Mathematica Pannonica
5/2 (1994), 271 - 273

SMALL »-DOMINATING SETS

Zsolt Tuza

Computer and Automation Institute, Hungarian Academy of Sci-
ences, H-1111 Budapest, Kende u. 15-17, Hungary

Received August 1994

AMS Subject Classification: 05 C 35

Keywords: Graph, domination, distance domination, total distance domina-
tion
Abstract: We prove the inequality v,(G) + (n - 1)v,(G)<p, where G is

any connected graph on p>2n — 1 vertices, and v, (G) and ’)/,tl(G) denote the
minimum cardinalities of vertex sets D and D; such that each vertex z is at
distance less than n from some yeD,, y#z, and each z¢D is at distance less
than n from some ye€D. Our method yields a very short proof of a recent
theorem due to Henning et al. [Math. Pannon. 5/1 (1994), 67-77].

In this note we provide a very short proof of a recent result due to
Henning et al. [1] on generalized domination parameters of graphs. Our
method, at the same time, also yields a somewhat stronger assertion.
(For further related results, see [2].)

Let G be a connected graph with a p-element vertex set V(G)
(p > 1) and with edge set E(G). The distance d(z,y) of two vertices
z,y € V(G) is the smallest number of edges in a path joining z to y.
Let n > 1 be an integer. Adopting the terminology of [1], a D C V(G)
is a P<,-dominating set (total P<,-dominating set, respectively) if each
vertex € V(G) — D (each = € V(G)) is at distance less than n from
some y € D, y # z. (Sometimes such a D is simply called a (total)
(n — 1)-dominating set in the literature.) The minimum cardinality of
a P<,-dominating set and of a total P<,-dominating set is denoted by
12(G) and 4% (@G), respectively.
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The main result of [1] states

(1) n(G) +75(G) < 2p/n

provided that G is connected and its order, p, is at least 2n. Here we
prove the following stronger assertion.

Theorem 1. If G is a connected graph of order p > 2n — 1, n > 2,
then

(2) n(G) + (n — 1)7v4(G) < p.

Proof. Since every (total) P<,-dominating set of any spanning tree T
of G is a (total) P<n-dominating set in G as well, it suffices to prove
the assertion for trees. Hence, let T be a tree of order p > 2n — 1 >
2> 3. We denote d(T) = max, yev(r) d(z,y) (the diameter of T) and
r(T) = mingey(ry max, ey (r) d(z,y) (the radius).

Suppose first that d(T) < 2n — 2. Then r(T) < n —1, and a
‘central’ vertex within distance n — 1 from every vertex of T forms
a P<p-dominating set. Therefore, 7,(T) = 1 and vL(T) = 2, ie.,
o (T) + (n — 1)74(T) = 2n — 1 < p. Hence, the assertion is valid for
‘small’ diameter (which is always the case for p = 2n — 1), allowing
us to apply induction on p. This can be done if T has an edge e such
that both components T1,Ts of T — e contain at least 2n — 1 vertices
(and, in particular, whenever d(T) > 4n — 3). Indeed, in this case
T(T) £ 1n(T1) + ¥a(T2) and 7,(T) < vo(Th) + 75,(T2), thus v.(T) +
F(n = 1)7(T) < (n(T2) + (1= LT+ (T3 - (m— 1y (T)) <
<|V(Ty)| + |V(T3)| = p follows by induction.

Suppose 2n — 1 < d(T) < 4n — 4, and that T — e contains a
‘small’ component for each edge e € E(T). Choose an edge e = uv
such that the smaller component (the one of order < 2n — 2), say the
component containing u, is as large as possible. Then all components
Ty,T3,... , T of T — v have orders at most 2n — 2. Define the height
h; of T; as the length of a longest path P; C (T; U v) starting at v,
where (T; U v) denotes the subgraph induced by V(T;) U {v}. By the
assumption d(T) > 2n — 1, some T} have h; > n; say, h; > n for 1 <
<: <k and h; < n for k <t < m (where k = m is possible). For
2 < k we denote by v; the vertex of P; at distance A; — n + 1 from
v. Since |V(T})| < 2n — 2, v; P,-dominates T; for each 7, moreover
v Pcp-dominates {vq,... vk} U {T | £ < j < m}. Hence T (T) <
< 4i(T) < k + 1, implying (2) for p > (k + 1)n.
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To obtain sharper bounds on v,(T) and v5(T'), we consider the
subtree T' = (T" U {v1,...,vk}), where T" is the connected component
of T — {vy,... ,vx} containing v. If d(T") < n — 3, we have v,(T) =
=1(T) = k and p > [V(T1)| + ... + |V(Tk)| 2 kn, implying v,(T) +
+ (n — 1)v5(T) < p. On the other hand, if d(T") > n — 2, then
p > (k+ 1)n — 1 holds, with equality if and only if 7" has order n — 1
and the subtree rooted at v; is a path of length n — 1 in each T;. In
this case, however, {v1,... ,vt} is already a dominating set, therefore
(D) =k, vo(T) £k +1, 7a(T) + (n =17 (T) < (k+1)n—1=p. O
Remarks. Since 7,(G) < 4% (@) whenever G has no isolated vertices,
the inequality (2) immediately implies (1). Certainly, every example
showing the tightness of (1) (see [1] where an infinite family of graphs
G with 7,(G) = 5(G) = p/n is exhibited) yields that (2) is tight,
too. However, (2) is best possible in a much stronger sense as well;
namely, its left-hand side cannot be replaced by (1 —¢)y,(G)+(n—1+
+ &)L (@), for any € > 0. To see this, take k — 1 (> 1) vertex-disjoint
paths T3, ... ,Tx—_; of length n—1 and one path of length 2n—2. Joining
a new vertex v with one endpoint of each 7}, we obtain a tree T of order
p=(k+1)n—1, with v,(T) = k and v5(T") = k + 1, hence v,(T) +
+(n — 1)7L(T) = p and v,(T) < vL(T). Further ‘isolated’ examples
are the paths on 3n — 1, 4n — 2, 4n — 1 vertices (the corresponding
parameters are v, = 2,2,3 and v}, = 3,4,4), and all connected graphs
G of order p = 2n — 1 (72(G) = 1 and 7.(G) = 2). It may be true,
however, that if p is ‘sufficiently large’ with respect to n, then v,(G) +
+ (n — 1)7L(G) < p holds unless v,(G) = v5(G) = p/n, or G is a
k-branched tree constructed above plus possibly a few additional edges
among its ‘short’ branches.

References

{1] HENNING, M. A., OELLERMANN, O. R. and SWART, H. C.: Relations
between distance domination parameters, Mathematica Pannonica 5/1 (1994),
67-77.

[2] HENNING, M. A., OELLERMANN, O. R. and SWART, H. C.: Relating pairs
of distance domination parameter, J. Comb. Math. Comb. (to appear).






