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Abstract: In this paper a method is described for the construction of the
solutions of the functional equation F[F(z,y), F(z,y)] = F[F(z,z), F(y,v)],
F :R? — R, which are continuous and strictly increasing in each variable.

1. Introduction

The celebrated stability theorem of D. H. Hyers ([6]) about the

Cauchy functional equation
flz+y) = f(z)+ f(y)

is valid when z and y belong to a commutative semigroup and f assumes
values in a Banach space.

Many generalizations have been proved in the last twenty years
(see, for instance, [5]) and the first and most natural way to extend
Hyers’s result is to substitute the commutative semigroup with a set X
endowed with a binary operation F': X x X — X, i.e., to consider the
functional equations of the form
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FIF(z,9)] = f(z) + f ().
In order to prove stability theorems for this class of functional equa-
tions, it is necessary to require some property on F which takes the
place of the commutativity. In various papers ([3], [4], [7]) it is as-
sumed that F satisfies the functional equation

(1) F[F(z,y), F(z,y)] = F[F(z,2), F(y, )]
or a consequence of equation (1), i.e.,
(1) F*[F(z,y), F(z,9)] = F[F"(z,2), F*(y,y)]

for some integer v > 2, where
F'(z,z) = F[F”“l(m,x),F”—l(z, z)], F'(z,z)=F(z,z).
In this note we take an open interval I C R (R denotes the field of real
numbers) and consider the functional equation (1) where F': I? — I is
a continuous function strictly increasing in each variable and our goal is
to present a method for the construction of all solutions of equation (1).
As a consequence we can construct also the solutions of equation (1').
The classical functional equation of bisymmetry (or mediality) is
F[F(z, v), F'(u, v)] = F[F(m,u),F(y,v)],
so equation (1) may be considered as a form of the bisymmetry equation
on restricted domain, i.e., u =z and v = y.

First we study the case I = R.

To solve equation (1) means to describe all continuous increasing
weakly bisymmetric groupoids in R. Among them it is possible to pick
up those which are quasi-groups (for this terminology see [2]).

By using standard procedures (see [1] and [2]) we transform our
problem into another functional equation, whose solutions allow us to
get the solutions of (1).

Theorem 1. The function F is a solution of (1), continuous and
strictly increasing in each variable if and only if there exist functions G :
: R?2 = R, continuous, strictly increasing in each variable and reflexive
and ¢ : R = R continuous and strictly increasing such that F(z,y) =
= ¢[G(z,y)] and the pair (¢, G) satisfies the functional equation

(2) $[G(z,y)] = G[s(2), 6(v)]-

. The functions ¢ and G are uniquely determined by F.

Proof. Let F be a solution of (1) and consider the function ¢(z) =
= F(z, 2); clearly ¢ is defined on R, continuous and strictly increasing.
We show that the range of ¢ coincides with the range of F'. Fix z <y
and let a = F(z,y); by (1) we have F(a,a) = F[F(z,z), F(y,y)] and,



Weakly bisymmetric groupoids and quasi-groups in R 51

since F is strictly increasing in each variable, we obtain F(z,z) < a <
< F(y,y). Thus the continuity of F' implies that a = F(z,z) = ¢(z) for
some z between z and y. Thus for every pair (z,y) in R? there exists
a unique z = G(z, y) satisfying

(3) F[G(z,y),G(z,y)] = F(z,y).

Obviously the function G is continuous and strictly increasing in each
variable. Moreover, putting z = y into (3), we get F[G(z, z), G(z,z)] =
= F(z,z) and so we obtain G(z,z) = z for every z € R. Thus we can

write

F(z,y) = ¢[G(z,y)],
where ¢ is continuous and strictly increasing. By substituting the pre-
vious relation in both sides of equation (1) we have

FF(z,y),F(z,y)] = ¢[G(F(z,y), F(z,y))] =
= ¢[F(z,v)] = ¢[¢(G(z,1))]

F[F(z,2), F(y,y)] = $[G(F(z,2), F(y,9))] = [G(d(2), $(v))]-
Thus if F(z,y) = #[G(z,y)] is a solution of (1) then
¢[G(z,y)] = Glo(x), 6(v)].

The converse is obvious. ¢

From the representation given by the previous theorem we have
that if F' is a quasi—group then the function ¢ must be surjective.

From now on we study equation (2) under the following assump-
tlOHS.G continuous, reflexive and strictly increasing in each variable
(A) ¢:R— R continuous and strictl

y increasing.

Instead of writing that G is continuous, reflexive and strictly increasing
in each variable in its domain, we simply say that G is a CRI-function.
Remark 1. Observe that if the pair (¢, G) is a solution of (2) satisfying
(A), then also the pair (1, K), where ¢(z) = —¢(—z) and K(z,y) =
= —G(—=z, —y) satisfies (2) and (A).

2. Properties of the solutions of equation (2)

In this section we deduce some conditions that the pair (¢, G) must
satisfy if it is a solution of equation (2) satisfying the assumptions (A).
Fix u € R and define

A(u) := {(z,y) € R* : G(z,y) = u},
i.e., A(u) is the level-set of G relative to the value u. In Section 3, dur-
ing the construction of the solutions, we will have functions Gy, G, - -
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defined on a subset S of R? and we will still use the symbol A(u) to
denote the level-set of the function under consideration; obviously in
this case A(u) C S. ,

Theorem 2. Suppose that (¢, G) is a solution of equation (2) satisfy-
ing (A).

For everyu € R, (u,u) € A(u). If (z,v), (2,w) € A(u) and z > «,
then w < y.

The set A(u) is unbounded in both directions, i.e., if sup{z :

(z,y) € Au)} < +oo then inf{y : (z,y) € A(u) } = —oo, if inf{z :
:(z,y) € Au)} > —oo then sup{y : (z,y) € A(u)} = +oo.

Define E, = {z € R : (z,y) € A(u) forsome y}; E, is an
open interval and there exists a continuous strictly decreasing function
fu : By — R such that

Alu) = {(z, fu(z)) : € By} |

Moreover, (z,y) € A(u) if and only if (¢(z), (y)) € A(d(u)).
Proof. The first two properties follow from the reflexivity and the strict
monotonicity of G.

By the continuity of G, the set A(u) is closed in R2. Moreover,
the strict monotonicity implies that every line parallel to a coordinate
axis meets A(u) at most in one point. Assume (z,y) € A(u) and take
z >z and w < y; then G(z,w) < u < G(z,y) so by the continuity
there exists (¢,s) € A(u) with £ <t < z and w < s < y. This implies
that the set A(u) is connected. Suppose Z = sup{z : (z,y) € A(u)} <
< 4oo and § = inf{y : (z,y) € A(u)} > —oo. Take (z,y) € A(u); then
G(z,9) < u < G(Z,y) and, by continuity, G(Z,7) = u. Now arguing as
before we can find (t,s) € A(u) with Z < ¢ and s < §; a contradiction.
Similarly we prove the unboundedness in the other direction.

From these results we have that E, is an open interval and A(u) =
= {(z, fu(z)) : z € E,} where f, is a strictly decreasing function. Since
the graph of f, is the set A(u), it is connected and the monotonicity
of f, implies its continuity. Let now (z,y) € A(u); by equation (2) we
have

¢[G(z,v)] = ¢(u) = G[d(z), 6(v)],
and so (¢(z), #(y)) € A(@(u)) and vice-versa. ¢

From now we denote by Gr(f) the graph of the function f.

Given the function ¢ we define ® : R2 — R? as ®(z,y) =
= (¢(z), ¢(v)) and we study the number of periodic points of the func-
tion ¢.
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Theorem 3. Suppose that (¢, G) is a solution of equation (2) satisfy-
ing (A). '
(i) FEither ¢(z) = z or it has no more than one fized point.
(ii) If ¢ has one fized point, say p, then ¢(z) < = [¢p(x) > z] forz <p
and ¢(z) > z [¢p(z) < z] for z > p.
Proof. (i): Suppose that p,q are fixed points of ¢ with p < ¢; from
equation (2) we get
¢[G(p,q)] = G(p,q) € (p, ),
so G(p,q) is a fixed point of ¢ in the interval (p,q). This, with the
continuity of ¢, implies that the set of the fixed points of ¢ is connected.
Thus we suppose that the interval [p, q], p < ¢, is the set of the fixed
points of ¢ and consider the level set A(q). If (z,v) € A(q), then also
®(z,y) € Alg) and if y € (p,q) (and so z > q) we obtain that both
points (z,y) and ®(z,y) = (¢(z),y) belong to A(q); a contradiction.
(ii): Assume ¢(z) > z for all z € R and consider the level set
A(p); for any point (z,y) € A(p) we must have ®(z,y) € A(p); from
¢(z) > = and ¢(y) > y we have a contradiction since the function f, is
strictly decreasing. ¢

3. Comnstruction of the solutions

In this section we describe a method for the construction of the
solutions of the functional equation (2). More precisely we construct
the pairs (¢,G) with ¢ : R — R continuous and strictly increasing
and G : R? — R continuous, strictly increasing in each variable and
reflexive. To do this we assume ¢ given and construct G so that (2) is
satisfied. The procedure is different depending on the number of fixed
points and on the range of ¢. In the following Z and N denote the
integers and the non-negative integers respectively.

I. The function ¢ has no fixed points and is surjective.

By Remark 1 we can suppose, without loss of generality, that
¢(x) > z. The surjectivity of ¢ implies that the function @ is invertible
on R2.

First assume that (¢, G) is a solution of (2).

We fix arbitrarily a value a and set go = f,. Now we define the
sequence of functions




54 G. L. Forti

gn(z) = @"g(z) :=¢" 0 go © ¢ "(z), =€ ¢"(E.), mnE€ L.
Every function g, is continuous and strictly decreasing and Gr(g,) =
= A(¢"(a)). About the function G, we observe that it is completely
determined by the values assumed in the set
(4) F=FgNF;
where .

Fi :{(:c,y) eR?:y>giz),z€ qﬁ’(Ea)}U
U{(:v,y) eR?: x> sup ¢i(Ea)}, 1=0,1.
Indeed, take a point (z,y) € R? \ F and let u = G(z;y); there exists a
unique n € Z such that a < ¢™(u) < ¢(a) and so ®"(z,y) € F. By the
equation we obtain
G(z,y) = ¢ [G(2"(z,v))]-

Following the properties stated in Th. 2 and the considerations above
we can easily describe how to construct the solutions of (2), when we
are given a function ¢ increasing, without fixed points, surjective and
such that ¢(z) > x for every z € R.

We choose a € R and an open interval E, with a € E,, then we
take an arbitrary continuous strictly decreasing function gg defined on
E, such that its graph is unbounded in both directions and go(a) = a.
Now we construct the function

g91(z) = @go(z), = € ¢(Ea).

Clearly the fixed point of g; is ¢(a) > a so Gr(g;) is in the upper-right
region of the plane determined by Gr(go).
Theorem 4. Let F be the set defined as in (4) and let Go : F — R be
a CRI-function with the following properties:

(i) Gr(go) = A(a);

(i) Umys,s)(z,g:(2)) Go(ts 8) = ¢(a) for every z € d(Eq)-
Then Go can be uniquely extended to a CRI-function G : R? — R such
that (¢, G) is a solution of (2).
Proof. Condition (ii) assures that if we extend Gg to the closure of F
by assigning the value ¢(a) on Gr(g:), such an extension is continuous.
Now we extend Gy to the whole R2. Define

Fr={®™(z,y): (z,y) € F}, nel, FO="F.

Obviously the sets F™ are pairwise disjoint and R? = U'n,EZ F". Thus
for every (z,y) € R? there exists a unique n € Z such that ®7"(z,y) €

€ F; we define

G(z,y) = ¢ [Co(@ " (z,9))].
We immediately recognize that the function G has all properties re-
quested and the pair (¢, G) is a solution of equation (2). O
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With the previous construction in general we have a groupoid and
not a quasi-group. To get a quasi—group we have to choose the function
go so that its domain and its range are the whole R. In this case for
fixed z and y the functions z — G(z,y) and y — G(z,y) assume all
real values and so do the functions z — ¢[G(z,y)] and y — ¢[G(z,y)].

II. The function ¢ has no fixed points and is not surjective.

By Remark 1, it is enough to study the case ¢ bounded below and

s0 ¢(z) > z. Set m = inf; ¢(z) = limy 00 ¢() and define
D =R?\ (m, +o0)2
Note that for any (z,y) € R? the point ®(z,y) does not belong to D.

From now on, given a function f we shall write inf f and sup f
instead of inf, f(z) and sup, f(z).

Theorem 5. Assume (¢, G) is a solution of (2) satisfying (A), with
¢(z) > = and m = inf ¢ > —o0.

There exists Uy < 400 such that for every u < Uy the interval F,
is bounded above and u < v < Uy implies sup E,, < sup E,. Moreover,
sup{sup By : u < U1} = +00 and inf{sup E, : u € R} = —o0.

There exists Us < +00 such that for every u < Uy the function f,

is bounded above and u < v < Uy implies sup f, < sup f,. Moreover,
sup{sup fy : u < Uz} = 400 and inf{sup f, : u € R} = —oo0.
Proof. Take a point (z,y) € R? and its corresponding point ®(z,y).
We hold z fixed and let y go to —oo; the point ®(z,y) goes to (¢(z), m).
If G(z,y) =& —oo for y — —oo, then the functional equation and the
continuity of G imply G[¢(z), m] = m. Thus the level curve A(m) is
not strictly decreasing; a contradiction.

The previous argument shows that for u small enough FE, 1s
bounded above; let U; be the supremum of these values. Take u <
< v < Uy, obviously sup E, < sup E,; assume sup E, = sup B, = s,
then limg_s fu(®) = limgs fo(z) = —oco and so limg_,4(s) fo(u) (z) =
= 11m:1:-—+¢(s) fd)('v)(m) =m, Le., (¢(S)v 'm) = A((,ZS(’U,)) mA(d’(’U))v a contra-
diction.

If U; = +oo, obviously sup{sup B, : u < Ui} = +co. Let now
U, < +co and suppose sup{supE, : u < U1} = ¢ < +oo. Then
sup Ey, = o if not, take (z,y) € R? with £ > ¢ and y < fy, (z); from
Uy < G(z,y) < Uy we have a contradiction.

Take now zo > o and let y — —oo; clearly G(zo,y) — Un, since
the line £ = mg crosses, as y — —oo, all sets A(v) for v in a right
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neighbourhood of U;. We have ®(zo,y) — (é(zo),m) and, by the
equation and the continuity of G, we obtain

G(q)(a:O: y)) — QS(UI) = G(¢($0)1 m),
i.e., (¢(zo), m) € A(¢(U1)) for every zy > o; a contradiction.

To prove the last statement, assume inf{supF, : u € R} =
= L > —oo, take a point (7,m) with 7 < ¢(L) and the correspond-
ing level set A(t). If we consider the level set A(¢~(t)) we immediately
get sup Ey-1(;) < L; a contradiction. '

Similarly we prove the second part of the theorem. ¢

The function G is completely determined by its values in D. In-
deed, the sets D, = ®"D, n > 0, are pairwise disjoint and U:__o_% D, =
= R?. By the equation if (x,y) € D,, we have

G(z,y) = ¢"[G(®"(z,9))],
and @~ "(z,y) € D.

Now we show how to construct the solutions when we are given
the function ¢ which is bounded below.

Theorem 6. Let D be the set defined above and let Go : D — R be a
CRI-function with the following properties:

(i) the level sets of Go in D satisfies the conditions of Th. 5;

(ii) for every u € R such that sup E,, < +oo, Go(¢(sup E,),m) =
= ¢(u); for every v €R such that sup f, <-+oo, Go(m, ¢(sup f,)) =
= ¢(u);

Then Go can be uniquely extended to a CRI-function G : R? — R such
that (¢, G) is a solution of (2).
Proof. We extend Gy to the whole R? as follows. Define

D" = {®"(z,y): (z,y) €D}, neN, D°=D. |
Obviously the sets D™ are pairwise disjoint and R? = UneN D™. Thus
for every (z,y) € R? there exists a unique n € N such that ®"(z,y) €
€ D; we define

C(z,y) = ¢" [Go(®"(z,))].

Condition (ii) guarantees that the function G is continuous on R? and
obviously by our construction the pair (¢,G) is a solution of equa-
tion (2). ¢
Remark 2. If we look to the statement of Th. 6, the following problem
arises: How to construct a CRI-function satisfying conditions (i) and
(ii) 7 Clearly the problem concerns condition (ii), since we have to give
the values to G in points which depend on Gy itself.

Now we show a constructive procedure.



Weakly bisymmetric groupoids and quasi-groups in R 57

Take a continuous strictly decreasing function hy defined on
(—o0,A), m < A < +o0, with ho(m) = m and define a CRI-function
_ G() in '

Ro = {(z,y) : y < ho(z),z € (—o0, A) }
such that Go(z, ho(z)) = m and satisfying the conditions of Th. 5.

Assume A = -+oco. In this case all sets E, bounded above cor-
respond to values of u less than m. Thus we can compute for each of
these E, the value ¢(sup E,). Now we define Gy on the line (m, +00) x
x {m} so that Go(¢(sup E,), m) = ¢(u). The next step simply consists
in defining Gy below the line y = m in order to get a CRI-function
continuous also in the points of the line (m, +o0) x {m}.

Suppose now A < +oo. Thus for every u < m we have sup F, <
< 4o00. For these values of u we compute ¢(sup FE,) and define Gy
on (m, $(A)) x {m} so that Go(¢d(sup E,),m) = ¢(u). Now we take
a continuous strictly decreasing function hy defined on [¢(A), B), B <
< +o00, such that h1(¢(A)) = m; furthermore, we define Go(z, h1(z)) =
= ¢(m) and extend Gy to the set ,

Ry =RN{(z,9):y <h(a),z < B)
so that Gy is a CRI-function satisfying the conditions of Th. 5. We
proceed iteratively to get Gp on the whole set below the line y = m.

The analogous procedure permits to construct G on the left of

the line £ = m and satisfying all conditions of Th: 6.

IT1. The function ¢ has one fixed point and is surjective.

Let p be the fixed point of ¢ and assume ¢(z) > z for z > p

and ¢(z) < z for z < p. Let f, the function corresponding to the
- level curve A(p), by Th. 1 we have ®(z, fp(z)) € A(p) and this implies
Io(d(z)) = ¢(fp(x)), i.e., fp and ¢ are a pair of commuting functions.
Theorem 7. For every u € R it is B, = R and f,(R) =R.
Proof. First we prove that B, = R and f,(R) = R. Suppose that
supE, = 0 < +oo, then as £ — o we have fp(z) — —oo and
(d(z), d(fp(x))) = (¢(0), —00); this implies ¢p(c) = o; a contradiction
since o > p. Similarly we get inf F,, = —oo and f,(R) =R

Fix now u > p and consider the function f,. Since the graph of
fu is above that of f,, from the previous part of the proof we obtain
sup £, = sup f, = +o0.

If E, C [p, +00), then for every n € Z we have ¢"(E,) C [p, +00).
This implies that the set {(z,y) € R? : G(z,y) > p} is contained in
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the set {(z,y) € R? : z > p }. This is impossible, since for every point
(z,y) with z € E, N (—o0,p) and y > f,(z) we have G(z,y) > p. The
same argument proves that f,(E,) is not contained in [p, +00).

Assume now that inf F,, = a > —o0. Since a < p, we have ¢(a) <
< aand ¢(u) > u; this implies that A(u)NA(d(u)) # 0: a contradiction.
Thus inf F,, = —oco. Similarly we prove that inf f,(F,) = —oo.

Obviously the same result holds for u < p. ¢

As a consequence of Th. 7 in this case the groupoid F is in fact a
quasi—group.

Now we fix two arbitrary values a < p and b > p, we set hg = f,
and go = f» and define the sequences of functions

=P "g0 , h,=® "hyg, necZ.
Clearly we have the following.
Theorem 8. Let {gn} and {hy,} be defined as above. For everyn € Z
and z € R we have
gn(2) > gni1(z) > fp(2) > hny1(z) > hn(z);

for every x € R we have

infgn(e) = lim gn(z)=fp(z) = lim hn(z)=suphn(z).

Moreover, the function G is completely determined by the values as-
sumed in the set

E={(z,y) eR?: g1(z) < y < go(z) }U
U{(z,y) € R? : ho(z) <y < hi(z)}.

Following Ths. 7 and 8, now we construct the solutions of (2).
Assume we are given a function ¢ with the fixed point p and such that
¢(z) < z for z < p and ¢(z) > z for z > p. We choose two arbitrary
numbers ag and by with ag < p < by and define
(5) : an = ¢"(ag), bp=9¢"(bp), neZ.

Obviously the two sequences {a,} and {b,} have the following proper-
ties:

(6)

Let go and ho be two functions defined on (a1,b;) continuous, strictly
decreasing, with
(7) ho (CI,O) = ao,go(bo) = bo; h()(.’L‘) < go(ZE), T c (CLl, b]_)

Now we define four sequences of functions {Al},{A"}, {4%}, {9~ },
n > 0, with the following properties:

Apt1 < Gn; lim ap, = —oc0; lim a, =p,
n——+oo n——00

bnt1 > by; lim b, = 4+oo0; lim b, =p.
n——+o00 n——00
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(8)

( h;, gil : {a1,a09] =& R are continuous and strictly decreasing,

hlandgl are the restrictions to (a1, aq] of hg and g respectively,
hiy(2) < Bppr (2) < ghya(2) < gn(2),
hpy1(a0) = lim ¢~ [k} (z)],

m—-)al

) 9hia(a0) = lim ¢~ [gh ()],

z—af

lim [g}(z) — hln(zz)] =0 for every z € (a1, a0,

n-+--o0o

the function H'(z) = lim gl (z) = lim Al (z) is strictly

n—-4o00 n—-+o0o

| decreasing and H'(ag) > p;
(9)
( hy,9gr ¢ [bo,b1) = R are continuous and strictly decreasing,

hy and g7 are the restrictions to [bg, b1) of ho and go respectively,
he(2) < hypy(2) < g741(2) < gp(2),
hpt1(bo) = lim ¢7*[A7 ()],

z—b;
) Fra(bo) = lim ¢~ [g} ()],
T—b -
ngrfoo [95(z) — B (z)] =0 for every = € [bo, b1),
the function H"(z) = lim g/ (z) = lim A (z) is strictly

n—-+00 n—-4o0o
| decreasing and H" (bo) < p.

In the next step we extend the functions hg and gg to the whole R.
Lemma 1. Let go,ho : (a1,b1) = R be as in (7). Define go : R\
\ (@1,01) > R as

90("17) (I)ng:L(IL'),CL‘ € [b’rH bn+1)7
go(z) = g, (z),z €
and hg : R\ (a1,b1) = R as
{ ho(ﬂ?) = @nh;(m)am € [bn7 bTH-l)’

(a"n,-l—la a’n]7

ho(:E) = @nh;(m),.’lj € (a'n+17 a'n]’

where n > 1 and {hL}, {7}, {gL},{9%} are as in (8) and (9).
Then go and hg are continuous and strictly decreasing on R.
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Moreover,

mgr-l{loo Jo (2}) - :1:21-}1—100 o (117) T

lim go(z) = lim ho(z) = +o0.
T—r—00 T—r—00
Proof. We prove the lemma for the function go. It is continuous.
Indeed
90(bn) = @" g7, (bn) = 4" 0 g7, (bo)
and

lim go(z) = lim ®" g7 _,(z) = 1ir£l_¢"“1 o gn_1(z) = ¢"[g5 (bo)],

r—rb,, z—b;, z—rb; v
thus go is continuous on [by, +00); in the same way we prove that it is
continuous on (—oo, bg]. From this and the properties of the functions
g, and g}, we immediately have that gy is strictly decreasing. Since
H"(bp) < p, for n large enough we have gn(bo) < p and this implies
that limy, o0 go(bn) = —00 and so lim,, oo go(z) = —o0.

In a completely analogous way we prove the other limit formulae. ¢
Now we define
gn(z) = D "go(z) b () = ® "ho(z) , zE€RnNn>0.
Lemma 2. For every n > 0 the restrictions of ¢, and h, to [bo, b1)
are gy, and hy, respectively. For every n > 0 the restrictions of g, and
hn to (a1, a0] are g%, and b, respectively.
Proof. Take x € [bg,b;), then ¢™(z) € [by,bny1) and, by the construc-
tion of go, go 0 ¢™(z) = ¢™ 0 g7 (z) and so g, (x) = @ "go(z) = gn(z).
The other cases are analogous. ¢
Lemma 3. The sequence {gn} is decreasing; the sequence {hy,} is
increasing. For every n and every z € R we have g,,(z) > hn(z).
Proof. First we consider the sequence {g,}; if = € [bg,b;) then
In+1(%) = g}11(2) < g5(z) = gn(z) by the definition of the sequence
{gn}. Take z > by, so z € [by,by41) for some N and ¢"+(z) €
€ [bN4n+1, bN+nt2), ¢™(%) € [ON4n; bN4n41). Then
gn+1($) — ¢—n—1 o ¢N+.n+1 og;'V+n+1 ° ¢—N—n—-1 o ¢n+1($).

= ¢N o g;‘V+n+1 0 ¢——N($); ’Yn(x)

= ¢ 0 N o gl 07V 047 (a)

=" o girin 0 ¢V (2);
and the inequality gn1(z) < gn(z) follows from g7, (z) < g7(z). In a
completely similar way we obtain the the inequality for z < aq.

It remains to be considered the interval (ag, by); take = € [b_1, bo)
and so ¢(z) & [bg,b1). Then for n > 1 we have
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gn(z) = ¢ " 0good™(z) =¢ " oggod™od ™ o g(z)
=¢ "ogoog" tog(z)= ¢l o "0 goo g™ o ¢(z)

=¢" ogn_10¢(x) = ¢ ogy_; 0 (x)
and gnp+1 = ¢~ ! o g7 o ¢(x), thus the inequality follows. For n = 0 we
have
g1(b—1) = ¢ o goop(b_1) = ¢ 0 go(bo) = ¢~ (o) < bo,
so g1(z) < go(z) for every z € [b_1, bp).
Proceeding iteratively we get the inequality on the whole inter-
val [p, bo)

. Similarly we obtain the inequality on (ag, p) and for the sequence
{hn}.
Arguing as before we prove the inequality h,(z) < g,(z) startlng
from h()(III) < go(.'lf) on (ao,bo) O
Lemma 4. Suppose {s,} and {u,} are sequences of continuous de-
creasing functions defined on an open interval I. Moreover, assume
that
5n(2) < 8p41(2) < Uny1(z) S up(z),n> 1,z € I;
7711?00 on (SC) ngr-ri-loo tn (SU) - Z(l‘), zel
Then Z s continuous in I.

Proof. Obviously Z is non increasing. Suppose that Z is not contlnuous

in 7r; this means that
lim Z(z) = A> B = lim Z(z).
z—rt

T—r—
Assume B < Z(r) < A. For any € with 0 < € < (Z(r) — B)/4 there
exists v such that B :
Z(r) —
su(r) > Z(r)—e> Z(r) - ~—(T)4

and, by the continuity of s,, there exists § > 0 such that for z €

€ (r— 46,7+ 6) NI we have
Z(r)-B Z B
su(z) > Z(r) — (T)z = (T);_ :
Hence for every n > v and z € (r— 4,7+ ) NI we have s, (z) >
and so Z(z) > ﬂ%ﬁ. This implies

Z(r)+B
2

Z(r)+ B

?

hm Z(z) >

z—rt 2
a contradiction.

If B = Z(r) < A, the analogous proof is obtained by working on
the sequence {u,}. ¢
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Lemma 5. For everyz € R,
lim g,(z)= Um h,(z) = H(z).
n——+o00

n——400 »
The function H is continuous and strictly decreasing and
Hifpo,b) = H' s Hi(az,00] = H'.
Moreover, H commutes with ¢: Ho¢ = ¢o H.
Proof. Take z € (p,+00) and let N € Z such that ¢"V(z) € [bo, b1).
For n such that n+ N > 0 we have

gn(z) = ¢N 9 gni+N © ¢_N($) = ¢N o 92+N © ¢~N($),

ha(2) = ¢" 0 hniw 067 (z) = ¢V o by 0677 (2),
thus from the continuity of ¢ and the property
im [gy(z) — hy(2)] =0

n—r—+00
for every = € [bg, b1), we get
lim [gn(z) — hn(z)] =0

n—4-00

for every z € (p, +00). So we define the function H as the common limit
of the two sequences. In the same way we prove the existence of the
limit function H in z € (—oo,p]. Obviously in [bg, b1) and in (a1, ag]
we obtain H" and H' respectively. By Lemma 4, the function H is
continuous. By (10) we have H(z) = ¢" o H"0¢p™V () in [b_n, b_n+1),
since H” is strictly decreasing, so it is H in (p, +00). The same is true
for z € (—o0, p].

The commutativity of H and ¢ follows immediately. ¢
Theorem 9. Let £ be the set defined as in Th. 8 and let T ={(z, H(z)):
:x € R}. Let Go : EUT — R be a CRI-function with the following
properties:

(i) Gr(go) = A(bo);
(11) G’I(ho) = A(ao);
(i) T = A(p);

(10)

lim Go(t,s) =b_1,z € R,
i) ()2 oy 0L ) = b
lim Go(t,s) =a_1,z € R
() ey 0L 8 = 01
Then the function Go can be uniquely extended to a CRI-function G

on R? such that (¢, G) is a solution of equation (2).

Proof. Since
R>=TU ( U 5”)

neZ
and the sets 7" and £" are pairwise disjoint, we extend G to the whole
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R? by using the equation. The properties of the functions Gy assures
that G is a CRI-function. ¢

In the case ¢(z) < z for z > p, ¢(z) > z for £ < p we proceed in
an analogous way.

IV. The function ¢ has one fixed point and is not surjective.

By Remark 1, we study only the case ¢ bounded below and so
¢(z) > z for z < p and ¢(z) < z for z > p. Set m = inf¢ =
= limg , o ¢(z). We have the following.

Theorem 10. Le (¢,G) be a solution of (2) satisfying (A) with ¢ as
above. ’

For every u € R the interval E, is bounded above and u < v
implies sup By, < sup F,. Moreover, inf{sup F,, : u € R} = —oo and
sup{sup E, : u < p} = sup E, = inf{sup F,, : u > p}.

Every function f,, u € R, is bounded above and u < v implies
sup fu < sup fy.

Moreover, sup{sup f, : u < p} = sup f, = inf{sup fu : © > p},

inf{sup f, : u € R} = —co and, for every z € E,, inf{f,(z) : u>p} =
— fp() = sup{fu(z)  u < p}.
Proof. Consider the function f, and a point (z, fp(z)); if sup E, = +o0,
the point ®(z, f,(x)) = (¢(x), fp(¢(z)) is above the line y = m and its
first coordinate goes to +oo as x — +oo; this implies that p > w =
= inf f, > m. Thus ¢(fp(z)) = fo(d(z)) = ¢(w) = w as z — +oo, ie.,
w is a fixed point of ¢ different from p; a contradiction. So sup E, < +
+0o and inf f, = —co. A similar argument proves that sup f, < +oc.
Thus the two properties hold for every u < p.

Let now u > p and suppose sup E,, = +o0. If f,(z) = —ccasz —
— +00, then ¢(z) — +o00 and ¢(f,(z)) — m; a contradiction since this
implies A(u) NA(¢p(u)) # 0. If fo,(z) = k as £ — +o0, then ¢(fy(z)) —
— ¢(k) and to avoid A(u) N A(¢p(u)) # 0 we must have (k) < k; the
only possibility is k¥ > p. Clearly, for every n € N the functions fgn ()
have the same property and ¢™(u) — p as n — +o0o0. Thus p = inf{u >
> p:sup E, = +oo}. Since sup E, < +o00 we get a contradiction since
no level set can have points in the region over the curve A(p) and under
the line y = p. As in Th. 5 we prove that inf{sup E, : u € R} = —o0.

The other parts of the theorem follow immediately. ¢

Consider the set D = R? \ (m, +00)2. For every point (z,y) be-
longing to the set (m,+00)? \ [p,+00)? there exists a unique n € N
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such that ®~"(z,y) € D. Thus the function G is completely deter-
mined on R? \ [p, +0c)? by the values assumed in D. More precisely,
if s(p) = sup E,, we immediately see that the values of G in the set
{(z,y) : m <z < ¢(s(p)),m <y < fp(z)} are completely determined
by those in DN {(z,y) : z € Ep,y < fp(z)}.

For what concern the set [p, +00)?, we fix a value b > p and set
go = f» and define g; = f4(). Clearly the values of G on [p, +00)? are
completely determined by those in the set

P:={(z,y):z>p, max(gi(z),p) <y<golz)}

If we consider the sequence {fyn(m)}, n € N, then we have
Ug'oo Egnm) = FEp. Thus every z € E, belongs to Egn(m) for n
large enough and we have

lim f¢n(m) (1‘) = fp((E)

n—-+4oco

If we start from f, with u > p and proceed as before, we obtain
a sequence of functions pointwise converging to f, from above.

Guided by Th. 10 and the previous discussion about the function
G, we proceed by describing a constructive procedure for the solutions.

We choose four real sequences {s,}, {un}, {rn} and {v,}, n € N,
satisfying the following conditions:
— for every n, m < s, < Sp41 and s, > @(sp—1); LUm s, =7 > p;

n—-+o00

— foreveryn, m < u, < up41 and u, > Hlu,—1); lm u, =0 > p;
n——+4o00
— for every n, rp, > rpy1 and r, > @(rp_1); lim 71, =1;
n—-+o0o

— for every n, v, > Upy1 and v, > (Vp—1); lim, 100 vy = 0.

Now we fix by < min{rg, v} and take two strictly decreasing continuous
functions hg and go defined on (—o0, sg) and (—o0, 79) respectively and
such that

—  ho(m)=m, lm ho(z) =up, lim ho(z) = —o0;
r——00 T8y

—  go(bo) =bo, lim go(x)=wvo, lim go(z) = —o0.
Z——00 Ty

Finally we take four sequences of strictly decreasing continuous func-
tions {AL}, {7}, {gL} and {g7}, n > 1, with the following properties:
— for every n > 1, A}, and g, are defined on (—oo,m] and
zBElOO h’iz(m) = Un, hiz(m) = ¢(Un—1),
(11) .
lim gp,(z) = vn, gn(m) = ¢(vn—1);

T—r—00
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— for every n > 1, k7, is defined on [¢(s,_1), 5,) and

(12) lim B (z) = —o00, KL(@(sn_1)) = m;
T—+S8,

— for every n > 1, g7, is defined on [¢(r,,_1),7,) and

(13) Iim_ g;(x) = =00, g;(d)(rn——l)) =m;
T,

— for every n > 1,
ho(z) < hn(2) < hipy(2);  go(z) > gh(z) > ghys(z), o € (~oc0,ml;
hn(z) < h;+1(m)7 T € [#(sn), 5n);
9n(T) > gni1(2), T € [P(rn), n);
ho(z) < hi(z), = € [#(s0),50); &go(z) > gi(z), z € [$(r0),70);
— for every z € (—oco, m)| :
Jm by (z) = Jm g, (z) = H'(z)
and the function H' is strictly decreasing;
— for every y € (—o0,m] :
Jim ()TN ) = lim ()7 0) = (B) ()
and the function H™ is strictly decreasing.
If we define the function A; on the interval (—o0, 51) as
b (z), z € (—oco, m]
hi(z) = { ®ho(z),z € (m, ¢(s0))
By (@),z € [$(s0), 51)
then conditions (11) and (12) guarantee that hy is continuous and

strictly decreasing. Iteratively, assume h,_; has been defined on (—
—00, 8p-1) and construct A, on (—oo, s,,) as

Rl (z),z € (—o0, m]
hn(m) = @hn__l(IB),.’I? € (ma ¢(3n——1))
hy (z),z € [d)(sn_'l), sn)
Analogously we define the sequence {g,}, n > 1, starting from g, and

the sequences {g},} and {g7}. Moreover, we define g_; = ®1gq; note
that g_; is defined in (—oo,7_1), where

r_1= ¢ (g5 " (m))

and
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Jlim_g-1(s) = v-1 = 67 sn(m).
Iteratively for every n < 0 we define g, = ®'g,.1. In this way we
obtain a bilateral sequence {g.}, n € Z. ‘
Finally, if we define H on (—o0,7) as

([ HY(z),z € (—c0, m]

" HY(z),z € (" H(m), ¢"(m)],n > 1,
H(z) = { p,T=p
O H" (z),z € [¢"(7),4" (7)), n > 1,
| H'(z),z € [¢(1),7)

then H is continuous, strictly decreasing and
l}r—}I—loo hn(z) = H(z) = n—l-}ﬂl-loo gn(z) T € (—00,7).

n
Moreover, it is immediately checked that the function H commutes
with ¢.

From the previous considerations we know that the function G is

completely determined by its values in DU P.
Theorem 11. Consider the sequences {h,}, n >0, and {gn}, n € Z,
and the function H defined as above. Let Gg : D — R be a CRI-function
with the following properties:

(i) for each n >0, Gr(h,) = A(¢"(m));

(ii) for each n € Z, Gr(gn) = A(¢™(bo));
(i) Gr(H) = A(p);

(iv) for everyt,w € R witht < w, it is

sup {z : Go(z,y) =1t} <sup {z: Go(z,y) = w}

sup {y : Go(z,y) =t} <sup {y: Go(z,y) = w};
moreover,

inf { sup{z : Go(z,y) = u}} = —o0
inf { sup{y : Go(=,9) = u}} = —oo;
(v) for everyt € R
Go(¢(sup{z : Go(z,y) =t}),m) = ¢(2)
Go(m, ¢ (sup{y : Go(z,y) =1})) = ¢(£);
Then G can be uniquely eztended to a CRI-function G":R*\[p, +00)? —

— R such that the pair (¢,G') is a solution of (2) in R? \ [p,+00)?.
Here we can repeat Remark 2 almost word by word.
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Theorem 12. Let Gy : P — R be a CRI-function such that Gr(go) =
= A(bg) and Gr(g1) = A(d(bo)) and such that the function

{Gl(m, y), (z,y) € P
G'(z,y), (z,y) € R*\ [p, +00)”

is continuous (G' is the function defined in Th. 11). Then G1 can be
uniquely extended to a CRI-function G" : [p,+00)? — R such that the

function
G'(z,y), (z,y) € R*\ [p, +00)?
G("E7 y) = 1! 2
G"(z,9), (z,y) € [p, +00)

is a solution of equation (2).

To finish we consider the case ¢ bilaterally bounded, so ¢(z) > =
for z < p, ¢(z) < z for £ > p and m = inf ¢, M = sup ¢. In this case
the following theorem holds.

Theorem 13. There exist o, § € R such that
(i) sup E, = 400 and mginoo fa(z) = —00;

(ii) for every u < « the interval F, is bounded above and u < v < «
implies sup E, < sup E,. Moreover, sup{sup E, : u < a} = 400
and inf{sup E, : u < a} = —o0;

(iii) for every u > a, sup By, = +00, f, is bounded below and u > v >
> «a implies inf f,, > inf f,,. Moreover, inf{inf f,, : u > a} = —oc0
and sup{inf f, : u > a} = +o0;

(iv) inf Eg = —o0 and m_lir_noo Jo(z) = +o0;

(v) for every u > [ the interval E, is bounded below and u > v >
implies inf B, > inf F,. Moreover, sup{inf E, : u > } = +o0
and inf{inf £, : u > f} = —o0;

(vi) for everyu < B, inf E, = —00, f, is bounded above andu < v < f3
inplies sup f,, < sup f,. Moreover, sup{sup f, : u < B} = +o0
and inf{sup f, : u < f} = —oo.

Proof. (i): Define a as the (unique) number such that the point

(m, M) belongs to the level set A(¢(a)). If we consider the point

(z, fo(z)) and let z increase, the corresponding point ®(z, fo(z)) =

= (¢(x), fo(a)(d(z))) can reach (m, M) if and only if z goes to +oco and

fa(x) goes to —oo.

(ii): Take u < o and suppose sup E,, = +00 (s0 limg_, 10 fu(z) =
= —o00). Arguing as before we obtain that the point (m, M) belongs
to A(¢(u)) as well; a contradiction. The other parts of ii) follow as in
Theorems 5 and 10.
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The other parts of the theorem follow in an analogous way. ¢

Note that if p > «, then limg_, 1 fp(z) = ap and fp,(M) = ¢(ay).
If p < o, then sup E, = b, and fp(¢(bp)) = m. The analogous remark
holds with respect to 8. It has to be noted that either o or B or both
can coincide with p.

The function G is completely determined by its values in R =
=R2\ (m, M)2. Indeed, the sets

O™(R) = (6" (m), "7} (M) \ (¢"(m), $"(M))", neN,
are disjoint and their union is the whole R?; if (z,y) € ®"(R), then
there exists a unique pair (u,v) € R such that (z,y) = (¢™(u), $"(v))
and G(z,y) = ¢"[G(u,v)].

Now, guided by Th. 13, we construct the solutions. We describe
in detail the construction only in the case m < a < p < 8 < M; the
other cases are analogous.

We take two strictly decreasing continuous functions k, and kg
defined on (Lq,+00) and (—o0, Lg) respectively, where a < Lo, < M,
m < Lg < 8 and such that

— mglzli ko(z) =m, Zgrfoo ko(z) = —00,
—  lim kg(zr) =M, lm kg(z)=+oo.
z—Lg T—>—00 ’

Then we define N1, N; €N as the (unique) numbers such that ¢~ (a) <
<m and ¢~N2(8) > M.

Now we take two strictly decreasing continuous functions hg and
go defined on (—o0, Ag) and (By, +oc0) respectively, where Ag> ¢~ ()
and By < ¢~V2() and such that

—  ho(¢7 V1 (@)) = p~M(a), aL‘_l+i]:nm ho(z) = vy, lm ho(z) = —c0.

z—+Ag
—  go(¢™N2(B)) = ¢~ (), Jm go(z) = 10, EIng go(z) = +o0.

We choose four real sequences {s,}, {rn}, {un} and {v,}, n € N,
satisfying the following conditions:
— so<m and, for every n, s, <Spt1, $n <@(Sp—1); lim s,=7v < p.

— for every n, rp, > rpqq and r, < ¢(rp—1); lim r, =1.
n—+4-o00

— ug > M and, for every n, un > Unt1, Un > ¢(Un_1);

lim u, =0>p.
n—+4o00

— for every n, v, < Up41 and v, > ¢(v,_1); lim v, =o0.
n—-+4oo
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Finally we take two sequences of functions {g;}}, n > 1, and {g;}
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n € N, defined on (M, +o0) and two other sequences {h}}, n € N, and

{hn}, n > 1, defined on (—oo, m), with the following properties:
— for every z € (By,+00) N (M, +00), go(z) > g7 (z);

— forevery n > 1, g¥(@) > ga(0), lm g3 (c) = $(rao) and
z—

,,;EI_POO g:(x) = Tn;

— foreveryn>1, g, ,(z) < g5, (), EE%+ In (z) = ¢(sn-1),

:1:—1—11—{100 9 (z) = sp, mganﬁ 9o (z) = m and zl}{?oo 90 (z) = so;

— for every z € (M, +00)

infgn(s) = Jm gi(c)=H'(c) = lim g.(s)=supg; (z)

and the function HT is strictly decreasing.
— for every z € (—o00, Ag) N (—o0, m), ho(z) < h (z);
— foreveryn > 1, hy(z) < hyyy(x), lm A (z) = ¢(v,_1),
T—rm—

zgl—l-loo hr_l (11:) = Uni

— for every n > 1, B!, (z) > hi(x), 1212_ ht(z) = d(un—1),

lim hl(z)=u,, lim h}(z) =M and ll;m h (z) = up;
T—=m— Z—r—00

L——00
— for every z € (—oo,m)

. + _ . + ol . . —_ _ —
infhi(e) = lim Af(@) = B(e) = lim_ by (z) = sup i (0)

and the function H! is strictly decreasing.

Now we can state the theorem about the construction of the so-

lutions.

Theorem 14. Let G : R — R be a CRI-function with the following

properties:

(i) for everyn >0, Gr(h;) = A(¢"(m));
(ii) for every n >0, Gr(h}) = A(¢"+(B));
(iii) Gr(kg) = A(B);

(iv) for everyn >0, Gr(g}) = A(¢™(M));

(v) for everyn >0, Gr(g;) = A(¢"(a));
(vi) Gr(ka) = Aa);

(vii) Gr(H') UGr(HT) = A(p);
(vil) if t1 <ty < «, then

sup {z : Go(z,y) =t1} < sup {z: Go(z,y) = t2} < 4o0;

moreover, inf{sup{z : Go(z,y) =t}t < o} = —o0;
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(ix) if t1 > ta > M, then
ro < inf {y : Go(z,y) = 2} < inf {y : Go(z,y) = t1};
moreover, sup{inf{y : Go(z,y) = t}t > M} = +o0;
(X) Zf t1 > 12 > ,B, then
—o0 < inf {:B : Go(z,y) = tz} < inf {az : Go(z,y) = tl};
moreover, sup{inf{z : Go(z,y) =t}t > B} = +oo;
(xi) if t1 < ta <m, then
sup {y : Go(z,y) =t1} <sup {y: Go(z,y) = t2} < vo;
moreover, inf{sup{y : Go(z,y) =t}t <m} = —oo;
(xii) for everyt < a,
Go(¢(sup{z : Go(z,v) =}),m) = ¢(t)
and, for everyt > a, ‘
Go(M, ¢(inf{y : Go(z,y) = t})) = &(1);
(xiii) for everyt > f,
Go(o(inf{z : Go(z,y) = t}), M) = ¢(¢)
and, for everyt < (3,
Go (m, qb(sup{y : Go(z,y) = t})) = ¢(t).
Then Go can be uniquely extended to a CRI-function G : R? — R such

that the pair (¢, G) is a solution of equation (2).
Also here we can repeat Remark 2 with the obvious modifications.

4. Final remarks

We now consider equation (1) where F': I — I and I is a proper
open real interval. Let h : I — R be an increasing homeomorphism and
suppose F : I? — I is a solution of (1). Then the function

T(z,y) = h[F(h~ (), b~ (v))]
is a solution of equation (1) and T : R? — R. Conversely, if T: R* — R
is a solution of (1) then
F(z,y) = k[T (h(z)), h(y))]
is a solution of (1) in I. Thus the solutions of (1) on an open interval I
can be obtained from those on the whole R. Obviously we can extend

this remark to the case of an ordered topological space E such that
there exists an increasing homeomorphism i : E — R.
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We now turn to equation (1) with a fixed v > 2. We can refor-
mulate Th. 1 for this equation, and we obtain that any solution F' of
(1') has the form

F(z,y) = ¢[G(z,v)]

where the pair (¢, G) satisfies the functional equation

¢* [G(z,y)] = G[¢" (2), ¢"(¥)]-
Thus setting ¢* = 1 we have again equation (2), and so the previous
construction produces also the solutions of equation (1').
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