Bolyai 51, North-Holland,
Amsterdam-New York, 1989, 125-139.

[5] GRADSTEIN, LS., RYZHIK, 1.M.: Tables of integrals, sums, series and prod-
ucts, Fizmatgiz, Moscow, 1963,(in Russian).

[6] GRUBER, P.M., LEKKERKERKER, C.G.: Geometry of Numbers, 2nd Ed.,
North-Holland, Amsterda,m—New York, 1987.

[7] HADWIGER, H.: Uberdeckung des Raumes durch translatlonsglelche Punkt-
mengen und Nachbarnzahl, Monatsh.: f.. Math. 78 (1969), 213-217.

[8] HARDY, G.H., LITTLEWOOD, J.E., POLYA, G.: Inequalities, Cambridge
Univ. Press, Cambridge, 1951. .

[9] HEWITT, E. and ROSS, K.A.: Abstract Harmonic Analysis, Vol. 1,11, Springer,
Berlin-Heidelberg-New York, 1963, 1970.

[10] HLAWKA, E.: Zur Geometrie der Zahlen, Math. Z. 49 (1943), 285-312.

[11] SIEGEL, C.L.: Uber gitterpunkte in konvexen Kérpérn und ein damit zusam-
menhéngendes Extremalproblem, Acta Math. 68 (1935), 307-323.

[12] SIEGEL, C.L.: Lectures on Geometry of Numbers, Springer, Berhn—Heldel-
berg-New York, 1967.



[13]
(14]
[15]

[16]

[17]

The inner periodic structure of a function 25

-

STEIN, E.M., WEISS, G.: Introduction to Fourier Analysis on Euclidean

Spaces, Princeton Univ. Press, Princeton, N.J., 1971.

UHRIN, B.: Some useful estimations in geometry of numbers, Period. Math.
Hungar. 11 (1980), 95-103.

UHRIN, B.: On a generalization of Minkowski convex body theorem, J. of
Number Th. 13 (1981), 192-209.

UHRIN, B.: A remark to the paper of H. Hadwiger ﬁberdeckung des Raumes
durch translationgleiche Punktmengen und Nachbarnzahl, Monatsh. f Maith.
104 (1987), 149-152.

UHRIN, B. Some remarks about the lattice points in difference sets, In: J.
Szabados, K. Tandori, Eds., Proc. of the A. Haar Memorial Conference, Bu-
dapest, 1985, Coll. Math. Soc. J. Bolyai 49, North-Holland, Amsterdam-New
York, 1987, 929-937.

UHRIN, B.: A description of the segment [1, T}, where T is the meeting number
of a set-lattice, Period. Math. Hungar. 26 (1993), 139-156.

UHRIN, B.: The measure of covering the Euclidean space by group translates
of a set, In: G.M. Rassias, Ed., The Mathematical Heritage of C.F. Gauss,
World Scientific, Singapore-New Jersey-London, 1991, 785-805.

UHRIN, B.: Two identities in geometry of numbers with applications, In: K.
Borodezky, G. Fejes Téth, Eds., Intl. Conf. on Intuitive Geometry, Szeged
(Hungary), 1991, Coll. Math. Soc. J. Bolyai, 63, North-Holland, 1994, 481~
503.

UHRIN, B.: The set of neighbours of a set in a point-lattice, Discrete Math.
133 (1994), 259-266. ,

UHRIN, B.: The index of a point-lattice in a set, J. Number Th. 54 (1995),
232-247.

UHRIN, B.: On the periodic structure of a function, Research Report, IRL-
1-1995, Comp. and Automat. Inst., HAS, Informatics Res. Laboratory, pp.
1-23.

UHRIN, B.: New lower bounds for the number of lattice points in a difference
set, Acta Sci. Math. (Szeged) 62 (1996), 81-99.

UHRIN, B.: Inner aperiodicities and partitions of sets, Linear Algebra and
Appl. 241-243 (1996), 851-8786.

UHRIN, B.: Periodic properties of functions and coloured sets, Publicationes
Math. (Debrecen) 56 (2000), 657-676.

WEIL, A.: Basic Number Theory, Springer, Berlin-Heidelberg-New York,
1967. .





