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Abstract: Here, using algebraic geometry (scrolls over projective curves) we
construct a class of partial t-spreads of PG(n, q), study their properties and
give general criteria to say when two t-spreads arising in this way are the

same (e.g. if they contains a large number of the same points of PG(n, q)).

In this paper we will consider the following “Recognition and
Uniqueness Problem” for subsets of a projective n-dimensional space
PG(n, q) over the finite field GF(q) with ¢ elements. Fix a set O and
assume to have a family of “rules” or “laws” {Om }meo; each rule Op,
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gives a subset A,, of PG(n,q). We may have A,, = A,y evenif m # m/'.
Suppose that you fix S C PG(n,q). First, it is obviously interesting
to have necessary conditions that S must have to be one of the sub-
sets A,,. If you know that S = A,, for some m, show that there is no
m' # m with S = A, (or describe all m’ with S = A,, = A,). To
make sense of this we must fix an interesting class of “rules”. In this
paper we will give a family of “rules” coming from Algebraic Geometry
(GF(q)-points of scrolls over algebraic curves embedded in PG(n,q)),
but motivated by the following concept in Finite Geometry. Recall (see
[13, p. 29]) that a partial t-spread of PG(2t + 1,q) is a set of mutu-
ally disjoint ¢-dimensional subspaces; a partial ¢-spread is said to be
maximal if it is not properly contained in another partial ¢-spread; a
partial ¢-spread if it covers PG(2t + 1,q). Each A,, will be a partial
t-spread of PG(n,q). This class is a generalization of an important ex-
ample (P! x P* with the Segre embedding) considered in [28] and which
gives a maximal ¢-spread of PG(2t + 1,¢). For a different generaliza-
tion (i.e. P” x P*? with the Segre embedding which gives a t-spread of
PG((r +1)(t +1) — 1,q)) see [11]. Take again a family of “rules”
{Om}meo and the associated family of sets {S,}. In the case in
which we are interested in, i.e. the case of partial ¢-spreads, each O,,
is equipped with a partition (say A, = UAnk) and it is essential the
data of the partition to say that we have a partial t-spread. As we will
see at the end of the paper (Section 6), if we know that one A4,, is a
partial ¢-spread, in some very important cases we will be able to say
something non trivial on the partition.

Since this paper from now on is essentially “Algebraic Geome-
try”, we will use the usual notations of that topic rather than the
ones of Finite Geometries which was the topic which motivated this
research. We hope that this would be a good topic and a motivation
for further joint research involving specialists in these subjects. For
a “pure” algebraic geometer as background on the motivations and
t-spreads, see [13, pp. 1-29], and (also for the state of the art on ¢-
spreads) [11].

Motivated by the previous discussion on the “Recognition and
Uniqueness Problem” in the setting of our examples of partial ¢t-spreads
coming from scrolls (see Remark 1.3, the discussion in (2.1) and
Th. 2.8), we discuss two related but different problems:

(a) What is the maximal number N(m,d’,d") of common points



Partial t-spreads of PG(n,q) 43

of two different integral non degenerate curves C, D in P™ if we fix
deg(C) :=d' and deg(D) := d"?

(b) Set S(m,d',d") := {t € N: there exists two integral non
degenerate curves C, D in P™ with deg(C) = d', deg(D) = d" and
card(C N D) = t}. Describe S(m, d’, d").

What is the minimal number n(m,d’,d”) of points in P™ (in
terms of m, d', d") such that if C, D are integral non degenerate curves
with deg(C) < d', deg(D) < d" and card(D N C) > n(m,d’,d"), then
C =D?

Problem (a) was completely solved (in any characteristic) in [14]
in the case m = 3 and independently in [16]; the result (see [14, Th. 1])
is that N(3,d',d") = (d' — 1)(d”" — 1) + 1 and that if deg(C N D) =
= N(3,d',d"), then C U D is contained in a quadric surface which
is smooth if min(d',d") > 4; if card(C N D) = N(3,d',d"), then C
and D are smooth and rational ([14, Remark 16]). Furthermore (see
[14, Remark 17]) there are gaps in the possible values of card(C N
N D). Furthermore ([14, Cor. 13]) in P™ we have an upper bound
(d — m + 1)d” for C integral and non degenerate and C’ only as-
sumed to be reduced and with no line or C' as irreducible component.
In [17] it is proven in characteristic 0 the upper bound N(m,d’,d") <
< {(d -—m+2)(d" —m+2)+m— 2 for every m > 3. Obviously
N(m,d',d") is the maximal element of S(m,d’,d"). We believe that
for most integers m, d’ and d” the set S(m,d’,d") has many gaps be-
low N(m,d',d"). However we do not have any non trivial result on
problem (b).

However, for the applications to fibrations by linear spaces (i.e.
for the morphisms from curves to a Grassmannian), we are interested
in problems (a) and (b) when the set of curves is restricted to the set
of all curves contained in a suitable Grassmannian G(t + 1,n + 1), say,
embedded in a projective space P™, m = (n + 1)!/(n — t)!(¢t + 1)!),
by its Plicker embedding. We will see in Section 2 that for problem
(a) this makes no difference. Indeed we will prove (see Th. 2.8) that
G(t +1,n+ 1) contains the rational surfaces scroll on which we found
the pairs of non degenerate integral curves with the maximal number
of common points.

Now we describe the structure of the paper. In the first sec-
tion we introduce several standard notations and several standard no-
tions which will be used in the entire paper. We tried our best to
give for these notions as much standard and easy references as we
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know. Then we describe the scrolls whose embedding gives the partial
t-spread. At the end of the section we give a well known cohomolog-
ical lemma which will be used heavily in Sections 2 and 5 but which
the non expert reader may safely skip. Then in Section 2 we study
problem (a) of the introduction in our setting, stressing the positive
characteristic case. In Section 3 we discuss the monodromy problem
for the generic hyperplane section of C U C’ with C and C’ integral
non degenerate curves (see the beginning of Section 3 for references for
the definitions and motivations). The stress is on the positive char-
acteristic case, but even in characteristic 0, as far as we know, the
results were unknown (see Ths. 3.1 and 3.3). Using Ths. 3.1 and 3.3
we may attach several uniformity problems for the generic hyperplane
section of C U C' (see Ths. 3.5 and 3.6). An important application
of 3.6 is a key “convexity result” (see Th. 3.7) for the Hilbert function
of the general hyperplane section of C U C’. For an important ap-
plication and motivation for the “convexity result” 3.7, see Section 3,
Th. 5.11. We believe that these monodromy problems are very nice
and very useful. In Section 4 we discuss the notion of Frobenius non
classical curve C C P™ introduced in [24] and show what happens
for the curves embedded in our scroll. Then in the same section we
generalize the notion of plane strange curve (see [8]) for curves con-
tained in our scroll (see Def. 4.1 of ruling strange). We link these
two concepts. The main results of this section are Prop. 4.3 and
Th. 4.4. Then in Section 5 we discuss cohomological properties (see
Def. 5.1) of our scroll. Using them we will be able to find in Sec-
tion 5 several cases in which Th. 4.4 can be applied and a few proper-
ties of our partial ¢-spreads (e.g. when 3 colinear points of the partial
t-spread must be contained in the same t-plane). These properties
are related to a strong form of the Recognition and Uniqueness Prob-
lem, in the sense that knowing only the union of the t-planes of the
t-spread and that the ¢-spread arises from a suitable scroll and has
“geometric origin”, we may (at least partially) reconstruct each ¢-plane
(see Section 6).

We stress again the importance of monodromy and Galois groups
for these topics and that in positive characteristic the picture is not
complete (see [5] for the standard of the art). The questions still open
seems to require even more than in [5] specialists (or motivated users)
of finite group theory and this would be in itself a good topic for joint
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work for some algebraic geometers and some “finite geometers”.

1. First in (1.1) and (1.2) we introduce several notations, conven-
tions, and standard concepts on scrolls (with references).

(1.1) Let K be the algebraically closed field; if char(K) > 0,
set p := char(K); every scheme will be defined over K and we will
stress explicitely when a scheme is defined over a subfield (e.g. a finite
field GF(q), ¢ = p°) of K. The Grassmannian G(r,n) is the set of
dimension r vector subspaces of K" (hence for instance G(2,4) will
denote the Grassmannian of lines in P3). If B is a closed subscheme of
a scheme A, let Ig 4 be the ideal sheaf of B in A. II and P will denote
always a projective space whose dimension is either clear when we use
the convention or not important. We will not distinguish between a
(Cartier) divisor and the associated line bundle.

(1.2) As general references for the following notions and nota-
tions, see for instance [15], 23, pp. 162-169] and for the case r = 2 (i.e.
ruled surfaces) [23, Ch. V, §2] or [20, Ch. IV, §2]. Let C be a smooth
curve of genus g and F a rank r algebraic vector bundle on C; let P(E)
be the projectivization of E and 7 : P(E) — C the natural projection
(with fibers isomorphic to P™~1); we have Pic(P(E)) = ©*(Pic(C)) @
® Z[H|] with H any line bundle whose restriction to one fiber (hence to
all fibers) of 7 is O(1), i.e. has degree 1. In particular if g = 0, we have
Pic(P(F)) = Z[H|®Z[F)]. Recall ([23, Cor. V.2.13]) that if g = 0, every
rank 7 vector bundle is the direct sum of r line bundles. Assume r = 2,
i.e. P(F) a ruled surface; let —e € Z be the minimal self intersection
of a section of m; by a theorem of Nagata ([23, V.2, Ex. 2.5]) we have
e > —g; if g = 0 than any e > 0 determines uniquely a rational ruled
surface F, (a Segre-Hirzebruch surface). From now on, assume r = 2
and g = 0. We will use additive or multiplicative notation both for
divisors and line bundles. As free generators of Pic(F,) we will take
a section h of m with minimal self-intersection —e (and the section is
unique if e > 0, i.e. if F, is not a quadric) and a fiber f; thus h? = —e,
h-f =1 and f? = 0; the linear system |ah + cf|'is non empty if and
only if @ > 0 and ¢ > ae; this linear system is spanned if and only if
eithera =c=00re=0,a>0,c>0,ore>0,a >0, c>ae;itis
very ample if and only if @ > 0 and ¢ > ae; if |h + af| is very ample,
we will call S(a,b), b := a — e, the image of F, into the projective space
Patt+l. G(a,b) has degree a+b and it is a minimal degree surface of
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Potbtl. if e > 0 and b = 0 this linear system induces a morphism w
which contracts exactly the minimal section A and whose image is a
degree a surface (again denoted by S(a,0) in P%*!) which is a cone
over a rational normal curve of P* and has as vertex the point w(h);
outside h the morphism w is an embedding.
Remark 1.3. Note that the vector bundles over P! are defined over the
prime field (and even over the integers) since they are direct sum of line
bundles uniquely determined by their degree and defined over the prime
field. In general, if instead of P! we have any smooth complete curve C
defined over a finite field GF(q) and we have a rank t 41 vector bundle
E on C defined over GF(q) then the abstract dimension ¢ + 1 scroll
P(F) is defined over GF(q). Assume given an embedding i of P(FE)
into a projective space P™ with i defined over an extension GF(¢’) of
GF(q). Then the points of i(P(FE)) defined over GF'(q') are the union
of the points of a partial t-spread of PG(n,q’), the ¢-planes (or more
precisely their points over GF'(q')) being the embedded ¢-planes of the
scroll fibration P(E) — C.
Remark 1.4. Let A C P™ be a smooth scroll. Since A contains disjoint
linear spaces of dimension dim(A4) — 1 we have 2dim(4) < m.

Now we conclude the first section with a cohomological well known
lemma which the reader may skip on a first reading.
Lemma 1.5. Let A C PV be a smooth scroll over a curve C. Let
7 : A — C be the projection. Set a := dim(A) and assume a > 2. Then
we have Rim, (0O 4(b)) =0 if eitheri =0 andb< 0 or1<i<a—2 or
it=a—1landb>a—1ori>a.
Proof. This follows from the cohomology of P%~! (see e.g. [23, Ch. 3,
§5]) and a Theorem on changing basis for the cohomology (see e.g. [23,
Th. I111.12.11]). ¢ .

2. In this section we study problem (a) of the introduction.

(2.1) Here is the connection between Remark 1.3, Th. 2.8, the re-
sults on N(m,d’,d") and the motivation coming from partial ¢-spreads.
A pair (C, E) with C smooth curve and E rank r vector bundle on C
spanned by its global sections induces a morphism hg : C — G(r,n).
If we take another such pair (C’', E’), what is the maximal number of
common points of hg(C) and hg: (C') if (C, E) # (C', E’) (and hence
over a suitable extension of the finite field the two partial t-spread
associated are different)? The link between the problem of maximal
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number of common points in a Grassmannian and in a projective space
(its Pliicker embedding) is given by Th. 2.8.

Remark 2.2. Let (C, C’) be a pair of integral curves of P™. If C is non
degenerate but C’ is contained in a hyperplane, then card(C N C') <
< deg(C) by Bézout theorem. We have card(C N C') < deg(C) even
if C is degenerate, but C U C’ spans P™ because C N H # C implies
card(C N H) < deg(C). Hence we see that to find N(m, d’,d"”) or good
upper bounds for N(m,d’,d"”) we may assume that both C and C’ are
non degenerate. This is the content of the next two statements. The key
statement (see Prop. 2.3) is stated and proved in [2] in characteristic 0
and here in positive characteristic for reflexive curves (see [8] or [27]
for the notion of reflexive curve) as Th. 2.5. Let ' C P™ be a curve
(perhaps reducible) spanning P™; a general hyperplane section of T
is in linear general position (terminology of [2]) or in lineary general
position (terminology of [22] and [15]) or, with the old terminology of
[20, p. 249], in generic position, if for a general hyperplane H of P™
and every integer z with 1 < z < m every subsets S of T'N H with
card(S) = z spans a linear space of dimension z — 1.

Proposition 2.3 ([2, middle part of §1]). Assume characteristic 0.
Let C and C' be integral non degenerate curves in P™. Then a general
hyperplane section of C' U C' is in linear general position.

This result was claimed parenthetically also in [12, p. 30], but no
outline of any proof was given there since it was inserted just to pose
to the reader as interesting question the search of stronger results.

Let g(m,d) be the maximal arithmetic genus of an integral non
degenerate curve of degree d in P™. For the values g(m, d) for all m
and d, see [20] or [22, Ch. III] or [1, Ch. III, §2] or the introduction of
[12]. By Prop. 2.3 and the proof in [20, p. 249 and pp. 527-533] or [22,
Ch. III] or [1, Ch. III, §2] we obtain the following result.

Theorem 2.4. Assume characteristic 0. Then N(m,d,d") <
< g(m,d" + d") and if C and C' are integral non degenerate curves
with card(C N C') = g(m,d’ + d"), then C and C' are smooth and ra-
tional and C U C' is contained in a minimal degree surface S which is
not a Veronese surface, i.e. either in a linearly normal smooth rational
surface scroll S(a,b), a+b+1=m, orin a cone S(m —1,0) over a
rational normal curve of P™ 1,

Proof. By the quoted references it is sufficient to check that S is not the
Veronese surface V in P®. Since the only smooth rational curves of the
plane are the lines and the conics, we see that their double embedding
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as curves in V do not span P®. ¢

Now we will extend Th. 2.4 under the assumption that both C
and C' are reflexive integral non degenerate curves. Since the case m
= 3 is covered completely by [14], it is sufficient to extend Prop. 2.3
to this positive characteristic situation for m > 4. This will be done
proving the following result. ‘

Theorem 2.5. Fiz an integerm > 4. Let C and C' be integral reflezive
non degenerate curves in P™. Then a general hyperplane section of C'U
U C' is in linear general position.

Proof. (a) We will use induction on m. However, in part (a) of the
proof we will analyze the case of space curves from our point of view.
Hence here we assume m = 3. Assume that for a general plane H, there
is at least a trisecant line D to (C' UC’) N H. Since both C and C’ are
reflexive and H is general, we have card(CND) < 2 and card(C'ND) <
< 2 ([6, §7] or [27, Cor. 2.2]). If a general secant line to C' (resp. C’)
is secant to C’ (resp. C), projecting C' U C” into a plane from a general
P e C (resp. P € C') we find d' —1 = d"/2 (resp. d’ —1 = d'/2). Since
these inequalities cannot be satisfied simultaneously with d” > 3, we
have card((CUC')N D) = 3. Just to fix the notations assume card(C'N
N D) =2 and card(C' N D) = 1. Set A := {P € C' N H: there is a
line T' C H with P € T, card(CNT) = 2 and card(C' NT) = 1} (resp.
A" :={P € C'NH: thereisnoline T C H with P € T, card(CNT) = 2
and card(C' NT) = 1}) and B := {pairs(Q,Q’) € (C N H) x (CN H),
Q # Q': there is a line T with {Q,Q'} C T and T NC" # 0} (resp.
B’ = {pairs(Q,Q') € (CNH) x (CNH), Q@ # Q" there is no line
T with {Q,Q'} € T and TN C" # (0}). Since C' is reflexive and we
assumed A # (), we have A’ = (). Since C is reflexive and we assumed
B # 0, we have B’ = 0. Since a line is contained only in co' planes,
there are co? secant lines to C meeting C’. Hence for a general z € C’
the projection of C from z into a plane is 2 : 1; call C(z) its image; we
have deg(C(z)) = d'/2. Since B’ = () we see that C(z) is the image of
C' under the projection from z. Since a general secant line to C’ is not
3-secant by the reflexivity of C’, C(z) is birational to C’ and we have
d'/2=d" —1.

(b) Assume m > 4 and that m is the first integer for which the
statement of this theorem fails. Taking a general projection into P* we
see that we have m = 4; we will use this observation only to simplify
the notations. Since from a general point of P* there is a hyperplane
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containing it, taking a general projection into P we obtain d’/2 = d" —
~1ord"/2=d —1. Just to fix the notations we assume d' > d", hence
d'/2 = d" — 1. Furthermore, the analysis in part (a) and the generality
of the point of projection into P2, show that for a general hyperplane
M of P* there is a line D C M secant to C and meeting C’'. Part (a)
shows also that for a general z € C' the images of C and C' into P are
the same curve. Hence for a general line T' secant to C’ the images of C
and C’ by the projection from T into a plane are the same curve; call it
C(T). Since C' is reflexive, we have deg(C(T')) = d—2. Since a general
such T is contained in a general hyperplane M of P* we see that there
is a plane M’ C M containing T' and with exactly 2 points of C' and 3
points of C, one of them the point of intersection of two lines secant to
C and meeting the 2 points of T'N C'. Thus deg(C(T)) = d'/3. Since
d = 2d" — 2, we have d’ = 4 and d’ = 6. Hence C’ is a rational normal
curve. If we were interested only in the case m > 5, working also in P5
we would obtain another numerical restriction (i.e. d'/4 = d" — 3) and
hence a numerical contradiction. For the case m = 4, note that the line
T must be contained in every quadric hypersurface containing C. Since
C is cut out by quadrics, we have a contradiction. ¢

For a more general result with a different proof, see the case w =1
of Th. 3.3.

Remark 2.6. The proof of Th. 2.5 shows that we have card(CNC’) <
< g(m,d',d") — po(C) — po(C’) and that, again, if we have equality,
C U ' is contained in a minimal degree surface of P™.

(2.7) Now we will describe the class of examples of pair of curves
with a large number of common points contained in the scroll S(a,b)
for b > 0. We have S(a,b) & F,_;, i.e. here e = a — b. With the
conventions used in this paper we have Og(,,)(1) = (h + af) because
deg(S(a,b)) = a+b = (h+ af)? For all integers ¢ > a — b, y > 1,
c > 0 we have deg(h + zf) = z+a—e = z + b, deg(yh + (ye +
+¢)f) =c+ay, (h+zf)  (yh+ (ye +¢)f) = ¢+ zy and the linear
systems |h+ zf| and |yh + (ye+ c)f| are very ample. Hence by Bertini
theorem we may find smooth curves C € |h + zf|, C' € |yh + (ey +
+ ¢)f| with exactly ¢ + xy common points; in particular for ¢ = 1,
varying a and b with a +b = N —1 and a > b > 0 we find (in any
characteristic) pairs of smooth curves with a number of common points
near the maximal value of N(m, d’, d") given in the statement of Th. 2.4
and such that the pairs of their degree (deg(C),deg(C’)) cover a huge
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band in N?2. Furthermore we have a good description of all pairs (C, C’)
with N(m,d’,d") common points (e.g. both C' and C’ are smooth and
rational) and by the structure of the linear systems on the surfaces F
listed in (1.2), as in the case m = 3 considered in [14, Remark 17], there
are gaps for the possible triples (d',d”, N(m,d’,d")) and for the values
of card(C' N C'). A similar description holds if b = 0, i.e. if S(a,b) is a
cone. The details are left to the reader.

A major result is the following theorem which shows the problem
on the maximal number of common points of two projective spaces is
equivalent to a weak form of the Recognition and Uniqueness Problem
for our class of examples coming from scrolls.

Theorem 2.8. For all integersr, n, a, b with0 <r <n, 0 <b <
< a,a+b+2=nl/(rl(n—7r)!) the Grassmannian G(r,n) with its
Pliicker embedding into I := PN, N = n!/(r!(n —r)!) — 1, contains the
rational normal scroll S(a,b); here we use the usual convention that
for b = 0 S(a,0) is the cone ever a rational normal curve of a hy-
perplane of I, i.e. the contraction of the section of Fy, with negative
self-intersection induced by the morphism associated to |h+ af|. Fur-
thermore we will find such an embedding, say i : P1 — G(r,n) with
P := i(P'), which is induced by the restriction R := Q[P to P of the
universal rank v quotient bundle of G(r,n) to a rank r vector bundle,
say R := Op(b(1))®-- - ®O0p (b(t))®0p(a(1))® - -®Op(a(r—t)), such
that the restriction map induces an isomorphism between the spaces of
global sections; we will find a surjection R — Op(a) ® Op(b) which
induces an isomorphism on global sections. An embedding with these
properties is uniquely determined up to a translation by an element of
Aut®(G(r,n)).

Proof. First, we will explain the second statement of the theorem. By
the universal property of the Grassmannian every morphism f : P! —
— G(r,n) is given by the choice of a rank r vector bundle, F, on P!
and by a subspace V C H°(P!, R) with V spanning R and dim(V') = n;
furthermore, we have f*(Q) = E. The second statement of the theorem
says that we may find an embedding corresponding to a vector bundle
R with a further property. This additional property is essential for
our proof of the first statement of the theorem and it has a geometric
meaning because it says that i(P!) is contained in a scroll isomorphic
to F,_p. Concerning the last statement, recall that if 2r 3 n, then
Aut(G(r,n)) = GL(n,K) and hence Aut(G(r,n)) = Aut’(G(r,n)),
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while if 2r = n then Aut(G(r,n)) has two connected components, each
of them isomorphic to GL(n, K) and hence Aut®(G(r,n)) = GL(n, K)
even in this case. Let V be a vector space of dimension n and A
(resp. B) complementary vector subspaces of V with dim(4) = a +
+ 1, dim(B) = b+ 1 and A+ B = V. Consider the surjections of
the trivial sheaf P! x A — Op:(a) and the trivial sheaf P! x B —
— Op: (b) induced by any choice of isomorphisms A 2 H°(P!, Opi(a))
and B = H°(P', Op:(b)). Since A+ B =V and AN B = {0} we
obtain a surjection ¢ : P! x V — Opi(a) ® Op: (b) including an iso-
morphism of global sections. By definition the surjection ¢ induces
an embedding of the Serge-Hirzebruch surface F,_; into II as a min-
imal degree rational normal scroll S(a,b) (with the usual convention
for the cone S(N — 1,0)). Fix an integer ¢t with b+ 1 < t < r and
integers b(1) > b(2) > ... > b(t) > 0, a(1) > a(2) > ... > a(r —
—t) 2 0with 33, ., b()=b—t+1, 3, i, ;0(i) =a—r+t+1
Note that h°(P',0p1(b(1)) @ ... ® Op:(b(2))) = h°(P!, Op:1 (b)) and
RO(PL, Op1(a(1)) @ ...® Opi(a(r —t))) = A°(P?, Op1(a)); choose iso-
morphisms i, : HO(P, Op:(b(1))&...® Op: (b(t))) — H°(PL, Op: (b))
and iq : H'(P,Op1(a(1)) ® ... ® Op:(a(r — t))) — H(P!,Op1(a))
and surjections Op1(b(1))®...®O0p:(b(t)) — Op1(b), Op:(a(1))®...®
® Op1(a(r —t)) = (a)) inducing the isomorphisms 4, and i, on global
sections. Let 7 : F,_, — P! be the projection. Set R : Op1(b(1)) @
@...00p1(b(t) @O0p:(a(l))®...d Opi(a(r —t)) and M = 7*(R).
By the projection formula we have 7,(M) = R® 7.(Op,_,); hence (by
Lemma 1.5) we have m,(M) = R and an isomorphism H°(F,_;, M) =
~ HO°(P', R). Since rank(M) = r this isomorphism and the previous
construction on P! induces an embedding of F,_; into G(r,n) (with
the convention of cones if b = 0) which (for the Plicker embedding
G(r,n) C II) has as image a minimal degree scroll S(a,b), proving
the first and the second assertion. The last assertion follows from the
universal property of the Grassmannian. ¢ ‘

3. Here we consider the monodromy problem and a kind of possi-
ble “uniformity” of the generic hyperplane section of the curve CUC’ C
C P™ (see Def. 3.4). For general background and definitions see [21]
(topological approach over C) and for the positive characteristic case
see [6], [27], [6]). For the main motivation and application (“Castel-
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nuovo’s Theory”), see [20, pages 527-533], [1, Ch. III, §2] (characteris-
tic 0) and [2], [27, §2] (positive characteristic). One of the main points
of this paper is the monodromy type results given in Ths. 3.1 and 3.3.
Then these results are applied to study “the uniformity” (see the same
references as for the monodromy problem, in particular for the appli-
cations to Castelnuovo’s theory). Our main results on uniformity are
Ths. 3.5 and 3.6 which give Th. 3.7, a key convexity result for the
Hilbert function). We stress that there are several papers with tools
from commutative algebra and/or projective geometry and general al-
gebraic geometry which use suitable notions of uniformity (for instance
the very active area of research on “fat points”).

Theorem 3.1. Let C' and C" be integral non degenerate curves in
P™; set C = C' UC"; set a' := deg(C') and a" = deg(C"); let H
(resp. H', resp. H" ) be the monodromy group of the generic hyperplane
section of C (resp. C', resp. C""). Assume that the pair (H',H") is
either (Sar, San) or (Sar, Agn) or (Agr, San) or (Aar, Agr). Then either
H=H'x H" or H= H' (and then d = d" and either H' = H" or
H' = Sy and H" = Agi) or H = H" (and then d' = d" and either
H' =H" or H' = Sg» and H' = Ag ).

Proof. The group G acts as permutation group on the generic hy-
perplane section of C. By the definition of monodromy group for the
generic hyperplane section we have two surjections s’ : G — G’ and
s" G — G". Set N' := ker(s') and N" := ker(s"). Since C' # C'
and C, C' are integral, by the definition of monodromy group for the
generic hyperplane section we have N' N N"” = {0}. Since the alternat-
ing groups involved are simple, we see that if card(IN') +card(N"') > 4,
we have H = H' x H". The remaining assertions follow at once. ¢
Remark 3.2. With the notations of 3.1, we have H' = S, (and simi-
larly for (A", H")) if either char(K) = 0 ([21] or [1]) or A’ is reflexive
([6, Th. at p. 906] or [27, Cor. 2.2]) or p > 2, m > 4, A’ is smooth of
genus > 2 ([5, Th. 3.1]). Using the classification of multiply transitive
finite permutation groups (see [10, §5] or [27, Th. 2.4] (with the obvious
slip of My, among the 3-transitive permutation groups)) it was proved
in [27] that we have H' = A, or H' = S,/ if either m > 60orm =4, 5
andd >25orm>5andp>5orm=4andp>7T.

Theorem 3.3. Let A’ and A" be integral non degenerate reflexive
curves in P™. Set A := A'UA", ' := deg(4'), o' := deg(A"). Then
the monodromy group G of the generic hyperplane section I' of A is
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Sa/ X Sa/l .

Proof. By [6, Th. at p. 906] or [27, Cor. 2.2] the monodromy groups
for A’ and A" are the full symmetric groups. The proof of 3.1 shows
that to prove 3.3 it is sufficient to show that G contains a non trivial
permutation fixing I' N A’ and a non trivial permutation fixing I' N A”.
The proof given in [6, 85] or [27] for the monodromy group of A”,
shows that G contains a non trivial permutation fixing T' N A’ if there
is a hyperplane U which is transversal to A’ and intersects A” at o” —1
smooth points, at a” — 2 of them transversally and at the other point,
P, with simple tangency. The second condition on U holds for the
general hyperplane tangent to A” by the reflexivity of A”. Since both
A’ and A" are reflexive, by biduality they have different dual varieties
(and both are hypersurfaces because A’ and A" are curves). Hence also
the first condition is satisfied by the general hyperplane U tangent to
A" O

Definition 3.4. Fix an integer w > 1. A set of points A C Il := P?® is
said to be in w-uniform position if for every B C A and every integer
v with 1 < v < w we have R%(II, Iz (v)) = max{(s + v)!/(sl!) —
— card(B),0}.

Theorem 3.5. Let C, C' be integral non degenerate curves in PS+1;
set a := deg(C), b := deg(C"). Fiz an integerw > 1. LetT := (CUC’')N
NH be a general hyperplane section of CUC'. Set x := (s+w)!/(slw!).
Let G' (resp. G") be the monodromy group of the generic hyperplane
section of C (resp. C'). Assume A, C G' and Ay C G". Assume
min{a, b} > z + 2. Then I is in w-uniform position.

Proof. Let B C T be minimal such that

RO(H, I gr(w)) - h* (H, I, (w)) # 0.

By the minimality of B we have 3 < card(B) < z. By Th. 3.1 and
the definition of alternating group, if card(B N C) > 2 we have C'N
NT C B (and the same for C'). Since min{a,b} > = + 2, we have a
contradiction.
The proof of Th. 3.5 gives also the following key convexity result

([22, Cor. 3.5] and [12, Lemma 1.5]).

Theorem 3.6. Fiz integersn, m withn > m > 1. Let C’ C' be integral
non degenerate curves in P¥11; set a := deg(C), b := deg(C"). LetT :=

= (CUC'0NH be a general hyperplane section of CUC". Assume that
T is in w-uniform position. Set z := (s+w)!/(s!w!). Let G' (resp. G")
“be the monodromy group of the generic hyperplane section of C (resp.
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C'). Assume A, C G' and Ay, C G". Assume (s +n)!/(sln!) +2 <
< min{a,b}. Then for the Hilbert function hy : N — N of I' we have
hr{n +m) > min{deg(C) + deg(C"), hr(n) + hr(m) — 1}.

We note that for the application (see Th. 5.11) we need only the
case m = 2 of the key convexity result (proved in any way) plus the
assumption that the monodromy group contains the product of the two
alternating groups.

4. For the notion of strange curve, see for instance [8] or [27].
Fix a power ¢q of p; let C C P™ be an integral non-degenerate curve;
take homogeneous coordinates Xy, ..., X, of P and see z; := X,/ Xp
as a rational function on C; for every integer ¢ > 0 and every rational
function f on C let D% (f) be the Hasse derivative of f of order ¢
with respect to the separating variable z on C; for any n non-negative
integers a(0),...,a(n — 1) and any n + 1 rational functions fo,..., fr
on C, let Det(a(0),...,a(n — 1); fo,..., fn)) be the (n +1) x (n + 1)
matrix (aij)OSiSn,ostn with a5 = fJ‘-J and Qi1 = D;](l) for 4 > 1 by
[29], Prop. 2.1, there are integers vg, ..., Up—1 With0 =vg < v; < --- <
< ¥p_1 such that Det(vo,...;vn-1;1,21,...,2,) # 0 among these sets
of integers we will take the minimal one in the lexicographic order; these
integers vy, . . ., v,_1 are called the Frobenius sequence of C; C is called
Frobenius classical if v; = ¢ — 1 for every 7. The notion of Frobenius
classical curve was introduced, motivated, applied and studied in [24].
The following definition is a natural generalization to the case of curves
on a ruled surface of the notion of strange plane curve.
Definition 4.1. Let C be a curve contained in a smooth scroll S over
a curve Dj let # : § — D be the projection. C' is said to be ruling
strange if w|D;cz has everywhere differential 0.
Remark 4.2. (a) By the definition it is obvious that in characteristic
0 a ruling strange curve of the scrollar fibration 7 : S — D is contained

~ In a fiber of «.

(b) If S is embedded in a projective space II, by definition a ruling
strange curve C is a curve such that there is a projective space A,
dim(A) = dim(S) — 1, which is a fiber of the ruling of = and such
that for every smooth point P of C the embedded tangent line TpC is
contained in A.

(c) Obviously in Def. 4.1 and part (b) of this Remark instead of
“every smooth point of C'” we may take “a general smooth point of C'”.
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The notion of ruling strange curve is related to the work in [7, §2]
on curves contained in a ruled surface.

The proof of the following key result will be just a modification
of the proof of [24, Prop. 2].
Proposition 4.3. Let D be an integral ruling strange curve on the
scroll S C P™. Then D is Frobenius classical at the first step, i.e. with
the terminology of [24] D has v; = 1.
Proof. Assume that D is not Frobenius classical at the first step. Take
P € D.eg such that P is not defined over GF(g*) with ¢ = deg(D) + 1,
so that its orbit under the Frobenius F, of GF(q) has at least deg(D)+
+ 1 elements. Since D is ruling strange and not Frobenius classical at
the first step this orbit is contained in the ruling linear space A of S
containing D. Since card(A N D) > deg(D), we have D C A by Bézout
theorem. ¢
Theorem 4.4. Let A C P™ be a scroll of any dimension < m. Assume
that A is set theoretically the intersection of hypersurfaces of degree
< t. Assume p > t. Then every integral curve D not ruling strange is
reflezrive.
Proof. Assume that D is not reflexive. Then for every smooth point
P of D we have length (TpD N D) > p > t. Hence by the assumption
on A and Bézout theorem, we have TpD C A. Taking P general, we
see that D is ruling strange. ¢

Now we give here (see 4.5, 4.6 and 4.7) 3 corollaries of Th. 4.4.
For other corollaries, see Section 5.
Corollary 4.5. Let A C P™ be a linearly normal scroll of any dimen-
sion < m and with genus 0. Assume p > 2. Then every integral curve
D C A not ruling strange is reflezive.
Proof. It is well-known (see e.g. [15]) that A is set theoretically the in-
tersection of quadric hypersurfaces (and the same reference prove much
more). ¢

The next result is interesting because the scrollar examples of
partial t-spreads may arise even from embeddings coming from non
complete linear systems without base points. Note also that in several
situations just a morphism, even not arising from a complete very ample
linear system, from a curve to G(¢+1,n+1) induces a partial ¢t-spread,
say over GF(q), i.e. sends the t-planes which are fibers of the dimension
t+1 scroll into ¢-planes of PG(n, ¢) and the images of two such ¢-planes,
if different, are disjoint.
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Corollary 4.6. Let B C P™ be a variety which is the projection of a
linearly normal smooth scroll U on a curve of genus 0 of P™+1. Assume
m >3 and p > 3. Then every integral curve D C B not ruling strange
15 reflexive.

Proof. Note that deg(B) < deg(U) = m — dim(B) + 2. Hence by [25,
Th. 2] B is the intersection of hypersurfaces of degree < 3. §
Theorem 4.7. Let S C P™ be a smooth scroll over a curve of genus g >
> 0. Assume that the homogeneous ideal of every smooth curve section
of S is generated by forms of degree < x. Then every line T' containing
at least © + 1 points of S is contained in a linear space of the ruling
of S.

Proof. Since b > 0 every line (as any curve with a genus 0 curve as
normalization) contained in S is contained in a fiber of the ruling of S.
Now fix a line T intersecting S only at a finite number of points. By
the assumption on z it is sufficient to check that for a general linear
subspace W of A with codim(W) = dim(S) —1 and T' C W, the curve
section C := W NS is smooth. By Bertini theorem C' is smooth outside
the finitely many points TN S. Fix P € TN S. To find a curve section
C smooth at P € (T'NS) it is sufficient to take as W a linear space not
containing TpS. Since card(T'N S) is finite, we obtain the thesis. ¢
Remark 4.8. In Th. 4.7 it is sufficient to assume that C is set-theo-
retically cut out by forms of degree < z.

5. In this section we give a few cohomological criteria which give
other cases to which Th. 4.4 may be applied. For a general discussion
of the postulation and index of regularity (in the sense of [26, p. 100])
of embeddings of scrolls over curves, see [9].

Definition 5.1. Fix integers n > 3, t > 2, r > 2. Set Il := P".
A smooth scroll F C II over a curve with dim(F) = 7 is called of
cohomological level <t if h1Op(t — 2)) = K} (IL, Irn(t — 1)) = 0.

In a first reading the reader may skip the following cohomological
result.

Proposition 5.2. The homogeneous ideal of a smooth scroll ' C II
of cohomological level <t is generated by forms of degree < t.

Proof. By Castelnuovo-Mumford regularity theorem (see e.g. the orig-
inal source, [Mu, p. 100)) it is sufficient to prove that H*(Il, Ip(t — i —
—1)) =0 for every i > 0. By the exact sequence
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0 — Irn(j) = Onu(j) = Or(j) =0

and the vanishing of Hi(II, Or(4)) for every ¢, j with 1 <4 < dim(II),
and of H4m(TI, Op(§)) and 5 > — dim(TT), we have H**!(IT, Ir(j)) =
>~ H%(F,0F(j)) for every v > 1 and every j. By the Leray spectral
sequence of 7, Lemma 1.5 and the assumption “¢ > 2” (hence t —
—r > —r), we have H™(F,Op(t — m — 1)) for every m > 2. Hence
HY(IL, Ip(t — i — 1)) = 0 for every 7 > 3. We have H(IL Ip(t—3)) =
= HY(II, Ir(t — 2)) = 0 by the definition of cohomological level. ¢
Definition 5.3. Let B C P be an integral non degenerate variety.
We will call the integer 6(C) := h°(B,0p(1)) — N — 1 the defect of
linear normality of B.

The proof of Prop. 5.2 gives without any change the following
useful result whose union with Th. 4.7 gives another application of
Th. 4.4.

Proposition 5.4. Let B C PN be a smooth scroll over a curve D of
genus b > 0. Set r := dim(B). Let C be a smooth curve linear section
of B (hence C = D as abstract curves). Then 6(B) < 6(C) + (r —1)b.
Remark 5.5. In [3, Th. 0.1] and [4, Th. 3.1] there are two criteria
(respectively one for linearly normal embeddings and one much weaker
for non linearly normal embeddings) on the integers (d,g) such that
the homogeneous ideal of a general degree d embedding C C P™ of a
general curve C of genus g is generated by quadrics.

Remark 5.6. Let C C P™ be a smooth non degenerate genus b linearly
normal curve of degree d. By [19, Th. 3.3] the homogeneous ideal of C
is generated by quadrics if d > 2b + 2. By Castelnuovo-Mumford reg-
ularity theorem ([26, p. 100]) the homogeneous ideal of C' is generated
by forms of degree < 3 in all cases in which in [18] it is proved that C
is projectively normal.

Theorem 5.7. Let C C P™ be a smooth non degenerate curve of
genusb. Let §(C) := h®(C,Oc(1))—m—1 be the defect of linear normal-
ity of C, i.e. assume that C is an isomorphic projection from a linearly
normal curve X C P™8(C) Assume that h*(A, Ix pmiscr(w)) =
= hY(C,0¢(w — 1)) = 0. Let A(C) be the first integer t > w such
that (m + t)!(m!t!) > deg(X) -t +1—b. Then h' (U, Ic,p=(t)) =0 for
every t > A(C) and the homogeneous ideal of C' is generated by forms
of degree < A(C) + 1.

Proof. By Castelnuovo-Mumford regularity theorem (see [26, p. 100]) it
is sufficient to prove that h(U, Ic a(A(C))) = 0. Since h' (X, Ox (w —
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— 1)) = RYC,0¢(w — 1)) = 0, by Castelnuovo-Mumford regularity
theorem we have h1(4, Ix 4(t)) = 0 for every t > w. Let B =2 P8(©)~1
be the linear subspace of A such that C is an isomorphic projection of
X from B. Fix a general divisor D of X in the linear system corre-
sponding to H°(X,Ox(A(C))). Since the projection X — C from B
is an isomorphism it is sufficient to show that every such D is cut out
by a hypersurface of A which is a cone with vertex containing B. The
linear subspace M" of M := H°(A,04(A(C))) formed by all sections
vanishing on D has codimension deg(D)+1—b = A(C) deg(X)+1-0b.
The linear subspace M’ of M formed by the equations of the cones with
vertex B has dimension (m+A(C))!/(m!A(C)!). Hence M'NM" # {0},
as wanted. O

To apply results on linearly normal embeddings of curves (as for
instance the ones quoted in Remark 5.6) to non linearly normal em-
beddings of curves, we use the following Prop. 5.8; then we may use
Prop. 5.4 and Th. 4.7 to obtain other applications of Th. 4.4.
Proposition 5.8. Fiz positive integers u, and w. Let C C P™ be a
smooth curve of degree > 2 which is an isomorphic projection of a curve
X C P™T which is set theoretically cut out by forms of degree < w.
Then there is no line T C P™ such that card(T N C) > w¥*.

Proof. Assume the existence of such line 7. Then there is a linear
space U C P™*% mapped to T by the linear projection mapping X to
C with dim(U) = u+1 and with card(UN X) > w**!. Since C # T, U
does not contain X. Since X NU is the intersection of forms of degree
< w, we have card(U N X) < w**!, contradiction. ¢

Remark 5.9. By [24, Prop. 1], every reflexive curve is Frobenius clas-
sical at the first step.

Remark 5.10. By Remark 5.9 and the applications of Th. 4.4 we have
the Frobenius classicity at the first step of all non ruling strange curves
in a huge number of cases.

Our last result shows that the positive characteristic monodromy
results (as Th. 3.1) have applications to interesting geometric situations.
Theorem 5.11. Let C, C' be integral non degenerate curves in P5+1;
set a := deg(C), b := deg(C’). Let T := (CUC")N H be a general
hyperplane section of C U C'. Assume that ' is in 2-uniform position.
Let G' (resp. G") be the monodromy group of the generic hyperplane
section of C (resp. C'). Assume A, C G' and Ay C G". For any integer
z define mo(z) and eo(z) by the relatives x — 1 = mo(x)s + eo(z) and
0 <eo(z) < s—1; set mo(z, s+1 := mo(z)(mo(z) —1)s/2+mg(z)eo(z).
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Setmy:=[(a+b—-1)/(s+1)],e1:=a+b—mi(s+1)—1, u; :=1if
er=8,p1:=01ifer #sand mi(a+b,s+1):=my(m;—1)(s+1)/2+
+mi(er + 1) + py. Then:

(@) Ifa+b>2s+5 and hp(2) = 25+ 2, then T lies on an elliptic
normal curve E C H of degree s+1 cut out by all quadrics containingT.

(b) In our positive characteristic situation if a +b > 2s + 5 then
Th. 3.15 and Cors. 3.16, 317, 318 of [22] are true; if p,(CUC" > m1(a+
+b,5+1) then CUC' lies on a surface of degree s; furthermore the set
of pairs of integers (a+b,p,(C UC")) arising in this way is completely
described and for any such pair the corresponding Hilbert scheme is
described (e.g. the number of its irreducible components) with the only
further assumption that s > 9 if po(CUC’) = mi(a+b,s+1);

(c) In our positive characteristic situation Th. 2.3, Th. 2.5 and
Cors. 2.6, 2.7, 2.8 of [12] are true; in particular if hp(2) > 2s+1+6 for
some integer § with 0 <0 < a+b— 25— 1, then p,(CUC") < mo(a +
+b—-4,s+1).

To check Th. 5.11 we need just to show that the proofs of part
(a) (i-e. the extension to our positive characteristic situation of [22,
Prop. 3.2]) and of the references listed in parts (b) and (c) work under
our assumption with no change. For part (a) part of its proof in [22]
(e.g. [22, Lemma 3.21]) does not consider I and are characteristic free,
while the long analysis on pages 109-115 of [22] uses only 2-uniformity,
the assumption on G (with the observation that at page 104 the non
existence of the reducible quadrics follows again from the fact that
C and C' are integral and non degenerate). To check part (b) it is
sufficient to have part (a) and just the case m = 2 of the [22, 3.19]; this
case uses only the key convexity result for m = 2 and the 2-uniformity
(or the assumption on G). To check part (c), just note that [12, Th. 2.3]
needs only the key convexity result for m = 2 (hence our Th. 3.7 may
be applied) listed there as eq. 2.4, that [Ci, Th. 2.5] is true for the same
reason and that everything else follows (using the key convexity result
only for m = 2, 2-uniformity and the assumption on G) immediately
using the statement of Th. 2.5 in [12].

6. Here we discuss the connections between our results (and in
particular the one in Section 4 and Section 5) and the Uniqueness part
of the motivating problem of our research. Of course, if a partial ¢-
spread does not satisfy some of these properties, we have proved that




60 E. Ballico, A. Cossidente

it is not in our class. Fix a prime p and a power g of p; let K be
the algebraic closure of GF(q). Fix integers n, t and z with 1 < ¢ <
< n and z > 0. Fix a linear subspace A of PG(n,q) with dim(4) =
= ¢ and see its (¢*™! — 1)/(¢ — 1) points as GF(q)-points of P"(K).
A very important cohomological invariant of A in P"(K) is given by
the integer a(n,t;q;z) := (n + z)!/nlz!) — RO(P™, L4(x)), i.e. by the
number of conditions that A imposes to the degree x hypersurfaces
containing it (or, better, the entire family {a(n,t;¢;z)}zen). Fix a
set S C PG(n,q) which is the union of the ¢-planes of a partial t-
spread arising from an embedding of a scroll over a smooth curve C of
genus g > 2. Assume that this scroll is set-theoretically (over K) the
intersection of hypersurfaces of degree < z; we gave in Section 5 a few
ways to find upper bounds for z for the scrolls over a curve. Suppose
you know the existence of a suitable B C (SN A); set u := card(B).
Is A forced to be contained in S? And if A C S, is A one of the ¢-
planes of our partial ¢-spread? Since B is contained in A, it imposes at
most a(n,t; q; z) conditions to hypersurfaces of degree z. If it imposes
a(n,t; ¢; =) conditions, then every degree x hypersurface containing B
contains A. Hence A C S. Now just start with any A C S; let A’ be
the ¢-dimensional subspace (over K) of P"(K) generated by A. Note
that for every power ¢’ of p with ¢’ > g, the embedding over GF(q) of
our scroll induces a unique embedding of it over GF(¢'); call S(¢') C
C PG(n,q') the image of its GF(¢')-points. We assume that our linear
space A has a “geometric origin” as our scrollar fibration, i.e. for every
¢’ we assume the existence of a t-plane A(g') of PG(n,q’) such that
if ¢' < ¢", then A(q') is the set of GF(g')-points of A(g"). If there is
such a geometric family, then A’ C S’ and A is one of our ¢-planes if
and only if A’ is a fiber of the scrollar fibration = : §' — C. If t >
> 2 every such A’ is contained in a fiber of 7 because every morphism
(over K) of P*, ¢ > 2, into a lower dimensional variety is constant.
Hence we may assume ¢t = 1. If (as we will assume) A’ in not a fiber,
then n(A4') = C. Thus g = 0, i.e. the abstract scroll is one of the
Segre-Hirzebruch surfaces described in 1.2. Since it has an embedding
containing a line which is not a fiber, the discussion in 1.2 shows that
for some N > n S’ is an isomorphic projection of S(N —1,1) into P".
Hence e = N — 2 > n — 2. We know only one situation in which the
same assertions can be made without assuming that A has “geometric
origin”. We need to show that A’ is contained in S’. This is true if the
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intersection of every t-plane of P™(K) not contained in a fiber of 7 has
less than (g*** — 1)/(¢ — 1) points. For instance if ¢ = 1 it is sufficient
to know that S’ is set-theoretically (over K) cut out by hypersurfaces
of degree < (¢t7! —1)/(¢ — 1). This type of cohomological information
is exactly the content of Section 5.
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