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Abstract: Some weighted versions of the Berwald, Thunsdorff and Borell
inequalities for several variables are stated, proved and discussed. The sharp-
ness of the results and the relations to other generalizations of these inequalities

are pointed out.

1. Introduction

Let f be a nonnegative concave function on the finite interval [a, b].
If 0 < r < s, then, according to the well-known Berwald inequality

(see [1]),
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Moreover, if f is convex and f(a) = 0, then (1.1) holds in the reversed
direction. This fact is due to Thunsdorff [11]. For some recent weighted
versions of (1.1) we refer to [5] and [8]. Some multidimensional versions
of the Berwald and Thunsdorff inequalities have been proved in [2] and
[3], respectively. For some additional references and results see also the
recent books [7] and [10].

This paper 1s organized as follows: In Sections 2 and 3 we will
prove some weighted multidimensional versions of the Berwald and
Thunsdorff inequalities. The key arguments are to use suitable ver-
sions of the Chebyshev inequality and the power mean inequality in this
connection. In Section 4 we use in particular these results to also ob-
tain a new weighted multidimensional version of the Borell inequality
(see [2]). A complement of this result is proved in Section 5. This re-
sult may also be regarded as a weighted multidimensional version of a
(Griiss—Barnes type) inequality recently proved in [6].

Some notations and preliminaries. We say that the multidimen-
sional function, f(z), z € X,

X = {;B:(:Bl,.’rg,...,;l’fn” a; < < b, i:1,2,...,n},
is nondecreasing (nonincreasing) if, for each fixed i, 1 < ¢ < n, the
function @; — f(«) is nondecreasing (nonincreasing). Moreover, we let
Y denote the class of all nonnegative functions P(x) of the form

P(z) = pr(x1)pa(@2) ... palan).
For later purposes we note that e.g. the following functions obviously

belong to Y':

Li(z) = [[(zi —ai) and  La(z) = [J(b: — #).
We need the following generalization of the Chebyshev inequality (see

[9]):

(C) If F(2) and G(«x) are monotone in the same sense on X and
P €Y 1s an integrable function, then

/P(m)dm/P(m)F(m)G(m)dm >

X X
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> fP(m)F(m)dmfP(m)G(m)d;v,

X X
where d2 = deidas ... de,. If F(z) and G(z) are monotone in
the opposite sense, then (2.1) holds in the reversed direction.

We also need the power mean inequality in the following form (c.f. [4,
formula 192.]):

(PM) If » < s 7,5 # 0, p(z), h{(z) > 0 and the involved integrals are
positive, then

1/
u paliey e/ [ p(:e)dx)
1/
< (f paihie)dz/ [ p(m)dm)

2. A weighted multidimensional Berwald inequality

In the sequel we let f denote a nonnegative function on X. Our
weighted multidimensional Berwald inequality reads:
Theorem 1. Let w €Y be an integrable function on X and let r, s be
real numbers such that 0 < r <s.
1) If f(&) is nondecreasing and f(x)/L1(x) 1s nonincreasing, then

(Xf @)da/ | w(x)(Ll(x»Sdm)l/s <
1/r
< (X/ sty daf | w(ag)(ma:))rdw) .

The inequality is sharp and equality holds for f(x) = Li(x).
(1) If f(«) is nonincreasing and f(x)/Lo(x) 1s nondecreasing, then

1/s
Lf @) dz/ | w(m)(LQ(x>)5dm) <
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1/r
< (X/ s@f@ydef [ w(w)(h(@)rdw) -

The tnequality is sharp and equality holds for f(x) = Lo(x).

Remark 1. The conditions in (i) are satisfied e.g. if f(z) is nondecreas-

ing and concave in each variable. The conditions in (i) are satisfied e.g.

if f(«) is nonincreasing and concave in each variable.

Proof. According to our assumptions we have that the function F(z) =
= (f(«)/L1(x))" is nonincreasing and the function G(z) = (f(z))*~"

is nondecreasing. Therefore we can use the Chebyshev inequality (C)

with the weight P(x) = w(x)(L1(2))" to obtain that
[ty s o) <

< [e@@) de [ el i@ () de
le., y
(f s L)y de ] [ w(m)(f(m))"dm) <
(2.1) X o
< Q o) L) () e ] w(w)(f(m))sdm)

We combine (2.1) with (2.2) and the inequality in (i) is proved. The
sharpness statement is obvious. The proof of (ii) only consists of obvious
modifications of the proof of (i) so we omit the details. ¢
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3. A weighted multidimensional Thunsdorff inequal-
ity

Our weighted Thunsdorft’s inequality can be formulated as fol-
lows:

Theorem 2. Let w €Y be an integrable function on X and let r, s be
real numbers such that 0 < r < s. If f(«)/L1(&) is nondecreasing, then

1/r
Q c@ @y daf [ w(m)(h(m))"dw) <

1/s
(X/ sy da] | w(m)(h(m))w) .

The inequality is sharp and equality holds for f(x) = Li(=).

Remark 2. The function f(x)/Lq(z) is nondecreasing for example if
f(z) is convex in each variable and f(@1,...,®;_1,a;, @i31,...,2,) =0
forall: =1,2,... n.

Proof. First we use the power mean inequality (PM) with p(z) =
=w(z)(L1(2))® and h(z) = f(2)/L1(2) to find that

1/r

(K[ Sl Late) T (S def [ w(w)(L1<:c)>de) <
(3.1) X .,
< Q s@)f@)yda/ | w(m)(m(m)rdm) -

Moreover, by the Chebyshev inequality (C), applied with P(z) =
w(z)(L1(2))" and the nondecreasing functions F(z) = (f(z)/L1(x))
and G(z) = (L1(2))" ™",

f () (L ()" da ] () (L ()"~ (f(2))" de >
(3.2) x x

> [ty de [wle)Lie)y e

X X
The inequality in Th. 2 follows at once from (3.1) and (3.2). The sharp-
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ness assertion is obvious. $

Remark 3. The proof above shows that Th. 2 can easily be generalized
to hold in more general situations e.g. for functions of higher order of
convexity.

4. A weighted multidimensional Borell inequality

The following theorem may be regarded as a weighted variant of
a well-known Theorem of Borell [3].
Theorem 3. Let w € Y be an integrable function on X and suppose
that a, b, p, q are real numbers satisfyrng a > 0, b > 0, p > 1 and
q > 1. If f(&) is nondecreasing, f(2)/(L1(z))* 1s nonincreasing, g(x)
is nonincreasing and g(x)/(La(2))® is nondecreasing , then

[etorsiiatas >

1/p 1/q
> | [u@s@yds (!wmmwwm ,
where

C = /()(Ll( o (Lo(e dm/(x/ YLy (2))% da
/ W Lo(z)) " de "

The inequality is sharp and equality holds for f(z) = (L1(2))* and
glz) = (La(2))".

Remark 4. The assumptions in Th. 3 are satisfied e.g. if f(«) is nonde-
1/b

1/p

creasing, g() is nonincreasing and fl/a gl/? are both concave functions
in each variable. Therefore, Th. 3 with w = 1 is similar but not the same
as the original result by Borell [3]. Our proof is completely different and
(in our opinion) much simpler than that in [3].

Proof. First we use the Chebyshev inequality (C) with P(z) = w(=)
(L1(2))* and the nonincreasing functions F(x) = f(z)/(L1(=))* and
G(z) = g(z) to obtain that
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(4.1)

= w(a)(L2(x))® and the nondecreasing

)
Li(2))® and G(x) = g(x)/(L2(2))" we have that
D) La(e))de [ wlagla)(ba ()" de >

Next by using (C
functions F(z) = (
(

(4.2)
[ etertae)® Lat)?ds [yt
Now by using (4.1)—(4.2) and Th. 1 we find that

[ f(@)w(e)de [wle)gle)(Ly(z) de
f w(z)f(2)g(z)dz > X X

>

/ ){w(m)(w))adm
[ F@)w(@)de [ w(@)(Li (@) (La(a))de [ w(a)
2% ){w(f)(le(m»adw;w( I’ (ﬁfbdw -
[ @0 () (Lt

= 1/p 1/q

(o) (L (2 ))apdm) (o) Lo ))qum)

In the third inequality we have used Th. 1 (i) with » = 1, s = p, L
replaced by L§ and Th. 1 (ii) with r =1, s = 7 and Lo replaced by LS.

The sharpness statement 1s obvious so the proof is complete. ¢
Remark 5. In fact, the proof above shows that the following “interpo-
lated” version of the inequality in Th. 1 holds:

Jw(z)f()g(z)de

X

Tole)(Lr (2) (Lal))Pda =

X
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Jela)f @) da UL () (g(e)) i dae ™

- ){w(m)(Ll(m))apldm ){w(m)(llz(m))bqld:c Z
Jelelp@ppeds 1 ){w Yisda \ 1%

= (}{ @Gyrds |\ ol Taloyds )
<p

1 <poand 1 <¢ < go.

5. Another weighted multidimensional inequality

The following theorem may be regarded both as a natural comple-
ment of our previous weighted multidimensional Borell inequality and as
a generalization of a recently obtained (Griss—Barnes type) inequality
[6, Th. 5]:

Theorem 4. Let w € Y be an integrable function on X and suppose
that ap and py are real numbers satisfying ap > 0 and 0 < pp, < 1,
k=1,2,...,m

(1) If, for every k = 1,2,..., m, the function gy satisfies the growth
conditions that gi(x) is nondecreasing and gi(x)/(L1(x))** s nonin-
creasing, then

fw(m) ﬁ gr(2)dz ﬁ fw )P dee 1/px
(5.1) X il Xw o
et Laten de = I

(i1) If, for every k = 1,2,...,m, the function g satisfies that
gr(®)/(L1(2))% s nondecreasing, then (5.1) holds in the reversed di-
rection.

The inequalities in (1) and (i) are sharp and equality occurs if
gu(2) = (L (2)) o
Remark 6. The assumptions on gi in (1) are satisfied e.g. if gr(2) is non-
decreasing and (g ())*/?* is concave in each variable. Moreover, the
conditions on gy in (i) are satisfied e.g. if gr(®1,..., @i—1,a;, ®i41,...

2n) =0foralli=1,2,...,n, and (gx(z))'/% is convex in each vari-
able. Therefore, in particular, Th. 4 gives a slight generalization also of
the one-dimensional result (of Griiss—Barnes type) recently obtained in

[6, Th. 5].
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Proof. (i) Here we use (C) successively, first with P(z)=w(z)(L1 (x))?}
F(z) = g1(2)/(L1(2))* and G(z) = ga(z)gs(x)...gm(z), after that
with P(z) = w(e)(Li(z))®, F(z) = gr(z)/(Li(2))™* and G(z) =
= (Li(z))mtoettoh-1g, (@) gm(e), k= 2,3,...,m — 1, and fi-
nally, with P(z) = w(z)(L1(x))*, F(z) = gm(e)/(L1(z))* and
Glr) = (I ()14,

) s (@) de [ wla)gn e (Lo )0 oot de <

X

< [wl@m@idn [wla)Liyntot e

X X
Using these inequalities we can derive that

){ w(e )H gr(x)de - ){w
S ()(Ll( )=t andg wa ) dz

1=1
X
Finally, we apply Th. 1 and the 1nequahty (5.1) is proved.

N\

(i1) The proof is quite similar to that in (i) (we only need to use
(C) in the reversed direction and Th. 2 instead of Th. 1).

The sharpness assertion is easily checked by inspection. {
Remark 7. Our proof shows that, in fact, the inequality (5.1) can be
replaced by a refined “interpolated” inequality quite analogous to that
presented in Remark 5.
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