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Abstract: We solve the congruence
f(An+B)=Cf(n)+ D (modn) (n=12,...)

for complete multiplicative function f, where A >0, B > 0, C, D # 0 are given
integers.

An arithmetical function f(n) #Z 0 is said to be multiplicative if

(n,m) = 1 implies
f(nm) = f(n)f(m),
and it is called completely multiplicative if this equation holds for all pairs

of positive integers n and m. In the following we denote by M and M*
the set of all integer-valued multiplicative and completely multiplicative
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functions, respectively. Let N denote the set of all positive integers. For
each k € N we denote by x; the Dirichlet character (mod k).

The problem concerning the characterization of some arithmetical
functions by congruence properties was studied by several authors. The
first result of this type was found by M. V. Subbarao [6], namely he
proved in 1966 that if f € M satisfies the relation
(1) f(n+m)=f(m) (modn) forall n,meN,
then f(n) is a power of n with non-negative integer exponent. A. Ivdnyi
in [1] extended this result proving that if f € M* and (1) holds for a
fixed m € N and for all n € N, then f(n) has also the same form. In
[6] we improved the results of Subbarao and Ivédnyi mentioned above by
proving the following
Theorem A. Assume that M is a fized positive integer and f € M. If
f(M) #0 and f satisfies the relation

fin+M)=f(M) (modn) forall mneN,

then there is a non-negative integer o such that f(n) = n® for alln € N.

In 1993 the first named author proved in [4] the following
Theorem B. Let A > 0,B > 0,C # 0 and N > 0 be integers with the
condition (A, B) = 1. If f € M satisfies the relation

f(An+B)=C (modn) forall n> N,

then there are a non-negative integer a. and o real-valued Dirichlet char-
acter x4 such that

f(n) =xa(n)n® forall neN, (nA)=1
A generalization of Th. B was obtained in [2]. Another characterization
of the function f(n) = n® (n € N) by using congruence property was
found by A. Ivényi [1]. In 1972, he proved that if f € M satisfies the
relation
(2) f(n+m)= f(n)+ f(m) (modn) forall n,meN,
then f(n) is a power of n with positive integer exponent. It is proved in
[3] that this result continues to hold even if the relation (2) is valid for
all primes m instead of for all positive integers m.

Our purpose in this paper is to prove the following

Theorem. Assume that A > 0,B > 0,C,D £ 0 are fized integers with
(A, B) =1 and a function f € M* satisfies the congruence

(3) f(An+B)=Cf(n)+D (modn) forall neN.
Then the following assertions hold:

(@) If f(p) = O for some prime p with (p,A) = 1, then p = 2,
C=-1,D=1, (2,AB) =1 and f(n) = x2(n) for alln € N,
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(II) If f(n) #0 for alln € N, (n,A) =1, then either
C+D=1 and f(n)=1 foral neN

or there are a non-negative integer o and a real-valued Dirichlet character
X4 such that

(4) f(n) =xa(n)n® foral neN, (n,A)=1.

Proof. First we note from (3) and Th. B that (4) is satisfied if C = 0.
In the following we assume that C' # 0. The proof is based on Lemma 1
and 2.

Lemma 1. Assume that the conditions of the theorem are satisfied. If
there is a prime p such that (p, A) =1 and f(p) =0, then

p=2 C=-1, D=1, (2,AB)=1 and f(n)= x2(n).
Proof of Lemma 1. Since (p, A) = 1, one can deduce that there is a
positive integer ng such that p|Any + B, and so by (3)

0= flA(pn +no) + B] = Cf(pn+ng) + D (mod pn + no)

holds for all n € N. Let m =1 (mod p) be a positive integer. Then we
infer from the above relation that

—Df(m) = Cf(m)f(pn+no) = Cflm(pn+mng)] = =D (mod pn+ny),
consequently
flm)=1 forall m=1 (mod p).

This shows that f(n) = x,(n) is satisfied for all n € N. Here we have
used the fact f(n) = xp(n) = 0 for all n € N, p|n. It is clear that
|f(n)| <1 for all n € N, consequently

|f(An+B) - Cf(n)—D|<1+4|C|+|D|:=F forall ncN.
By (3) we have
f(An+B)=Cf(n)+D forall n>E,
which gives
(5) f(AMn + B) = Cf(M)f(n) + D
for all n > F and for all M € N. By using induction on &, (5) shows that

f((AM)k” +B((AM)* + . .+ AM + 1)> -

= (CH(M))Ef(n) + D [(CF(M))*™ + ...+ CF(M) + 1]

is valid for all integers k, M € N, n > E. Therefore for n = p®* > E , the
above relation shows that :
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IDLI(CF(M)F .. +Cf(M)+1|<1 forall keN.

If (M,p) = 1, then f(M) # 0 and so the above relation implies C'f (M) #
# 1and Cf(M) = —1forall M € N, (M,p) = 1. Thus f(m) =1 if
(m,p) =1 and f(m) = 0 if p|m, furthermore C = —1, D = 1. Since

f(Apn+ B)=Cf(pn)+ D =1 (mod n),

we have (p, B) = 1. If p > 2, then there is a positive integer [ < p — 1
such that (I, p) = (Al + B, p) = 1, which with (3) implies

1= fl[A(pn+ 1)+ Bl=—f(pn+1)+1=0 (mod pn+1).

This is imposibble. Thus we have p = 2 and so f(n) = xa(n) for all
n € N. Lemma 1 is proved.

Lemma 2. Assume that the conditions of the theorem are satisfied and
f(n) #0 foralln €N, (n,A) = 1. If there is prime p such that p|A and
f(p) =0, thenn | f(n) forall neN.

Proof of Lemma 2. Assume that there is a prime p such that f(p) =0
with p|A. Then for each M € N, by (3) and our assumptions, we have

f(B)?f(An+1) f[A(pM — 1)n +1] =
= f(B)f[ABn(A(pM — 1) + pM) + B] =

= cf<B>2f<p)f(n>f[—§—<pM —1)n+ M]+Df(B)=Df(B) (modn),

consequently
[CF(B)f(n) + D][Cf(B)f(pM —1)f(n) + D] = Df(B) (mod n).
This with n = p*, s — oo shows that D = f(B). Thus, we have
C?’D*f(pM — 1) f(n)®> + CD*f(pM — 1) +1]f(n) =0 (mod n)
for all n, M € N. For each m € N, we also have
C*D?f(pM — 1)f(n)*f(m)* +
+CD*[f(pM — 1) +1]f(n)f(m) =0 (mod n).
which gives
C*D*f(pM — 1)[f(m)* — f(m)]f(n)> =0 (mod n)
and .

CD?[f(pM — 1) + 1][f(m)? — f(m)]f(n) =0 (mod n).

These imply
C*D?[f(m)? ~ f(m)]f(n)>=0 (mod n).
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Assume that
f(m)? = f(m) forall meN.
Since f(n) # 0 for all n € N, (n, A) = 1, the last relation implies
f(n)=1 forall neN, (n,A4)=1.

Thus, D = f(B) = 1. Applying (3) with (n,4) = 1, n — oo, we get
1=C+D=C+1,ie C=0. This is a contradiction.

Thus, we have proved that there is a positive integer mg such that
My = f(mg)? — f(mg) # 0 and so

C?°D*Myf(n)2=0 (modn) forall neN.
This with the complete multiplicativity of f shows that
n|f(n) forall neN,

Lemma 2 is proved. ¢

Now we prove our theorem. By using Th. B and Lemma 1-2, the
theorem is proved if f(p) = 0 for some prime number p.

In the next part we assume that f(n) # 0 for all n € N. We shall
prove that either f(n) := 1 identicaly, or

f(n)=0 (modn) forall neN.

Assume the contrary, that f(n) # 1 and that there exists a prime 7 such
that

(6) (m, f(m)) = 1.
Let k be a positive integer. Then, we get from (3) the relations
fIABKk(k+1)n+ B]=Cf(B)f(k)f(k+1)f(n) + D (mod n)
and
FIAB(k+1)n+B]=Cf(B)f(k+1)f(n)+ D (mod n),
consequently
F[ABk(k + 1)n+ B] f[AB(k + 1)n + B] =
= C*f(B)*f (k) f(k +1)*f(n)” +
+CDf(B)f(k)f(k+1)f(n)+CDf(B)f(k+1)f(n) + D*> (mod n).
On the other hand, from (3), we have
[lABE(k+1)n+ B] f[AB(k+1)n+ B] =
= f(B)f [A(k +1)*n(ABkn + B) + B] =
= C*f(B)Yf(k)f(k+1)*f(n)” +
+CDf(B)f(k+1)*f(n) + Df(B) (mod n).

The last two relations imply
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) CDf(B)f(k+1)[f(k+1) — f(k) — 1] f(n) =
= D(D - f(B)) (mod n)
for all n € N. Thus, for each m € N, we also have
CDf(B)f(k+1)[f(k+1)— f(k) = 1] f(n)f(m) =
= D(D- {(B)) (mod n),
and so
D(D — f(B))f(m)=D(D— f(B)) forall me&N.
Since f(n) £ 1, we have D = f(B). Applying (7) with n = 7°, s € N,
where 7 is the prime in (6), we have
CDf(B)f(k+1)[f(k+1)— f(k)—1]=0 (mod 7°)
for all k,s € N. Setting s — oo, the above relation gives
CDf(B)f(k+1)[f(k+1)— f(k)—1]=0
for all k € N. By our assumption, we have Cf(B)f(k + 1) # 0, conse-
quently f(k+1) = f(k)+1. Therefore f(n) = n is satisfied for all n € N,
which contradicts to (6).

Thus, we have proved that either f(n) = 1foralln € Nor f(n) =0
(mod n) for all n € N.

In the first case we have 1 = C + D. In the second case, (3)
and Th. B imply that there are a non-negative integer o and a real-
valued Dirichlet character x (mod A) for which f(n) = x(n)n* for all
n €N, (n,A) =1. It is clear that in this case o # 0.

The proof of Th. is complete. ¢ .
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