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Abstract: We study properly (B,C)-smooth and properly C-calm spaces,
where B and C denote classes of topological spaces. Both proper smoothness
and proper calmness are invariants of a recently invented author’s proper
shape theory and are described by the use of proper multi-valued functions.
The dual notions are also examined.

1. Introduction

The notions and results in this paper belong to the part of topo-
logy that could be described as proper shape theory. As shape theory
is an improved homotopy theory designed to handle more successfully
complicated spaces so is proper shape theory a modification of proper
homotopy theory made with the same goal to provide us with a new
insight into global properties even of those spaces for which the classical
proper homotopy gives doubtful information.

In [7] the author has described proper shape category of all topo-
logical spaces using Sanjurjo’s method of multi-valued functions from
[12]. Our approach was formally very similar to the one taken by Ball
and Sher [2]. Instead of proper fundamental nets we considered proper
multi-nets. The other steps were identical. We defined a notion of
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a proper homotopy for proper multi-nets and took for the morphisms
of the proper shape category Sh, proper homotopy classes of proper
multi-nets.

In the present paper we shall introduce and investigate proper
shape invariants called smoothness and calmness. It is useful to consider
these notions in terms of arbitrary classes B and C of topological spaces.
In other words, we shall define Mf’ ¢_smooth and Mg-calm spaces and
explore their properties. In our notation the letter “M” suggests the
use of multi-valued functions while “p” replaces “proper” or “properly”.

Let us describe the content of the paper in greater detail. In §2 we
recall notions and results from [7] that are necessary in further develop-
ments. The next §3 studies Mf'c—smooth spaces. The idea is that we
require that small enough proper multi-valued functions from members
of a class of spaces B into a given space X which are properly homo-
topic over members of another class C are already properly homotopic
through sufficiently small proper multi-valued functions. This concept
is related to the notion of n-types of Whitehead and it could be re-
garded as a substitute for it in the proper shape theory. We prove that
this is an invariant in the category Shy, explore the role of classes B
and C, and study what kind of maps will preserve and inversely preserve
.Mf 'C_smooth spaces. The classes of proper B-surjections and proper
B-injections from [8] are of key importance.

In the following §4 we consider Mf -calm spaces. The calm spaces
have proved useful in shape theory and geometric topology and are dual
in many respects to the movable spaces of Borsuk [4] just as smooth
spaces are dual to tame spaces which becomes clear when comparing
this paper with [9]. For the first time we have now this concepts in the
proper shape theory of arbitrary topological spaces.

Since the method of investigating properties of spaces by looking
at maps from some objects into a space has an obvious dual approach
where we utilize maps from a space into those objects, we also consider
in §§5 and 6 so called Nf’ C_smooth, PPB’ C_smooth and Np3~calm classes
of spaces, where the change from the letter “M” to the letters “N” and
“P” should reflect duality between these notions. As the reader will
see this duality is striking.

Finally, in §7 we consider dependence of these notions on classes
B and C under the assumption that they are connected with each other
by morphisms from [8].
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2. Preliminaries on proper shape theory

In this section we shall introduce notions and results from [7] that
are required for our theory.

Let X and Y be topological spaces. By a multi-valued function
or an M-function F': X — Y we mean a rule which associates a non-
empty subset F'(z) of Y to every point z of the space X. An M-function
F:. X — Y is préper provided for every compact subset C of Y its small
counterimage F'(C) = {z € X| F(z) C C} is a compact subset of X.
On the other hand, F is proper provided for every compact subset C' of
Y its big counterimage F''(C) = {z € X| F(z)NC # 0} is a compact
subset of X. We shall use the term proper to name either proper or
proper. However, in a given situation, once we make a selection between
two different kinds of properness it is understood that it will be retained
throughout. Instead of proper multi-valued function we shall use the
shorter name M-function

Observe that for single-valued functions the two notions of proper-
ness coincide. Classes of proper and proper M-functions are completely
unrelated [7]. It follows that each of our notions and results on Mp-
functions actually has two versions.

In this paper by a cover we mean an open normal cover [1]. Let
Cov (Y) denote the collection of all covers of a topological space Y.
With respect to the refinement relation > the set Cov (Y') is a directed
set. Two covers o and 7 of ¥ are equivalent provided ¢ > 7 and 7 > 0.
In order to simplify our notation we denote a cover and it’s equivalence
class by the same symbol. Consequently, Cov(}") also stands for the
associated quotient set.

If o is a cover of a space Y, let o© be the collection of all covers
of ¥ which refine o while o* denotes the set of all covers 7 of ¥ such
that the star st(7) of 7 refines o. Similarly, for a natural number n,
o*™ denotes the set of all covers 7 of Y such that the n-th star st™(7)
of T refines o.

Let Inc (YY) denote the collection of all finite subsets ¢ of Cov(Y7)
which have a unique (with respect to the refinement relation) maximal
element which we denote by [¢]. The notation Inc(Y’) comes from
“indices of covers”. The set Inc(Y) will be used as indexing set for
proper multi-nets into Y. We consider Inc (Y") ordered by the inclusion
relation and regard Cov(Y') as a subset of single-element subsets of
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Cov (Y'). Notice that Inc(Y) is a cofinite directed set.

For our proper shape theory the following notion of size for M-
functions will play the most important role. Let F: X — Y be an
M,-function and let o € Cov(X) and v € Cov(Y). We shall say that
F'is an M7 "-function provided for every A € « thereis a C'4 € v
with F(A) C C4. On the other hand, F is y-small or an M -function
provided there is an « € Cov (X)) such that F'is an Mp"7-function. For
an M7 -function F': X — Y we use S(F| o) to denote the family of all
a € Cov (X) such that F is an M “-function.

Next we introduce the notions which correspond to the equiva-
lence relation of proper homotopy for proper maps. Let F and G be
M,-functions from a space X into a space Y and let v be a cover of Y.
We shall say that F' and G are properly y-homotopic or M,J-homotopic

and write F <~ G provided there is an M -function H from the prod-
uct X X I of X and the unit segment I = [0, 1] into ¥ such that
F(z) = H(z, 0) and G(z) = H(z, 1) for every 2 € X. We shall say
that H is a proper y-homotopy or an M,/-homotopy that joins F' and G

or that it realizes the relation F ~ G.

The following lemma from [7] is crucial because it provides an ade-
quate substitute for the transitivity of the relation of proper homotopy.
2.1 Lemma. Let F, G, and H be M,-functions from a space X into
a space Y. Let o € Cov(Y) and 7 € o*. If F X G and G ~ H, then
FXH.

The proof of Lemma 2.1 requires an interesting proposition from
A. Dold’s book [10, p. 358] on covers of the product X x I of a space
X with the unit segment I. We assume that the reader is familiar
with this result and the notion of a stacked covering of X x I over a
cover of X. For a cover o of X X I, we shall use D(X, o) to denote
the collection of all covers 7 of X such that some stacked covering of
X x I over 7 refines 0. As a consequence of the above proposition, this
collection is always non-empty.

The following two definitions correspond to Ball and Sher’s def-
initions of proper fundamental net and proper homotopy for proper
fundamental nets.

Let X and Y be topological spaces. By a proper multi-net or an
M,-net from X into ¥ we shall mean a collection ¢ = {F;}ccmc(y)
of M,-functions Fr.: X — Y such that for every v € Cov(Y) there
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is a ¢ € Inc(Y) with Fy3 X F, for every d > c¢. We use functional
notation ¢: X — Y to indicate that ¢ is an Mp-net from X into Y.
Let MNy(X, Y) denote all My-nets ¢: X —Y.

Two Mp-nets ¢ = {F.} and ¢ = {G.} between topological spaces
X and Y are Mp-homotopic and we write ¢ ~ 1 provided for every

v € Cov(Y) there is a ¢ € Inc(Y) such that F; X G4 for every d > c.
On the other hand, we write ¢ ~ 1 and call v and ¢ M-homotopic

provided there is a ¢ € Inc(Y") such that Fy < Gy for every d > c.

It follows from Lemma 2.1 that the relation of M,-homotopy is an
equivalence relation on the set MN,(X, Y). The M,-homotopy class
of an Mj-net ¢ is denoted by [¢] and the set of all M,-homotopy classes
by Shy(X, Y).

Our goal now is to define a composition for M,-homotopy classes
of Mp-nets. Let ¢ = {F.}: X — Y be a Mpy-net. Let ©: Inc(Y) —
— Inc(Y) be an increasing function such that for every ¢ € Inc(Y)

the relation d, e > ¢{c) implies the relation Fy K F,. Here we make
an assumption that an increasing function ¢ from a partially ordered
set P into itself always satisfies the condition that ¢(p) > p for every
p € P. Let C = {(c, d, e)]c€Inc(Y), d, e > p(c)}. Then C is a
subset of Inc(Y") x Inc (Y') x Inc(Y) that becomes a cofinite directed
set when we define that (¢, d, €) > (¢', d', €') if and only if ¢ > ¢/,
d>d', and e > e'. We shall use the same notation ¢ for an increasing
function ¢ : C — Cov (X X I) such that F,; and F, are joined by a proper
(w(c, d, e), [c])-homotopy whenever (c, d, €) € C. Let @: C — Inc(X)
be an increasing function such that [g(c, d, €)] € D(X, ¢(c, d, ¢)) for
every (c, d, e) € C. In [7] it was proved that there is an increasing
function ¢*: Inc(Y) — Inc(X) such that (1) ¢*(c) > @(c, ¢(c), ©(c))
for every ¢ € Inc (Y'), and (2) ¢* is cofinal in @, i. e., for every (¢, d, €) €
€ C there is an m € Inc(Y) with ¢*(m) > @(e, d, €). With the help
of functions ¢ and * we shall define the composition of M,-homotopy
classes of Mp-nets as follows.

Let ¢ = {F.}: X =Y and ¢ = {Gs}: Y — Z be Mp-nets. Let
x = {H,}, where Hy = Gy 0 Fipy=(s)) for every s € Inc(Z). Ob-
serve that each H, is a Mj,-function because the composition of two
Mp-functions is an Mp-function. In [7] it was proved that the col-
lection x is an Mp-net from X into Z. We now define the composi-

tion of Mp-homotopy classes of M,-nets by the rule [{G,}] o [{F.}] =
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= [{Gy(s) © Fprype(s))}]- This composition of M,-homotopy classes of
Mp-nets is well-defined and associative. '

For a space X, let +¥ = {I,}: X — X be the identity Mp-net
defined by I, = idx for every a € Inc(X). It is easy to show that
for every Mp-net w: X — Y, the following relations hold: [¢] o [t*] =
=[] = [+F]o[¢].

We can summarize the above with the following main result from
[7].

2.2 Theorem. The topological spaces as objects together with the M,-
homotopy classes of Mp-nets as morphisms and the composition of M-
homotopy classes form the proper shape category Shy.

The above constructions may be done without any reference to
proper and proper M-functions. In this way we shall get the shape cat-
egory Sh. On the other hand, in both cases, we may require that all M-
functions belong to a class of M-functions which is closed with respect
to pastings from the proof of Lemma 2.1 in [7] and compositions. In
particular, we may assume that they are either upper semi-continuous
or lower semi-continuous.

B,C_
3. MP¢-smooth spaces

In this section we shall explore the following interesting notion
which in the case of compacta reduces to the author’s (B, C)-smoothness
from [5] and [6].

Let D be a class of spaces, let F' and G be Mp-functions from a
space X into a space Y, and let o be a cover of Y. We shall say that
F and G are properly o-homotopic over D and write F~p G provided
there is a cover 7 of X such that for every M, -function H from a mem-
ber of D into X the compositions F' o H and G o H are M, -homotopic.

Let B and C be classes of topological spaces. A space X is Mf’ c.
smooth provided for every cover o of X there is a cover 7 of X with
the property that for M -functions ' and G from a member of B into
X the relation F~¢ G implies the relation F' < G . A class of spaces is
Mf’ C_smooth provided each member of it is M}?’ ¢_smooth.

We shall first show that the property of being Mf »C_smooth is a
proper shape invariant, i. €., that if X and Y are equivalent objects of
the category Sh, and X is Mf’ C_smooth then Y is also Mf’c—smooth.
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In fact, a much better result is true. The Mf »C_smooth spaces are
preserved under the following weak form of domination.

A class of spaces B is M,-dominated by a class of spaces A pro-
vided for every B € B and every 8 € Cov(B) thereis an A € A and an
M -function G: A — B such that for every a € Cov (A) we can find

an M;j‘—function F:B— Awith Go F 3 idg.

3.1 Theorem A space X is Mf’c—smooth if and only if it is Mp-
dominated by a class of Mf’c-smooth spaces.

Proof. Since every space M,-dominates itself, it remains to prove the
“if” part. Let a cover o of X be given. Let n € o*. By assumption,
thereis an M5 ¢-smooth space ¥ and an MJ-function D: ¥ — X such
that for every ¢ € Cov(Y) there is an M;-function U: X — Y with

GoF Lidy.
Let § € S(D, n). Since Y is MP ¢-smooth, there is an € € Cov (Y)
such that for every M -functions K and L from a member of B into ¥

the relation K ~¢ L implies the relation K 2.

Pick a U as above. Let W be an M;-homotopy joining idx and
DoU. Let 7 € Cov(X) belong to D(W, n) and S(F, e). Then 7
is the required cover of X. To verify this, consider a member B of
B and MT functions F, G: B — X with Frvc G. Let K and L be
UoF and UoG. Then K a,nd L are M;-functions from B into Y’ with

K<¢ L. It follows that K 2 L so that after composing with D we
obtain F & DolUoF = DoK 2 DoL = DoUoG A G. Hence,
FRG. ¢

The M,-domination is weaker than the quasi Shj-domination and
thus also weaker than Sh,-domination [8]. Recall that a class of spaces
A is Shy-dominated by a class of spaces B provided for every X €
EAtherelsaYEBandM -nets ¢: X — Y and ¢: Y—+Xw1th
the composition % o ¢ M,-homotopic to the identity Mp-net X on X.
On the other hand, A is quasi Shy-dominated by B prov1ded for every
X € A and every o € Cov(X) there isaY € B and Mp-nets ¢: X —
— Y and ¥: Y — X with the composition 1 o My homotop1c X
The notion of quasi Sh,-domination is similar to the notion of quasi-
domination in [3].
3.2 Corollary. A space is MB -smooth if and only if it is either Shy-
dominated or quasi Shy domznated by a class of MB C_smooth spaces.
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Another example of M,-domination provides the notion of being
properly B-like. Recall that a space X is properly B-like, where B is a
class of spaces, provided for every o € Cov (X) there is a member Y of
B and a proper map f: X — Y such that the inverse f~': Y — X is
an My -function. In [8] we showed that if a space X is properly B-like,
then X is M,-dominated by B. Hence, we get the following conclusion.
3.3 Corollary. A space X is Mf’c-smooth if and only if it is properly
D-like, where D is a class of Mf’c-smooth spaces.

In the following two theorems we explore in which way does the
definition of Mf’ ¢_smooth spaces depend on classes B and C. The first
result uses the following notion from [9].

Let B and C be classes of spaces. A space X is Mf’c-tame pro-
vided for every o € Cov(X) there is a 7 € Cov (X) such that for every
B € B and every M -function F': B — X thereis a ¢ € C and an
My -function H: C — X with the property that for every a € Cov (C)

there is an M -function G: B — C with F’ X HoG. A class of spaces

is MPB’ C_tame provided each member of it is Mf’ C_tame.

3.4 Theorem. Let A and C be classes of topological spaces and let B
be a class of M}j“’c—tame spaces. Then every ME’A-smooth space X is

also Mf’c-smooth.
Proof. Let a cover o of X be given. Let p € o*. Pick a u € Cov (X)
such that for M}'-functions F' and G from a member of B into X the
relation F4 4 G implies the relation F' < G. Let 7 € u*.

Consider M -functions F, G: B — X such that B € B and
FZ¢ G. Then there is a B € Cov (B) with the property that for every

M B_function K from a member of C into B the compositions F o K
and G o K are M -homotopic. Let a v € BT belong to both S(F, 7)

and S(G, 7). Smce B is MA C_tame, there is a § € Cov (B) such that
for every A € A and every M}‘,S -function L: A — B thereis a C € C
and an M -function K: C — B so that for every a € Cov(C) there is
an MJ-function J: A — C with I A Kol.

Let A€ Aandlet L: A — B be an M]f—function. Pick a C' and
a K as above. Our choices imply Fo K ~ Go K. Let N be a M; -
homotopy which realizes this relation. Let o € D(N, 7). Choose a J
as above. Then we obtain FoL ~ FoKoJ &~ GoKoJ ~ GolL.
It follows that FA 4 G and therefore F 2 G. ¢
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3.5 Theorem. Let A, B, C, and D be classes of spaces such that B
and D are My-dominated by A and C, respectively. If a space X is
M;;A’D-smooth, then it is also Mf’c-smooth.

Proof. Let a cover o of X be given. Let 7 € ¢*. Since X is MJ;“’D—
smooth, there is a p € 77 such that for MB-functions K and L from a

member of A into X the relation K~p L implies the relation K ~ L.
Let 7 € o*. Then 7 is the required cover of X. Indeed, consider a
member B of B and .M;—functions F, G: B — X such that FicG.
Let 3 € Cov(B) belong to both S(F, r) and S(G, 7) and be such

that for every Mf -function R from a member of C into B we have

FoR L GoR. Since the class B is M,-dominated by the class A,
there is an A € A and an Mf -function J: A — B such that for every

a € Cov(A) there is an My -function E: B — A with Jo E Lidgp.
Let K and L be the compositions F o J and G o J, respectively.
Then K and L are M Iﬁ’—functions from A into X. We claim that ngq) L.
In order to verify this, let a € S(J, ). Suppose that D € D
and T: D — A is an M -function. Let § € S(T, a). We utilize now
the assumption that the class D is M,-dominated by the class C to
select a C € C and an M}function W: C — D with the property
that for every cover v of C there is an M -function V: D — C with

WoV 2 idp. The composition JoT oW is an M]/f -function from
C into B. It follows that there is an M, -homotopy P: C'x I — X
joining FoJoT oW and GoJoToW. Let v € D(P, 7). Choose
a V as above. Then we have KoT = FoJoT <& FoJoToWo
oVZGoJoToWoV X GoJoT =LoT. Hence, KoT 2~ LoT
and the claim has been verified.

Now our assumption implies existence of an M;-homotopy
@: AxI — X joining K and L. Let a € D(Q, 7). Pick an E as
above. Then we obtain that ¥ ~ FoJoE = KoE X LoE =
= GoJoE X G.Hence, FLG. {

3.6 Corollary. Let A, B, C, and D be classes of spaces such that B
and D are (quasi) Shy-dominated by A and C, respectively. If a space
X is M;"D-smooth, then it is also Mf’c-smooth.

The following weak form of the notion of being properly B-like is
more in line with our point of view because it is based on M, -functions.
It offers us the possibility to improve Cor. 3.3 in Th. 3.7.

Let C be a class of spaces. A space X is M]‘f—like provided for
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every o € Cov(X) there is a member Y of C and a cover a of ¥ such
that for every f € Cov(Y) there is an ]\Jf—function F: X — Y such
that F'~! is an M ?-function.

3.7 Theorem A space X is Mf’c-smooth if and only if it is M}?—like,
where D is a class of Mf’c-smooth spaces.

Proof. Let a cover o of X be given. Let 4 € o*. Since X is Mg)-
like, there is a ¥ € D and a cover a of Y such that for every 8 ¢
€ Cov(Y) there is an Mf—func.tion R: X — Y such that R™! is an
Mg #-function. Since Y is MP €-smooth, there is a # € Cov (Y) such
that for M. f -functions K and L from a member of B into Y the relation

Kﬁc L implies the relation K ~ L. Choose an R as above and let
T € S(R, B). The cover 7 is the one we were looking for. In fact, let
B € B and assume that F, G: B — X are M -functions with FicG.
Let K and L be RoF and Ro(G. Then K and L are Mf—functions

from B into Y and Kr[ic L. As in the proof of Theorem 3.4 in [9], it
follows that F X R"1oRoF X R'oRoG & G. Hence, FX G. {

In the rest of this section we shall address the question of identify-
ing those proper maps which will preserve or inversely preserve ]fo’ .
smooth spaces. The answer provide proper maps studied in [8] whose
definitions we now recall.

Let B be a class of spaces. A proper map f: X — Y is called an
MP-injection provided for every o € Cov(X) there is a 7 € Cov (X)
and a £ € Cov (Y) such that for M -functions F' and G from a member

B of B into X the relation fo F L f o G implies the relation FF < G .
A propermap f: X — Y is le,—pla,cz'd provided for every o € Cov (X)

there is an M -function J: Y — X such that Jo f Ridx .

Observe that every proper map f: X — Y which has a left proper
homotopy inverse (i. e., for which there is a proper map g: ¥ — X
with the composition go f properly homotopic to idx) is ]\lzl,—placid.
The same is true if the map f has a left Shy-inverse. Moreover, an
M Iﬂ—placid proper map is an MI‘,s -injection, where S denotes the class of
all topological spaces.

The following result shows that Mf -injections inversely preserve
J\/IPB’ C_smooth spaces. .

3.8 Theorem. If f: X — Y is an Mf-injection and Y is ]\/If’c-

smooth, then X is also Mf’c-smooth.
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Proof. Let a cover o of X be given. Smce f is an M —1nJect10n there
is an a € Cov (X) and ﬂ € Cov(Y) such that for MO‘ functions F' and

- G from a member of B into X the relation” f o F' ~ f oG 1mpl.1es the
relation F' ~ G . We utilize now the assumption that Y is My 5, C_smooth
to select ay € Cov (Y) with the property that for M- functlons ‘K and

L from a member of B into Y the rela,tlon K NC L 1mphes the relatlon
KX L. Letr e Cov (X) be a common reﬁnement of a and f(7).

 Then 7.is the reqmred cover. In fact, let F.and G be M _functions
from a member B.of B into X and assume that FLlc G. Let K and

L be f o F and foG. Then K and L are- Mﬂ functlons from B into

Y. The Tast relatlon 1mpl1es Ix Le L Yo that K ~ L. It follows that.
FRG:{ . v

- An example of M ! placrd maps prov1de 1nclu51ons 14, x of the M-
‘retracts A of a space X Here, we will say that a closed subset A of a
_ space X is an.Mj-retract-of X prov1ded for every cover o of A there is
an M" funct1on R X —Asuch that a € R(a) for every a €A Hence '
the followmg is a consequence of Th. -3.8. s
3.9 Corollary An M, rctmct of an: MB C-smooth space is MB .
smooth. : : : e

For the- preservatron of My 5, C—smooth spaces from the domaan to
the codomain we must assume: that the map f is elther M i 'pla,c1d or
~ thatitis an My B.C -bijection.. Let us recall the deﬁn1t1ons of these not1ons'

from [8]. : : : v ‘
. . Let Bbea class of spaces A proper map f+X =Y is an MB
sur]ectzon prov1ded for every o € Cov(X) and every 7 € Cov (V) there
isap€ Cov (Y) such that for every M§ 4 functlon F from a member of
- B into Y there is an M function G Wlth F f G A Spec1al case
of MB-sur_]ectlons are Mp -placid maps, i. ‘€. proper maps f X =Y

such that for every o € Cov(X) and every 7 € Cov- (Y) there is an
| My function J: ¥ — X with foJ. ~ idy . In“faet, every M -placid .
map is an M S—sur_]ectmn where S denotes the class of all topologlcal
spaces. S :

Observe that a proper map f X — Y Wlnch has a r1ght proper
homotopy inverse (i ‘e., for which there is a proper map. g: Y — X
with f o g properly. homotoplc to idy) is My -placid. ‘The same is true
if the proper map has a r1ght Shp-inverse. :
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At last, for classes B and C of spaces, a proper map is an Mf’c—
bijection if it is both an Mf—injection and an Mg—surjection. We shall
use a shorter name Mf—bz’jection for an Mf’ 5_bijection.

3.10 Theorem. If a map f: X — Y is My -placid and X is Mf’c-
smooth, then Y is also Mf"c-smooth.

Proof. Let a cover o of Y be given. Let 7 € 0* and a = f~(x). Since
X is M} ¢-smooth, there is a # € Cov (X) such that for MFf-functions

K and L from a member C of C into X the relation Kﬂc L implies the
relation K X L. Now we utilize the fact that f is M -placid to select

an Mf—function H:Y - X withidy ~ foH. Let M: Y x I —» Y be
an Mp-homotopy that realizes this relation and let ¢ € D(M, 7). Let
v € S(H, ). Let a7 € Cov(Y) be a common refinement of { and ~.
Then 7 is the required cover of Y. Indeed, consider M’z’,'—furictions F

and G from a member B of B into Y and assume that FlcG. Let K
and L be Ho F and H o G. Then K and L are Mf—functions from B

into X. From the last relation it follows that Kﬂc L so that K ~ L.
Composing this relation with the map f we obtain fo K ~ folL.
Our choices imply the following chain of relations F ~ foHoF =
=foK & foL =foHoG ~ G. Hence, FX G. §

It has been shown in [8, (3.1)] that another important example
of M -placid maps provide properly refinable maps. We call an onto
proper map f: X — Y between spaces properly refinable provided for
every cover T of Y and every cover o of X there is an onto proper map
g: X — Y such that f and g are T-close and ¢~ is an M -function.
We call g a proper (o, 7)-refinement of the map f. The notion of a .
refinable map between compact metric spaces was first defined by Jo
Ford and James Rogers Jr.. The above extension to arbitrary spaces is
particularly suitable for our theory.

The existence of a properly refinable map from a space X onto a

space Y clearly implies that X is M, Y} -like. Hence, as a consequence
of Ths. 3.7 and 3.10 we obtain the following analogue‘of_ Th. 1.8 in [11]

for M €-smooth spaces.

3.11 Corollary. Let f: X — Y be a properly refinable map. Then the
space X is Mf’c-smooth if and only if Y is Mf’c—smooth.

3.12 Theorem. If a map f: X — Y is an M B-bijection and the
domain X is MPB’ C_smooth, then the codomain Y is also Mf’ C_smooth.
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Proof. Let a cover o of Y be given. Let g € 0* and @ = f7!(p). Since
X is Mf’ C_smooth, there is a § € Cov (X) such that for Mf-functions

K and L from a member of B into Y the relation Kﬁ/c L implies the
relation K ~ L. We now use the assumption that f is an M}? -injection
to select a v € B and a A € pT such that for M -functions P and

() from a member of C into X the relation folP 2 f o @ implies the

relation P £ Q. Let p € A*. At last, since f is also an MPB -surjection,
there is a 7 € ' such that for every M;-function F' from a member

of B into Y there is an M -function K with F’ X fo K. Then 7 is the
required cover of Y.

In order to verify this claim, assume that B is a member of B
and F, G: B — Y are M, -functions with FXeG. In other words,

suppose that there is a cover ¢ of B such that F o H ~ G o H for every
Mg-function H from a member of C into B. Choose M, -functions
K, L: B — X and M}-homotopies V, W: B X I — Y such that V; =
=F Wy =G, Vi = foK, and W, = foL. Let § € £t be from
the intersection of sets S(K, ), S(L, v), D(V, p), and D(W, u). Let
C be a member of C and let H: C — B be an Mg—function. Our

choices imply the following extended chain of relations fo K o H K

L FoHZLZGoHX foLoH. Ttfollowsthat foKoH & foLoH.
Since K o H and L o H are the M -functions from C into X, we get

KoH X LoH. Thus, we have checked that Kr/ic L. The way in
which we selected the cover § implies that K < L. Therefore, F &
KfoK R fol X G.Hence, FX G.

B
4. MP-calm spaces

In the present section we shall transfer from shape theory into
proper shape theory the important invariant of calmness. This concept
was invented by the author [6] for compact metric spaces. We shall
define Mf -calm spaces with respect to a class B of spaces in order to
cover all possible variations of calmness (see [6]).

Let B be a class of spaces. A space X is Mf—calm provided there
is a cover o of X with the property that for every cover 7 of X we can
find a cover p of X such that M2-functions F' and G from a member C
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of C into X which are My -homotopic are also M -homotopic.

We shall first consider how this definition depends on the class 5.
Once again the M,-domination offers an answer.
4.1 Theorem. If a class of spaces B is My-dominated by another such
class C and a space X is j\/[;f-calm, then X is also ]\/If-calm.

Proof. Since X is Mg-calm, there is a cover ¢ of X such that for
every v € Cov(X) there is a ¢ € Cov(X) so that for MZ-functions

K and L from a member C of C into X the relation K < L implies
the relation K ~ L. Then o is the required cover. Indeed, let 7 be

an arbitrary cover of X. Let v € 7*. Choose a cover p as above. Let
a B € B and MgZ-functions F' and G from B into X be given and
assume that F X G. Let H be an MJ -homotopy joining F' and G.
Let 8 € D(H, o). We can assume that § is so fine that both F' and G
are ]\4pﬂ »@-functions. Since the class B is M,-dominated by the class C,
there is a C € C and an Mf—function D: B — C such that for every

v € Cov(C) there is an M)-function U: C' — B with idp £ Do
Let K and L be the compositions ' o D and G o D, respectively. Then
K and L are MgZ-functions from C into X with K R L. Our choices
imply K <~ L. Let E be an My -homotopy joining K and L. Let v €
€ D(E, v). Choose a U as above. Then we have the following chain
ofrelatlonstFoDoU KoU X LoU = GoDoU X G.
Hence, F ~ G. O

Our goal now is to show that Mf—calmness is indeed a proper
shape invariant. We can prove a far better result, namely that it is
preserved under Shy-domination.
4.2 Theorem. A space is Mz‘f-calm if and only if it is Shy-dominated
by an Mg-calm space.

Proof. Let X be a space, let ¥ be an Mpc—calm space, and assume
that ¢: X — Y and ¢: ¥ — X are Mp-nets such that the composition
¥ o ¢ is Mp-homotopic to the identity Mp-net X on X.

Since Y is Mpc—calm, there is a cover a of Y with the property that
for every cover § of Y there is a v € Cov (Y") such that M]-functions
K and L from a member C of C into Y which are M *-homotopic are
already Mpﬂ—homotopic. Let p € o*.

Since ¢ is an M,-net, there is an index ¢ € Inc(Y) such that
F;, X F, for all d, e > c. Choose a d > ¢ and a cover o of X so that
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Fyis an MI‘,’ »#_function. Then o is the required cover. Indeed, let a
cover T of X be given. Let v € 7*. By assumption, there is an index
a € Inc(X) such that a > {v} and G o F} ~ idx , where z = ¥(a),
6 = *(a), y = {6}, and z = p(y). Notice that G, is an Mg"’—function.
Let M: X x I — X be an M, -homotopy that realizes the last relation.

Let e € D(M, v) and B € &*. Select an index w > z such that Fj £ Fy,
for every b > w. Observe that the condition w > z implies that Fy, and
F, are joined by an Mg-homotopy N: X xI—=Y. Let £ € D(N, 9).
Pick a cover v of Y with respect to a and § as above. Finally, we select
an index b > w and a 7 € £+ such that Fy is an M Y-function.

Let P: X xI —-Y bean M pﬂ—homotopy joining Fp and F,, and
let R: X xI — Y be an M}-homotopy joining Fy and Fy. Let p
be from the intersection of sets D(P, 8) and D(R, p). Consider Mp2-
functions F' and G from a member C of C into X and assume that
F 2 G. Let K and L denote compositions Fy o F' and Fy 0 G, re-
spectively. These are M) -functions and K = FFoF K FyoF &
X F,0G=1L,ie., K~ L.By assumption, it follows that K £ L. This
relation implies the following chain F,oF £ FyoF =
=K ﬁL:FboG g F,, o G. Hence, FwoFréJFwoG so that we get
G, o F,o0F <~ GgoFy, oG . But, we also have relations Gy 0o F, 0o F' &
X GroF,oF, FXG 0F,0F,GXGyoF,0G,and G,0F,0G ~
X Gz o F, o G. Together these relations imply the desired conclusion
FLG. )

The next result is typical for shape theory. It shows the role
of Mf »€_smooth spaces and is similar to the author’s theorem that a
(B, C)-smooth and C-calm compactum is B-calm [6].
4.3 Theorem. Let B and C be classes of topological spaces. If a space
X 15 both Mf’c-smooth and .Mg-calm, then it 13 also Mf-calm.
Proof. Since X is MS-calm, there is a cover o of X such that for every
7 € Cov(X) there is a p € Cov(X) with the property that for M2-
functions K and L from a member of C into X the relation K <~ L
implies the relation K ~ L.

Let 8 € Cov(X). We utilize the assumption that X is Mf’c—
smooth to select a 7 € Cov(X) such that for M -functions F' and

G from a member C into X the relation FLe G implies the relation

rla. Finally, choose a cover o € 7T as above.
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Consider M}f’—functions F and G from a member B of B into X

and assume that FF < G. Let K: BxI — X be an M -homotopy
joining F' and G. Let v € D(H, o). For every M]-function H from a
member C of C into B the compositions K and L of H and F and H
and G, respectively, satisfy K < L. It follows that K < L. Hence,

Fl; G, and we get the desired conclusion F' i3 G. 0

In the rest of this section we shall consider the question of identi-
fying those proper maps which will preserve or inversely preserve MPB -
calm spaces. The answer provide proper maps studied in [8] whose
definitions have been recalled in §3. The following result resembles Th.
3.8.
4.4 Theorem. If f: X — Y is an Mg-z’njection and Y is Mg-calm,
then X is also Mf-calm.
Proof. Since Y is Mf—calm, there is a cover a of ¥ such that for every
B € Cov(Y) there is a v € Cov(Y') with the property that for every
M -functions K and L from a member of C into ¥ the relation K R L

implies the relation K 210, Leto= fY(«). Then o is the required
cover of X.

In order to check this, assume that 7 is a cover of X. Since f is
an Mz‘f—injection, there is a 7 € Cov(X) and a f € Cov(Y) such that
for M -functions F' and G from a member of C into X the relation

foF L f oG implies the relation F ~ G. Pick a v as above. Let
o € Cov(X) be a common refinement of 7 and f~*(y).
Let C' € C and assume that M2-functions F, G: €' — X satisty

F X G. Let K and L be the compositions f o F'and f o G, respectively.
Then K and L are Mp7 -functions from C into ¥ and we have K ~ L.

It follows that f o F g f oG and therefore that FF < G . ¢
The following result gives a partial converse to Theorem 4.4.

4.5 Theorem. If a proper map f: X — Y is properly refinable and
the codomain Y is Mg-calm, then f is an ]\/Ig-injection.

Proof. Let a cover a of X be given. Since Y is Mf—calm, there is a
o € Cov(Y) with the property that for every 7 € Cov(Y) we can find
a o € 7T such that for Mg-functions K and L from a member of C into
Y the relation K < L implies the relation K ~ L. Let £ € 0*? and
B € a*. Since f is properly refinable, there is a proper map g from X
onto Y such that f and g are {-close and g™ is an Mf—function. Let
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7 € S(¢g7", B). Next, we select a p as above and let n be a common
refinement of 8 and g~*(o).

Consider Mz? -functions F' and G from a member C of C into X

and assume that fo F 5 foG. Let K and L be the compositions
go F and g o G, respectively. Then K and L are M2-functions from C

into Y. From the previous selections we get K = go F e foF L

foGQ e goG = L and thus K < L. Our choices now imply that

K L L. Tt follows that F £ g logoF = g7loK £ g oLl =
=g logoG (el Hence, FF ~ G . {

4.6 Corollary. The image Y of an Mg-calm space X under a properly
refinable proper map f: X — Y is Mf-calm if and only if the map f
s an Mg -injection.

In an attempt to prove an analogue of Theorem 3.10 for Mf -calm
spaces instead of Mj-placid maps we must use the following stronger
form of this notion. A proper map f: X — Y between spaces is M-
placid provided for every cover ¢ of X there is a cover a of ¥ such that

for every cover p of X and every cover § of Y there is an M-function
J:Y — X which is both an Mg-function and an Mp* ?-function and

fodJ and idy are sz?—homotopic.

4.7 Theorem. If a proper map f: X — Y is M -placid and the
domain X is M‘S-calm, then the codomain Y is also Mg-ca.lm.

Proof. Since X is Mf-calm, there is an 0 € Cov(X) such that for
every 7 € Cov(X) we can find a p € Cov(X) with the property that
for Mg¢-functions K and L from a member of C into X the relation
K £ L implies the relation K ~ L. Since f is My -placid there is a
cover a of Y such that for every cover p of X and every cover 6 of ¥
there is an M-function J: Y — X which is both an M2-function and
an M ?-function and there is an Mg -homotopy H joining foJ and
idy. Then « is the required cover of Y.

To check this, let a cover 8 of Y be given. Let § € 8* and let
7= f1(6). Pick a p and a J as above. Let v € S(J, o). Then « has
the required property. Indeed, let D and E be M) -functions from a
member C of C into Y and assume that D ~ E. Let K and L be the
compositions J o D and J o E, respectively. Then K and L are M)-
functions from C' into ¥ and since J is an My -function we obtain
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that K ~ L. It follows from our selections that K ~ L so that after
composing with f we get f o K X foL. Thus, we have the following
chain of relations D & foJoD = foK % foL = foJoE 2 E.
Hence, D LE. O

4.8 Theorem. Let C be a class of spaces. Let X be an M}?—calm
space. If amap f: X — Y is an Mf—bz’jcctz’on, then the space Y is also
Mpc-calm.

Proof. Since X is Mf-calm, there is an o € Cov(X) such that for

every f € Cov(X) we can find a v € Cov(X) with the property that
for MJ-functions K and L from a member of C into X the relation

K < L implies the relation K Lr.

Since f is an Mf-injection, there is a £ € Cov(Y) and an n €
€ Cov(X) such that for M} -functions K and L from a member of C
into X the relation fo K L folL implies the relation K ~ L. Let
o € £*. Then o is the required cover of Y.

In order to check this, let a 7 € Cov(Y') be given. Let a p € 7*
refines 0. Put f = f7!(u). Choose a cover 7 as above. Since f is an
Mpc—surjection, there is a ¢ € nT such that for every Mg-function F
from a member C of C into Y there is an M)-function K: €' — X with
FXfoK.

Consider M¢-functions F' and G from a member C' of C into V'
and assume that F' < G'. Choose M -functions K and L from C into X
such that ¥ £ fo K and G & fo L. From the previous two relations

we obtain f o K 3 folL. It follows that K ~ L and therefore K 2r
and foK & folL. Combining the last two relations, this time we shall
get the conclusion F' ~ G . {

5. Nf*c-smooth and PPB’C-smooth classes

The notion of an Mf '€ _smooth class of spaces allow us to obtain
two new properties that are preserved under M,-domination. They
could be considered as dual to the notion of an Mf »C_smooth space.
While in the previous three sections we investigated a space X by look-
ing at small proper multi-valued functions from members of a given
class of spaces B into X, we now change our point of view by concen-
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trating on small proper multi-valued functions from X into members
of B.

Let B and C be classes of spaces. A class of spaces X is (1) N} ¢-
smooth and (2) PP €-smooth provided the class B is (1) M;¥:¢-smooth
and (2) Mz‘f »*_smooth, respectively. In other words, provided that
(1) for every B € B and every o € Cov(B) there is a 7 € Cov(B)

with the property that for M -functions F' and G from a member

of X into B the relation F~¢ G implies the relation F < G;
(2) for every B € B and every o € Cov(B) there is a 7 € Cov (B)
with the property that for My -functions F' and G from a member

of C into B the relation F~y G implies the relation F < G .
We shall say that a space X has one of the above properties pro-
vided the class {X} consisting just of a space X has this property.
The three versions of proper smoothness share many properties.
We shall now state and prove the N and the P versions of most results
from §3.
5.1 Theorem. A class X of topological spaces is Nf’c-smooth if and
only if it is My-dominated by an Nf’c-smooth class of spaces.
Proof. Suppose that X is Mp,-dominated by an Nf’c—smooth class
Y. Then the class B is Mg’c—smooth so that B is Mf’c—smooth by
Theorem 3.5. Hence, & is Nf’c-smooth. O
5.2 Theorem. A class X of spaces is PPB’C-smooth if and only ifit
M,-dominates a PPB’C-smooth class of spaces.
Proof. Similar to the proof of Th. 5.1. {
5.3 Theorem. Let A, B, and C be classes of spaces. If a class X
of spaces is both N}?’A-smooth and M}f’c—tame, then X is also Nf’c-
smooth.
Proof. Let a member B of B and a cover o of B be given. Since X
is NPB’A-smooth, there is a m € Cov(B) such that for My -functions

F and G from a member of X into B the relation FX 4 G implies the
relation F <~ G. Let 7 € 7*. Then 7 is the cover we have been looking
for.

Indeed, let X € X and let F, G: X — B be M, -functions such
that F'~¢ G. By definition, this means that there is a cover a €
€ Cov(X ) such that a belongs to both S(F, 7) and S(G, 7) and the com-
positions F'o K and G o K are M, -homotopic for every Mg -function
K:C — X from a member of C into X. Now we utilize the fact
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that X is also M;;‘t’c—ta,me to select a cover § of X such that for every

A € A and every Mf—function H: A — X thereis a C € C and an
Mg -function K: C' — X so that for every v € Cov(C) there is an
M -function D: A — C with H REKoD.

Consider an A € 4 and an Mf—function H: A — X. Choose a
C and then a K as above. By assumption, the compositions F o K
and G o K are joined by an My -homotopy W. Let ¢ € S(W, 7) and
v € D(C, §). Pick an M-function D as above. Then we obtain the fol-

lowing chain of relations Fo H ~ FoKoD X GoKoD X~ GoH.
It follows that F~ 4 G . Hence, F X G. {

5.4 Theorem. Let A, B, and C be classes of spaces. If a class X of
spaces is PPB’A-smooth and the class C is Mg’A-smooth, then X is also
PPB’ ¢ -sm.ooth. ;

Proof. Similar to the proof of Th. 5.3. {

5.5 Theorem. Let A, B, C, and D be classes of spaces such that B and
D are My-dominated by A and C, respectively. If a class X of spaces is
Nf’p-smooth, then it is also Nf’c-smooth.

Proof. The assumption that X is N;t’D—smooth means that A is
M P-smooth. Since B is M,-dominated by A, it follows from (3.1)
that B is Mf’p—smooth. But, since D is Mp-dominated by C, we get
that B is M;V’C-smooth and therefore that X is NPB’C—smooth. o
5.6 Theorem. Let A, B, C, and D be classes of spaces such that B and
C are Mp-dominated by A and D, respectively. If a class X' of spaces is
Pf’v-smooth, then it is also PPB’C—smooth.

Proof. See the proof of Th. 5.5. {

There seems to be no analogue of (3.7) for N7+ €-smooth and PJ>¢-
smooth spaces. In order to state versions of (3.8) we need the following
dual form of the notion of an M f -injection.

Let B be a class of spaces. A class F of proper maps is Nf—
injective provided for every B € B and every ¢ € Cov(B) there is a
7 € Cov (B) such that for every f: X — Y from F and for every M-
functions F' and G from Y into B the relation F' o f ~ G o f implies the
relation F < G. A proper map f: X — Y is an Nf—z’njection provided
the class {f} is N -injective.

For a class F of maps let ' and F" denote collections of all
domains and of all codomains of members of F, respectively.

5.7 Theorem. If F is an Nf-injective class of proper maps and the
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class F' is Nf’c-smooth, then the class F" is also Nf’c-smooth.

Proof. Let a member B of B and a cover ¢ of B be given. Since the
class F is MPB-injective, there is a u € Cov(B) such that for every
proper map f: X — Y from F and all M}-functions F, G:Y — B

the relation F o f & G o f implies the relation FF = G. We utilize now

the assumption that the class F' is MPB »C_smooth to select the required
cover 7 of B such that for every member X of 7' and all M -functions

P, Q: X — B the relation P~ Q implies the relation P L£Q.

Let Y be a member of the class 7" and let F, G: Y — B be M-
functions and assume that F~¢ G. Let f: X — Y be from the class F.
Let P and ) be the compositions F o f and G o f. It is easy to check
that PLe Q. Tt follows that P & Q and therefore that FF < G. §

In a similar way one can prove the following dual result for the
PPB »€_smooth classes of spaces.

5.8 Theorem. If F is an Nf-injective class of proper maps and the
class F" is PPB’C-smooth, then the class F' is also PPB’C-smooth.

5.9 Theorem. If F is a class of M}l, -placid proper maps and the class
F' is Nf’c-smooth, then the class F' is also Nf’c-smooth

Proof. Let a member B of B and a cover o of B be given. Let u €
€ o*. Since the class F" is Nf’c—smooth, there is a 7 € ™ such that
for every member V' of F" and all My -functions P, Q: Y — B the

relation P<¢ Q implies the relation P £ Q. Then 7 is the required
cover. Indeed, let X be from the class 7' and let F), G: X — B be
M -functions and assume that FicG. Let f: X — Y be a proper
map from the class F. Let § € Cov(X) be from the intersection of
sets S(F, 7) and S(G, 7) and have the property that Fo H <~ Go H
for every Mg -function H from a member of the class C into X. Since
fis Mll,—placid, there is an M}f-function J:Y - X with Jo f L idx.
Let P and @) be the compositions F'oJ and G o J. Then P and () are
M -functions and PZlc Q. It follows that P X Q. Our choices imply
F L FoJof=PofXQof=GoJof~ G. Hence, FXG.
5.10 Corollary. An M,-retract of an Nf’c-smooth space is itself
Nf’c—smooth.

5.11 Theorem. If F is a class of M, -placid proper maps and the class
F'" s Nf’c-smooth, then the class F' is also properly Nf’c-smooth.
Proof. The proof is similar to the proof of Th. 5.9. {
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In the next result that corresponds to Th. 3.12 we shall use a
notion of Nf—surjective class of proper maps from [8] whose definition
we now recall. Let B be a class of spaces. A class F of proper maps is
Nf -surjective provided for every B € B and every o € Cov(B) there
is a 7 € Cov(B) such that for every f: X — Y from F and every
My -function F': X — B there is an Mj-function G: Y — B with
F X Gof. A propermap f: X — Y is an Nf-surjectz‘an provided
the class {f} is Nf—surjective. Also, a class of proper maps which is
both Nf-injective and Nf—surjective is called Nf’c—bijectz’ve. We shall
use Nf—bz’jective for an Nf’ B_bijective class of proper maps. A proper
map f is an Nf'c-bz’jectz’on provided the class {f} made up of f alone
is Nf’ C_bijective. An NPB—bijection is defined analogously.

5.12 Theorem. If F is an Nf-sﬂrjectz’ve class of Mg-surjections and
the class F'" is Nf’c-smooth, then the class F' will be also NE'C—
smooth.

Proof. Let a member B of B and a cover o be given. Let A € o*.

Since the class F" is Nf’c—smooth, there is a v € Cov (B) such that
for every member YV of 7" and all M -functions K, L: Y — B the

relation K~¢ L implies the relation K A L. Let p € v. We utilize now
the assumption that the class F is MPB -surjective to select the required
cover T € uT of B such that for every map f: X — Y from the class F
and every My -function F': X — B there is an M}'-function K: ¥ — B
with FAX Ko f.

Consider a member X of ' and M -functions F, G: X — B and

assume that F<¢ G. In other words, assume that there is a cover § €
€ Cov(X) such that Fo H ~ G o H for every M/ -function H from a
member of the class C into X. Let f: X — Y be from the class F.
Pick M}-functions K, L: Y — B such that FEKofandGA Lof.

Let V and W be M) ¥ -homotopies which realize the last two relations.

Let o € 67 be from the intersection of sets D(V, ) and D(W, u) and
let £ € Cov(Y) be from the intersection of sets S(K, 1) and S(L, p).
Since f is an MC—surjection there is a ( € Cov(Y) with the property
that for every C € C and every M ¢_function M: C — Y there is an

My -function H: C — X with M ~ f oH.

Let C be a member of the class C and let M : C' =Y be an Mg—
function. Choose an H as above. Then we obtain the following chain
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of relations: KoM X KofoH X FoH L GoH £ LofoH X
LoM. It follows that Ko M < Lo M. In other words, we checked
that K~¢ L. Now, we conclude that K A L. This time we have
FAKofR2LofX G Hence, FZL.0

The situation with PPB »€_smooth classes of spaces is much simpler
as the following theorem shows. The proof of it is left to the reader.
5.13 Theorem. If F is an .NPB—surjective class of proper maps and the
class F' is PP C-smooth, then the class F'" is also PP:C-smooth.

6. Nf—calm classes

In this section we shall do for M f -calm spaces what we have done
in §5 for Mf »C_smooth spaces. In other words, we shall introduce a
dual notion called NPB -calmness. It applies to classes of spaces and it
satisfies five theorems which are analogues of results in §4.

Let B and X be classes of spaces. The class X is Nf—calm provided
the class B is MpX—calm, i. e., provided for every B € B there is a cover
o of B with the property that for every cover 7 of B we can find a
cover o of B such that for every member X of X and M2-functions

F, G: X — B the relation F' X @ implies the relation F L G. A space

X is Nf—calm provided the class { X'} consisting of X alone is Nf-calm.
The following two theorems are easy consequences of Ths. 4.2 and

4.1, respectively.

6.1 Theorem. If a class of spaces B is Shy-dominated by another such

class C and a class of spaces X is N]f-calm, then X is also Nf-calm.

6.2 Theorem. A class of spaces X is Nf-calm if and only if it is

M,-dominated by an Nf-calm class of spaces Y.

6.3 Theorem. If a class of proper maps F is Nf-injective and the

class F' is Nf—calm, then the class F" is also NPB-calm.

Proof. Let a member B of B be given. Since the class F' is N5-calm,
there is a cover o of B such that for every 6 € Cov (B) thereis a p €
€ Cov (B) with the property that for every Mg-function K and L from

a member X of F' into B the relation K < L implies the relation

K 2 L. Then o is the required cover of B.
In order to check this, assume that 7 is a cover of B. Since the
class F is Nf—injective, there is a § € Cov(B) such that for every
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proper map f: X — Y from F and all M?-functions F and G from Y
P

into B the relation F o f LGo f implies the relation FF ~ G. Pick a
o as above. We can assume that o refines 6.

Let Y be amember of the class 7" and let M2-functions F,G: Y —
— B satisfy F X G. Let f: X — Y be from the class F. Let K and

L be the compositions F o f and G o f, respectively. Then K and L
are Mﬁ’—functions from X into B and we have K <~ L. Tt follows that

Fofri G o f and therefore that F <~ G. ¢

The N. f -calm classes of spaces are inversely preserved under Mé-
placid maps.
6.4 Theorem. If F is a class of le,-placz'd maps and the class F'' is
Nf-calm, then the class F' is also Nf-calm.
Proof. Let a member B of B be given. Since the class F" is NpB—calm,
there is a 0 € Cov(B) such that for every y € Cov(B) we can find a
o € Cov(B) with the property that for M¢-functions K and L from
a member Y of F'' into B the relation K <~ L implies the relation
K X L. Then o is the required cover of B.

To check this, let a cover 7 of B be given. Let u € 7*. Pick a
o as above. We can assume that p refines u. Let F and G be Mp-

functions from a member X of F' into B and assume that FF ~ G . Let
W be an M -homotopy joining F' and G. Let § € Cov (X) be from the
intersection of sets D(W, o), S(F, p), and S(G, p).

Let f: X — Y be a map from F. Since f is Mé—placid, there is an
Mg—function J:Y — X such that idx KJo f.Let Kand L be FolJ
and G o J. Then K and L are M2-functions from Y into B and we have
K X L. It follows from our selections that K X L so that we have
the following chain of relations. F L FoJof=Kof X Lo f =
=GoJof A G Hence, FLG. )

6.5 Corollary. An M,-retract of an NPB-calm space is itself Nf-calm.
6.6 Theorem. Let B be a class of spaces. If F is an Npg-bz’jective class
of proper maps and the class F'" is Nf-calm, then the class F' is also
Nf-calm.

Proof. Let a member B of B be given. Since the class F" is Nf-calm,
there is an a € Cov (B) such that for every p € Cov(B) we can find
a m € Cov(X) with the property that for M -functions K and L from
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a member Y of F" into B the relation K ~ L implies the relation
KXL.

Since the class F is NE-injective, thereis a A € Cov (B) such that
for every proper map f: X — Y from F and all M;-functions K and L

from Y into B the relation K o f R Lo f implies the relation K ~ L.
Let 0 € A\*. Then o is the required cover of B.

In order to check this, let a 7 € Cov(B) be given. Let p € 7*.
Choose a cover 7 as above. We can assume that 7 refines both ¢ and
i. Since the class F is also Nf—surjective, there is a ¢ € 7T such
that for every proper map f: X — Y from F and every M$-function

F: X — B there is an M -function K: Y — B with F' ~Kof.
Consider a member X of F' and Mﬁ—functions F and G from X

into B and assume that ' ~ G. Let f: X — Y be a map from the
class F. Choose two M;—functions K and L from Y into B such that

F X Kofand G &~ Lo f. The last two relations imply the relation

Kof R Lo f. It follows that K ~ L and therefore that K & L. Thus,
we obtain the following chain of relations : F ~ Kof ~ Lo f & G.
From here we conclude that FF <~ G . {

7. Covered and extended classes

In this section we shall explore dependence of all proper shape
invariants which were defined on classes of spaces involved under the
assumption that these classes are connected by either surjections or
injections. The connection can be through one of the following two
notions.

Let F be a class of proper maps and let B and C be classes of
spaces. We shall say that the class C is F-covered by B provided for
every C € C thereis a B € B and an h: B — C from F. Similarly, the
class C is F-extended by B provided for every C' € C thereis a B € B
and a k: C — B from F.

For a class of spaces B we shall use B;, Bs, and By to denote the
classes of all Mf—injections, Mf—surjections, and Mf—bijections. Also,
B*, B°, and B® denote the classes of all N},B-injections, Nf—surjections,
and Nf -bijections. Moreover, if F and G are classes of maps we let 7§
denote the intersection F (3.
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We begin with the result on ]\/I}fg »C_smooth spaces and continue to
cover all our proper shape invariants. The proofs are mostly omitted.
7.1 Theorem. Let A, B, C, and D be classes of topological spaces. If
a space X is Mf’p—smooth and either
(cc) B is {X}i-covered by A and D is {X }'-covered by C,

(ce) B is {X}*-covered by A and D is A®-extended by C,

(ec) B is Ds{X}*-extended by A and D is {X}'-covered by C, or

(ee) B is Cs{X}°-extended by A and D is A°-extended by C,

then X is also Mf’c-smooth.

7.2 Theorem. Let A, B, C, D, and X be classes of spaces. If X is
N;"D-smooth and either

(cc) B is Xi-covered by A and D is X'-covered by C,

(ce) B is X'-covered by A and D is A,-extended by C,

(ec) B is Dy X°-extended by A and D is X'-covered by C, or

(ee) B is DyX*-extended by A and D is B®-extended by C, then X is
also Nf’c~smooth.

7.3 Theorem. Let A, B, C, D, and X be classes of topological spaces
such that B is Xy-covered by A and X is both N;‘”D-smooth and MI?’C-
tame. Then X is also Nf’c—smooth.

Proof. Let a member B of B and a cover ¢ of B be given. Let u €
€ o*. Since the class B is Xj-covered by the class A, there is an A €
€ A and an M;*-bijection h: A — B. Let § = h™'(p). We utilize
now the assumption that the class X is N;t’ D_smooth to select an € €
€ Cov (A) such that for M;-functions P and ) from a member X of

X into A the relation P~p () implies the relation P L (). Since h
is an M,¥-injection, there is a A € Cov(A) and a v € pt such that
for M;‘-functions P and @Q from a member of X into A the relation
hoP < hoQ implies the relation P ~ Q. Let x € v*. At last, choose
the required cover T € kT of B using the fact that A is an Mf—surjection
such that for every M -function F' from a member X of & into B there
is an M;‘—function P:X > Awith FRLhoP,

Consider an X € & and M -functions F, G: X — B and assume
that Fc G . Pick M]f‘—functions P, Q: X — A and M;-homotopies V
and W joining F' and h o P and G and h o @), respectively.

Our goal now is to show that P~p Q. In order to do this, we
must find a cover ¢ of X sothat Po N <~ Qo N for every Mg—function
N from a member of D into X. First, observe that the assumption
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about F' implies the existence of a § € Cov (X) such that the relation
FoM ~ GoM holds for every Mg -function M from a member of C
into X. Let ¢ € 8" be from the intersection of sets D(V, k), D(W, &),
S(F, 7), and S(G, 7). Since X is MPD’C-ta,me, there is a £ € Cov (X)
with the property that for every ]\/sz -function N from a member D of
D into X thereis a C € C and an M;g -function M : C' — X such that
for every v € Cov(C) we can find an M -function K: D — C with
NAMoK.

Let D€ D andlet N: D — X be an Mg—function. Pick a C' and

an N as above. By assumption, there is an M -homotopy Z joining
FoMand GoM. Let v € D(Z, 7). Choose a K as above. Our choices

imply that ho(PoN) &% FoN A FoMoK &~ GoMoK ~
~ GoN X ho(QoN). It follows that ho(PoN) < ho(QoN)
so that Po N <~ Q o N and our claim has been verified.

Now, we conclude that P 2 Q and therefore ho P X ho Q. Thus,
we obtain now F ~ hoP £ hoQ & G. Hence, F X G. §
7.4 Theorem. Let A, B, C, D, and X be classes of spaces. If X is
N;"D-smooth and either
(cc) B is CsXi-covered by A and C is A'-covered by D,
(ce) B is CsXi-covered by A and C is A*-extended by D,
(ec) B is D;-extended by A and C is B*-covered by D, or
(ee) B is X;-eztended by A and C is B5X;-extended by D,
then X is also PPB’C-smooth.
7.5 Theorem. Let B and C be classes of spaces. If a space X is Mf-
calm and the class C is either {X}t-covered or {X}°-extended by B,
then X is also Mg—calm.
7.6 Theorem. Let X, B, and C be classes of spaces. If X is Nf-c&lm
and the class C is either Xy-covered or Xj-extended by B, then X is also
Nz‘f-ca,lm.
Proof. (C is Xj-extended by B). Let a member C of C be given. Since
the class C is &;-extended by the class B, thereis a B € B and an MPX-
injection k: C'— B. Since X is N/-calm, there is a cover o € Cov (B)
such that for every 7 € Cov (B) thereis a p € Cov (B) with the property
that for every X € & and all Mg-functions K and L from X into B
the relation K < L implies the relation K ~ L. Let v = k(o). Then
~ is the required cover of C.
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Let 6 be a cover of C. Since k is an Mf-injection, there is a 6 €
€ Cov(C) and a7 € Cov (B) such that for M/ -functions F' and G from
a member of X into C the relation ko F' ~ ko G implies the relation

FLG. Picka o as above and let € € Cov (C) be a common refinement
of # and £~ 1(p).
Consider M;-functions F' and G from a member X of & into C

and assume that F < G. Let K and L be the compositions k o F' and
ko(G. Then K and L are M;’—functions with K <~ L. It follows that

K X L and therefore that F 2 G. O
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