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Abstract: In our earlier paper Simon and Weisz [5] we gave an extension for
H? (0 < p < 1) spaces of a Paley type inequality wit respect to the Vilenkin-
Fourier coefficients. In the present work we formulate a two-parameter version
of this result. By duality a Kintchin type inequality follows in the (bounded)
two-parameter case.

1. Introduction

The classical inequality due to Paley [2] is well-known in the har-
monic analysis. Namely, the Walsh-Fourier coefficients of a function
f € IP (1 < p) satisfy the condition 35°|f(2¥)|2 < co. The analo-
gous statement fails to hold for p = 1. However, if we replace L! here by
the (dyadic) Hardy space H' then the sum in the question will be finite.
The same conclusion holds also in the two-parameter case (see Coifman
and Weiss [1]). In Simon and Weisz [5] we extended Paley’s result for

This research was supported by the Hungarian Scientific Research Fund (OTKA)
No T020497. '




50 P. Simon

HP (0 < p < 1) spaces taking Vilenkin-Fourier coefficients. (In this con-
nection see also Weisz [9].) In the present paper a two-parameter version
of Simon and Weisz [5] will be investigated.

2. Preliminaries and notations

In this section the most important definitions and notations with
respect to the two-parameter Vilenkin systems will be introduced. In
this connection we refer to Vilenkin [7], Simon and Weisz [6] and to the
books written by Schipp, Wade, Simon, P4l [3] and Weisz [8].

Let m = (mqg, my, ..., Mg, ...) be a sequence of natural numbers with
terms my, greater than 1 (k € N := {0,1,...}) and for all £ € N denote
Znm, the my-th discrete cyclic group represented by {0,1,...,m; — 1}.
Furthermore, let Gy, be the complete direct product of Z,, 's. Then Gy,
forms a compact Abelian group with Haar measure 1. The elements of
G, are sequences of the form (zg, %1, ..., Tk, ...), where zy € Zp, for every
kEeN.

We define the intervals in G, as follows. First of all let

I,(0) := {(=o, 21, -0y Ty ..) EGm 1z, =0 (j=0,...,n—1)}
(0#neN,Ij(0) :=Gp), In(z) =2+ I1,(0) (n€N) and
L(z, k) == {(%0, %1, ---) € In(T) : yn = k} (z € G, k € Zpy,,).

If n € Nz € Gy, and U is a dyadic subset of Z,,, (for more details
see Simon [4] and Simon and Weisz [5]) then the set I = Ugepln(z, k)
is called interval. Especially, I,(z) is also interval which will be called
simple interval. '

Let G := Gy, X G, be the cartesian product of G,,’s then G is also
a compact Abelian group. If I, J C Gy, are intervals and |I| = |J| (where
|I| and |J| is the measure of I and J, resp.) then I x J is called m-adic
square. In the special case I = I,(z),J = I,(y) (z,y € Gn,n € N)
I x J is a so-called simple m-adic square.

By means of m-adic squares we define a sequence .7-";:2 (j,u,l,v €
€ N,! < [log, mj],v < [logy m,]) of o-algebras as in Simon and Weisz [6].

L

The concept of martingales f = ( fj,u) with respect to this sequence will

be taken in the usual way (see Simon and Weisz [6]).
Denote the conditional expectation operator relative to f;’z by E;Z
L, . 0,0 1/2
and let f* := sup,, lfj,jl and o(f) := (ZZ‘;O En~1,n—1lfn,n_fn—lm—llz) /
be the diagonal maximal function and the conditional quadratic variation
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of f, resp. Let 0 < p < oo be given and define the Hardy spaces
HP(G), HE(G) as the sets of martingales f for which || f||z» = || f*|l, < 00
and [|f||gz == llo(f)llp < 0o, Tesp.

We shall need the atomic characterization of HP(G), H? (0 < p <
< 1). For this purpose we introduce the concept of atoms. Namely, a
function a € L?(G) is called a p-atom if supp a C I x J for an m-adic
square I x J , [lafl, < [I x JY27HP = |I\=2/P and [, a=0.fIx J
is a simple m-adic square then a will be called a simple p-atom. Hence,
the atomic characterization of H?(G), HP (G) reads as follows.

Theorem 1 [8, Weisz]. A martingale f = (f1%; (4,1) € N?,1 < [log, m;]—
—1) is in H?(G) (0 < p < 1) if and only if there ea:zst a sequence

(e, k € N) of p-atoms and a sequence (u, k € N) of real numbers such
that Yoo lklP < 0o and

0 > it = 11
k=0

for all j,1 € N1 < [logy my] — 1. Moreover, || f|| g, ~ inf (352 |1[?) l/p,
where the infimum is taken over all decompositions of the form (1). If
we replace HP(G) by H2(Q) and the p-atoms by simple p-atoms, then the
corresponding theorem holds with the restriction | = 0.

It is well-known (see e.g. Weisz [8]) that the dual of H'(G) is the
BMO(G) space, i.e. the space of all functions f € L?(G) for which

f— ~1 . -1 21/2
Illswo = sup (11 117 [ Jp=irset [ )" <o

where the supremum is taken over all m-adic squares. If we take only
simple m-adic squares here then we get the BMO(G) space, which is the
dual of H}(G) (see Weisz [8)).

The characters of G, (the so-called Vilenkin system) form a com-
plete orthonormal system in L'(G,,). For the description of this system
let mp(z) 1= exp 27”33” (n € Nz = (20,21,...) € G, i := +/—1). Then
the r,’s and their ﬁ?nte products are evidently characters. If we write
each n € N uniquely in the form (called m-adic decomposition of n)
n=y oMMy, where ny € Z,, (k€ N) then the characters of G, are
the functions ¥, := [0, rp*

A good property of the kernels Dy, : =Sy (n e N) will be
frequently used. Namely,
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_ Mn (ZE € In(O))
(2) Da (z) = {o (z € G \ 1(0)),

where My :=1, Mk+i :=myg-....mg (k € N). In the special case m; = 2
(k € N) we get the classical Walsh-Paley system.

The two-parameter Vilenkin system is defined as the Kronecker
products of the Vilenkin functions, i.e. for (j,k) € N? let U, ,(z,y) :
= U;(z)Us(y) ((z,y) € G). The Fourier coeflicients of a function f €
€ L'(G) with respect to the system (U;) are denoted by f(j, k), i.e.
G, k) = Jo 9, ((j, k) € N2). (The bar stands for complex conjuga-
tion.) This definition can be extended to martingales in a usual way (see
Weisz [8]).

Throughout this paper Cy, Cg, ... will denote positive constants de-
pending only on p, 8, ..., not always the same in different occurences.

3. Results

The sequence m will be called power-like if there exists a constant
g > 1 such that for all n € N the inequality m,41 < g¢m, holds. Thus
all bounded m’s are power-like and for example the unbounded m with
mp :=n+2 (n € N) is also such a sequence. However, if m,, := 2 for
even n and m,, := n+ 2 if n is odd then m is trivially not power-like. We
shall use the next notation: if 0 < @ < 1 < 3 are given then Z’Z means a
summation with respect to the indices &, € N for which oo < My, /M; <
holds.

Then our main theorem is
Theorem 2. Assume that m is power-like and0 < p<1,0<a <1< g
are given. Then there exists a constant C' depending only on p,m,a, 3
such that the inequality
- 8 mp—1my—1 R 1/2

(D ) 2 (220 3 3 |F( M M) ) < O o
j=1 mn=1
holds for all f € HP(G).
Proof. Taking into account Th. 1 it is enough to show that
mi—1m;—1
(3) sup > (mymy) P (MM 73" 3 Ja(i My, nM)[? < oo,
j=1 mn=1

where the supremum is taken over all p-atoms a. That is, let a be a p-
atom with support I x J, where I, J are intervals, |I| = |J| = v/Myy1 for
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some N € Nand v =2,..,my, [, ,;a=0and |a|s < |I x J|¥/2-1/r =
= y-2/ppr2 P71 (see the definition of p-atoms). Then a(u,v) = 0 if
u,v =0,..., My — 1. Therefore a4(jMy,nM;) =0 forall k,1 =0,...,N —1
and j=1,...,mz—1,n=1,..,m;— 1. Thismeansthat k> Norl> N
can be assumed in (3). :

Decompose the sum Y7 in (3) in the following way:

o0

> = Z+§:§:+Z:Z
k=I=N k=N l 0 k<l
MkSﬁMz aM; <M

1) (2 ®3)
::Z +Z +Z .

First we investigate the sum

my—1
1
Z() 2 4/pM4 4/p Z !a JMN,TLMN)|2
jyn=1
2 —4/p 4 pA— 4/pmk . (11) (12)
-3 S g = T 3
k=N+1 in=1 )

Since
|a(j My, nMy)| = |a(j My +u,nMy +v)|  (w,v=0,.., My —1)
we have
my—1 My—1

1) o, 4 L |
Z :m?vll/pr\} 4/13M]\—[2 Z Z Ia(jMN+u,nMN+v)|2 S

jmn=1 u,u=0
< my My MR ally < My Pt < 1

Denote Ur,U; dyadic subsets of Z,,, such that
I= U In(zr,u), J= U In(zz,v)
uEUr vEU
for some 7,7y € G,. Furthermore, define a,,, (v € Uz, u € U;) by
G o (1 1) = a(t,t) (1 € In(zp,v),t € In(zs, 1))
b 0 ((T,t) € Gz\(IN(xj,I/) X IN(iIIJ,,lj,)).

Then for all N4+1 < k € Njj,n = 1,..,m; — 1 and for all u,v =
=0,..., Myi1 — 1 we obtain
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18 Mig, M) 2 = (G M, nMi) [P <Y (G M, nM)|* =
vEUs velU

m=7 neUy
Myy1—1
=M% > D au(i My + u,nM + v)|%,
veldy  u,v=0
ueUy
This implies
. (12) o] mp—1
- 2 4 4—4
S <o, 32 S
k=N+1 jyn=1
Myyp1—-1
X Z Z |fl,y,#(ij + u, nMj, -|—'U)|2 <
velr u,v=0
uely
oo mp—1 Mpyy1—1

< 72MN+1M§r+41/p Z Z Z Z |, (5 M, + u, nMj + ) ? <

k=N++1 jn=1 veld; wu,v=0
wEUT

<M |a)3 < 447 < 1.

Now let the sum Z(“ be investigated in the following way:

(2) ) N-1 1-2 2_A_—z.771.1\,7——1771[—?. ' \
Z :m MN ’ Z my; "M, * Z Z |a(j My, nMi)|* +
lz% ji=1 n=1

00 m—1my—1

N-1 |
+ Z Z () =27 (M M)/ Z Z |(j My, nM;)|* +

k:N—i—l =0 1 n=1
M <BM, I=

mr—1m;—1

- Z Z (mkmllz/pMM22/”Z > |a(i My, ndy)? =:

k=N+1 [=N+1 j=1 n=1
Mk<,5Ml

(21) (22) (23)
= Z + Z + Z .

Recall that |a(j My, nM,;)| = |a(j My, 0)| = |a(j My+u,v)| forall N—1 >
>leNn=1,..,m —1 and for all u,v =0,..., My — 1. Therefore it
follows that
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N-1
21
S = mi MY M 1) M

=0
My <BM;

my—1 My—1
af - 9 2/p— 1-p/2 2—2
X E E la(j My + u,v)|*> < g%/P szp/ M7 &
j—-l u,v=0
my—1 My—1

Z MEPMRE ST N Ja(iMy + u,v)? <

Y <,BM =1 wu,w=0
N l
< BN — Lymy P My el < BN - 1) x

x m}v_z/pMJQ\r_4/p')’2_4/pM;4\r/i1—2 < ﬂ2/p—2( 1, )m%p 1

?

where [, =0, ..., N—1and My < BM,, but My > M, 1. (If My > M,
forall [ = 0,...,N — 1 then 2(21) = 0.) The assumption My < M,
implies 2V~ < my -..omy_; < B. In other words my_; < 8 and
N -1, <log, 8. Moreover my < gf since m is power-like. Consequently,

2(21 < B¥r- 2(gB)2/P1 log, 3.
Tn order to estimate Y® let v € U4; and

0 (7 ) = a(r,t) (7 € In(zr,v),t € J)
U0 ((1,t) € G2\ (In(z1,v) x J)).
Then |a(j Mg, nM;)| = |a(jMy,0)| = |a(j Mg, v)| and |a,(j My, v)| =

= |a,(jMy +u,v)| ifu=0,... My y —L,N<keNj=1,...m—1
andv=0,...My—1,N>leNn=1,.. m — 1. Hence

o] mg—1my—1

TP Y S (my (MM Y D (@i My, nM)? =
k=N+1 1=0 i —
Mk<ﬂMl

Z Z mkml —2/p M Ml) /p(ml - 1)M]§1 X
k=N =0

ﬁ
mk—-l A{N—l

X 2_; Z% |6 My, v)|* =
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v=0 vel;

S’YMA_,-l Z Z (mkml)l_Q/pml(Mk]\/[l)z_z/p><

k=N+1 =0
Mp<pM;

mi—1 My—1 Myy1—1

X Z Z Z MN+1Z|au]M/c+u ) <

veUr

2—-2 . 2-2
<My 1MN+1MN+1/p Z Z (My/B)*72/% x
k=N-+11=0,M <fM,
my—1 My—1 My41—-1

xz Z Z Zlauij+UU)|2

v=0 u=0 wvel;
<YM ML My My /82727 Y (N — 10 x
k=N+1

mg—1 My—1 My41—1

X33 T D (M +u,v)

j=1 v=0 u=0 veU;r

where [*) = 0,...,N —1and M, < BMyw but My > fMyw_, (k =
= N +1,...). Analoguosly to the previous cases we continue by noting
that 2NV—1¥+1 < My e My < My M1 < B (k=N +1,..), ie
my < B and N — ) < log, 8 — 1 =: Cg. Therefore it follows that

(22) 34
N < CoyBr MG My a3 <
< Cpy* P My My P MyPT? < Cymy < 6Cp.

Finally let 2(23) be investigated. We recall the decomposition a =

= Y veu; Gyyu- Thus (see the analogous observations with respect to
uEUS

2(12))
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=1 . n=1
00 k—1
= Z (mkml)l— /p(Mk_Ml)2 2/p
k=N+1 [=N4+1
M <BM,;
mp—1 m;—

X Z Z Zauu ]Mkuan)lzg

j=1 mn=1 velj ucly
k-1
< ,),2]\4]\—]4_1 Z mkml)l 2/p(Mle)2 2/p «

k=N+1 I=N+1
My<pM,

Myg1—-1

x Z ZZZ Z |G, (§ My + u, n M + v) |2 <

-1
j=1 n= 1VEL(1/_LEL{J u,v=0

— mp—1my—1

SVZMNHva:l/p Z Z Z Z Z Z X

k=N+1 I=N+1 j=1 n=1 vel; pels
M <M,

XMy allf < 4P < 1.
The sum 2(3) can be estimated in a similar way as Z(z) which completes

the proof of Th. 2. §

It is not hard to see that Th. 2 fails to hold if the sum Zﬁ is
replaced by 3 7 =0 - In other words if 0 < p < 1 then the inequality

oo mE—1m;—1

(32 tmam =020 S S | FM, M) F) < Gyl o

k,l=0 j=1 n=1

cannot be true for all f € HP(G). Indeed, let m, :== 2 (n € N) (i..
consider the double Waish system) and for all N € N define ay as

an(z, y) = 22N(1/p_1)D2N (m)TN(y)DzN (v) ((m,y) € Gg)-

Then (see (2)) ay is a p-atom and
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00 N—-1
Z 22(k+l)(1—1/P)|&N(2’C, 21)12 — 94N(1/p-1) Z 92(k+N)(1-1/p) >N
k=0 k=0

if p=1or 22N0/P-1) if 0 < p < 1, ie. supy Y pig 22(k+0(1-1/p) %
x |an (25,252 = oo. "

Now we show that the condition that m is power-like plays an
important role in Th. 2. Let V € N and consider the function

fN(xv y) = (‘DMN+1 (I) - 'DMN+1 ("E)) (DMN+1 (y) + DMN+1 (g))
((z,9) € G%),

where for each z = (2g,21,...) € Gy, we define the element Z € Gy, as
Z := (20, .., 28_1, 2y — 1 (mod my), 2y 41, --.). Taking into account (2) it
follows that the support of f is I := (Iy41(0) U Iy(0,1)) x (In4+1(0) U
UIn(0, 1)) By a suitable choice of m it can be assumed that I is an
interval. Furthermore, a simple calculation shows that

my—1 . (JF)My-1

In(z,y) = ( Z (1 —exp %}Z—Vj—) Z ka(a;)> X
mpy—1 omin (n—l—l)MN—_l-7 3
x(2Dan )+ DS (e ) Y W) () €6,

Let 0 < p < 1 and ay = 2‘2/7’M12V/f1_2f1v. Then ay is a p-atom and
|an (§ My, nM,)| = 272 MAP21 — exp MUlifj = 1,..,my — ;1 =
=0,..,N—-1and n = 1,...,m; — 1. Therefore if My < fMpy_q, ie.
muy-1 < [ then (see the proof of Th. 2)

21
S = et

my—1m;—1

N-1
B 97
X (mymy)* 2P ( My M) 22 1—exp 2>
R P
My <BM,

N-1
> Comy My S0 M S g miy > Cumi”

=0 1<5< 2
My <BM sismn/

The last inequality shows thét E(Zl) can be not bounded if the sequence
m is not power-like.



An inequality for Vilenkin-Fourier coefficients 59

On the other hand if we replace the Hardy space H?(G) (0 <p <'1)
by H?(G) in Th. 2 then the assumption on m can be omitted. Namely,
the following theorem is true.

Theorem 3. Let 0 <p<1,0< a <1< S are given. Then there exists
a constant C depending only on p, m, a, § such that
mr—1m;—1
(Z (mkml)l 2/p (M, M 2—-2/p Z Z | ]Mk;an l2> < C“fHHZ,’
j=1 n=1
holds for all f € HE(G).

By Th. 1 it is enough to show (3) where the supremum is taken
now over all simple p-atoms a. Formally we can write my instead of
in the proof of Th. 2, that is, we have ||a||z < va/p_l. This means that
the assumption m,41 < gm, (n € N) is not needed.

Similarly, if we consider the special case & = § = 1 then we get
Theorem 4. If 0 < p <1 then there exists a constant C depending only
on p, m such that

oo mp—1
(S mE st N | f M nad)P) " < Cllf s (f € H(G)).
=1

k=0

Indeed, in the proof of the estimation Z(l) < C, (see the proof of
Th. 2) we have not used the power-like condition of m.

Finally, we formulate the dual version of Th. 2.
Theorem 5. Assume that m is power-like and 0 < o < 1 < 8. Further-
more, let ax; (k,1 € N) be real or complex numbers such that

mp—1m;—1

Z myEmy Z Z IQJMk,anl < 0.

ji=1 n=1

Then the function f = Y omgm ny__’fl S 0ng i, Ying g, be-
longs to BMO(G) and

mip—1m;—1

’ /
1 fllBao < C(Z mamy Y > | >1 :

j=1 n=1

where the constant C' depends only on m, a, 3.

Taking into consideration Th. 3 we get the BM O-variant of Th. 5,
i.e., Th. 5 will be true for all m if we replace BMO by BMO.

In the bounded case, i.e. when sup,, m,, < co the factors my, m; in
Th. 5 can obviously be omitted. Since ||.||2 < ||.||Bmo, & Kintchin type
inequality follows:
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Corollary 1. Suppose that m is bounded, 0 < o < 1< 8 and f is of the
form

mk 1m;—1

f= Z D> FMe, nM) T ag

ji=1 n=1

,6 My — 1 my;— -1 1/2
Then O fllawo < (X8 X7 Sms 1F (M nM)) < || llswo
with a constant C > 0 mdependent on f.
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