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Abstract: The relationships between certain substructures of a morita con-
text for near-rings and the associated morita near-ring is determined. This is
then used to determine the relationship between the radicals of the two near-
rings in the morita context and the radical of the associated morita near-ring.

1. Introduction and preliminaries

Morita contexts have proved to be a useful tool in ring theory
in determining the transfer of structural properties between two rings,
especially as far as the radicals are concerned, see for example Amitsur
[1] and Sands [6]. In [3] we have defined morita contexts for near-rings
and in [4] we showed that two much studied cases from the theory
of near-rings can be accommodated in this setting and how the tools
provided by the morita context facilitates their investigation. The two
cases referred to are, firstly, the transfer of structural properties between
a (right) ring module and the associated near-ring of homogeneous maps
on the group and secondly, that of a near-ring and the associated matrix
near-ring. Here, in Section 3, we study the relationships between the
radicals of the two near-rings L and R from a morita context for near-
rings I' = (L, G, H, R) and the radical of the associated morita near-ring
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M,(T). We give explicit conditions which ensures that the radical of
M;(T) can be expressed in terms of the radicals L and R - initially
having to first determine the relationship between the radicals of L and
R. In doing this, we had to establish various relationships between some
substructures of the morita context and the morita near-ring (Section
2). But firstly we have to recall some relevant definitions and earlier
results.

All near-rings will be right distributive and 0-symmetric. Let R
and L be near-rings and let G be a group. G is a L-R-bimodule if there
are functions

LxG—G,(z,9)— 2y and GxR—G, (g,7)—gr

such that (z1 + z3)g = 219 + 29, (g1 + g2)r = G17 + gor, (T172)g =
= z1(z29), (gr1)rz = g(rir2) and (zg)r = z(gr) for all z,z21,22 € L,
g,91,92 € G, r,r1,m9 € R. (Strictly speaking we should call G a near-
ring L-R-bimodule, for even if both L and R are rings, G need not be
a ring bimodule.) A normal subgroup K of G, G a L-R-bimodule, is
an ideal of G if

KR:={kr|ke K,re R} CK and
L+K:={z(¢g+k)—zg|z€eLl,gecGEkeK}CK.

Let N, := {1,2}. For i € N,, we use i, to denote the complement
of i in N,. For each i,j € Ny, let T';; be a group. The quadruple
I' = (11,12, T21, Ta2) is @ morita context (for near-rings) if for every
i,7, k € Ny there is a function

Dijk xTgi = Tji, (2,y) — 2y

which satisfies (a + b)c = ac + bc and (db)e = d(be) for all a,b € T'jg,
c € Tyi, d € Tj and e € Ty It is clear that for each ¢,7 € Ny, Iy
is a I';;-I';;-bimodule and, in particular, for : = j, I';; 1s a near-ring.
As agreed earlier on, we only consider 0-symmetric near-rings. Hence
we should add the requirement that a0 = 0 for each a € T';;, ¢ = 1,2.
Then 2z0;; = 0y for all = € Tyj, i,5,k € N;. We will usually not
write the subscripts in 0;;. It is clear that if I' = (T'11,T12,T21,T22)
is a morita context, then so is (2,21, '12,'11), the one being called
the dual of the other. Often, for a fixed i € Nz, we will thus talk
about the morita context (I';;, i, i i, i ). For each 4,5 € Na, let
A;j € T'ij. The quadruple A = (A11,A12,21,Dp;) is an ideal of the

morita context I' = (T'y1, 12,21, 'a0) if each A;; is a normal subgroup
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of T;j, AijTjk C Ajg and Tri A5 := {a(b+c)—ab | a € Tri, b€ Tyj,c €
€ A} C Ak] for all 4,7,k € Ny. In this case we get the quotient morita
context

r o [Tn Tio Ty Fzz]
AT LA A’ Agr’ Ag
where the relevant maps
| PP 7 Tk
X —
Ai; Ay Ak

are defined by
(z+ Aij,y + Aji) > zy + Aig.

For the morita context ' = (T'11, 12,21, '22), let 't = [PH Flz] be
a1 Do

the associated matrix group. Let m;;: IV — T;; and 7i5: T'y; — T't be
the (7,7)-th projection and (i, j)-th injection respectively. For 1 € Ny,
let T';; @ ', be the direct sum of the two groups I';; and I';; and let
m;: Tt = Ty @ Ty and 75: Ti1 @ Tyo — I'™ be the obvious projection
and injection respectively. Let u;;: I';; — Map (T'j1 @ T'j2, T'aa @ Tiz) be
defined by

uij(z) =uf;: Tj; ®Tja = Dan ® T, wjj(ar, a2) := (zay,zaz).
Finally, for each i,] € Np, x € Tyj, let s7; := 7 o ujj o

The morita near-ring determined by T', denoted by M3(T'), is the
subnear-ring of

Map (I't, ) := {f: Tt = T'" | f a function with f(0) =0}

generated by {sf; | = € F”, i,j € Na}. M(T) is a 0-symmetric near-
ring which has an identity si; + s3, if both I';; and I'y2 have identities
(here 1 denotes both the identity of I'1; and [2). A proof technique
which is quite useful when dealing with elements of M(T") is “induction
on the weight w(u) of U € My(T")”. The weight of U € M,(I"), written
as w(u), is the smallest number of s¥; needed to represent U. If I'y
denotes the dual of the morita context I', then M(T") & M3(T'g). Some
useful facilities for doing calculations in ]\/Iz(l") are (cf. [3]):

_ Tty
1.1 z]+3,, CHARS

1.2 : sfj + s%m = szm + sfj if @#Kk




180 S. Veldsman

1.3 r v _{Sfﬁi i#j=k,
' Stkm =\ o i AR
1.4 s5i(sik, + 2k2) - Szmlgj;
0 0a
15 f UeM I‘,Ua”a”]:U[a“ ] U[ 12];
or By 2( ) [au a3 az 0 + 0 as;
1.6
for any U,V € My(T), U v |9 =v |0 v a0,
’ ’ b 0 0d 0d b0’
17 for k€ Ny, Cy = {sf}c + 552 | z1 € T'ig, 20 € sz}
' is a left invariant subgroup of My(T');
for U € My(T'),U [“11 “12] _ [1’11 1’12]
1.8 ’ Q21 22 ba1 bay

if and only if U( a1 3“2’) = 511’1‘ + 3b2' for all z € V,.

All our consideration to follow, will be in what we call a standard
morita context. A morita context I' = (I'11,T"12,'21,'22) is a standard
morite context if both I'y; and T'y; have identities, all bimodules in T’
are unital (both left and right) and T';;. T'; ; = T';; for all j € N, where
I';;.T';.; denotes the subgroup of I';; generated by I';;, I';, ;. Some useful
consequences are:

1.9 Forall j,k€ Ny, and z €Ty, z € (ijchcj):L';

1.10 Fjn=Tjtlkn forall j,k,n € Ny;

1.11 if z € T'j; and A is a subgroup of I'j, then T';; T'; ;2 € A
implies z € A;

1.12 for © € Tyg, if Thjz € Apk, then z € Apx where
(Alla Alg, A21, Agg) is an ideal of T'.

Finally, it is clear that if I' is a standard morita context, then so is its
dual as well as % for any ideal A of I'.

In all that follows, we assume that the morita contexts under
discussion are all standard morita contexts.
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2. Substructures of morita contexts and morita
near-rings

Let A = (Ayq1,A12,A21,Az) be an ideal of the morita context
' = (Fll,F12,F21,P22). Then A* := {U € Mz(r) | UP+ g A+
+} is an ideal of the near-ring M,(I") where At is the matrix group

At = [A“ A1z . Let T be an ideal of the morita near-ring M(T").
AVSIRAVY!

For each i,j € Ny, let T;; = {z € Ty; | S§; € T}. Then T, :=
:= (T11,T12, T21, T22) is an ideal of the morita context I'. I U € T,

and U |91 92| _ |t b”], then st¥ € T for all 7,7 € Np. It
as1 A2z ba1 bag J

is clear that if 7% and 72 are ideals of M,(T") with 7% C 7?2, then
(T1Y)s C (T?).. Moreover, if 7° is an ideal of M, (T") where each « is
from some index set, then ((\7%*)« = [(J((7)«). For any ideal A of

T, (A*), = A and if 7 is an ideal of My(T'), then (in general) only
T C (T,)* holds. If T = (T,)*, then 7 is called a full ideal of M(T').

From the above and [3], we have

2.1 Proposition.

(1) An ideal T of M>(T') 1s full if and only of 1t satisfies:
UM;(T)spp €T forall k€ Ny implies U€T.

(2) There is a one-to-one correspondence, which preserves inclusions
and intersections, between the ideals of the morita contezt I' and
all the full ideals of the associated morite near-ring My(T') given
by Ar— Ar— A*— (A" =A. O
Let A;; be an ideal of the I';;-T'j;-bimodule I';;. For k € N,,

let AyTy} := {z € Tix | Tk; C Ay;}; it is an ideal of the T'yi-Trs-

bimodule I';x. Let I‘i"klAij be the ideal of the I'yx-I';;-bimodule T'x;

generated by T'; * A;;. Part of the next result follows from [4]:

2.2 Proposition. Let i € Ny be fized. Let T' = (T, Tii,, Tiss, Tici.) be

a (as usual) standard morita context. For each j € Na, let Aj; be an

ideal of the near-ring T';;. Let

A = (A, AiDT 5 T Ay (T 8i)Tis

and let
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Aie: = ((F;1Azczc )P;: ? F;}Azclc’ A’czcr‘;:’ Aiz:ic)'

Then:

(1) Foreveryj € Na, Aj is an 1deal of T' if and only if T';;. *I‘]-_jch]-j -
C Ajj. In case T'j;, * I‘]Tthjj C Ajj, there 18 no need to insert

brackets in (T Aj;)T5 5, since (D75 AT 5 = T5 (8405 5)-
(2) IfAi= A, then A; is an ideal of T.
Proof. (1) follows from [4].

(2): From (1) above, we need T;_ I"i_iclA,-,- C A;;. But our
assumption reduces our need to I';;_ * Aicicri_i: C (1";1 A,-c,-c)l";cl ie.,
we need

(Tii, * A, i, T )i, C F;Aicic
where the latter is the ideal of the I';;-I';_ ; -bimodule generated by
i, * Aigio. Now (s, * A,i T3DTii, C i, * (A T )T )Tai.) ©
C T, * Aii, ST Avi,. O

For any j € Na, let §*(T'j;) :== {A;; C Tjj | Aj; is an ideal of
Fjj for which Fjjc *F]'*]%:Ajj - A]‘j and for =z € Fjj, a:I‘jch‘jcj - A]‘j
implies € Aj;}. In [4] it was shown that this class of ideals is closed
under intersections and
2.3 Proposition [4]. There is a one-to-one correspondence, which
preserves inclustons and intersections, between S*(T';;) and S*(T'i.i,)
given by

cele

Ay — DA — DT Aul T = A

Recall, an ideal I of a near-ring N is a 2-semiprime ideal if for
any left invariant subgroup A of N, A2 C I implies A C I. T is a
3-semiprime ideai if Nz C I implies z € I. The near-ring N is 2-
semiprime (resp. 3-semiprime) if 0 is a 2-semiprime (resp. 3-semiprime)
ideal of N. Any intersection of 2-semiprime (3-semiprime) ideals is 2-
semiprime (3-semiprime). It is clear that any 3-semiprime near-ring
is 2-semiprime; our interest here in 2-semiprime near-rings is mainly
because of the following which is easy to verify:
2.4 Proposition. Let N be a near-ring with identity. An ideal I of N
18 3-semiprime if and only if it 18 2-semiprime. {
2.5 Proposition. Any 3-semiprime (= 2-semiprime) ideal T of M,(T)
28 full.
PI.'fOOf. We use 2.1(1) above. Let U € M,(T") and suppose UM3(T)s}, C
T for all k € Ny. Then (51, U)M2(T)(s;,U) € 7T and hence s;, U € T
for all k € Ny. Then U = (s1; + s3,)U = st U +s3,U€T. O
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Let Sx(T;;) := {Aj; € Tj; | Ajj is a 3-semiprime ideal of T';;
which satisfies T'j;, * Fj_jchjj C Aj;}. From [4] we need two more
results:

2.6 Proposition [4]. Let A;; be a 3-semiprime ideal of 'j;. Then

(1) .’IJFjchjcj - Ajj implies z € Ajj;

(2) (I‘j_jchjj)Fj_C:;- i3 a 3-semiprime ideal of T'j ;..

2.7 Proposition [4]. There is a one-to-one correspondence, which
preserves inclusions and intersections between S;(I';;) and Sy(Tii,)
(given by the same map as in 2.3 above).

2.8 PI‘OpOSitiOl’l. Let1 € N2 be ﬁ:z:ed Let A = (AiiyAiicaAicia Aicic)
be an ideal OfP = (I‘,-,-,F,-ic,l’ici,l",«cic). Then

(1) Aii, € AT ={z e Ty, | 2T4: C Diils
(2)

Aii =T7 A = {z €Ty | Tui,z C Ay} and Ty, = F,-_iini C Ay
(3) A, ST AT = {z € Dii. | Tii.eTii € Auiks

(Diiy iy D Aii) = (Disy AT T3 A, Tt AuTi

ict?

if and only if for = € Tis,, 2T, C Ay implies z € Ay;,.

(4)

Proof. (1): Let z € A;;,. Then 2I';; C Ay I'ii © Ayi; hence z €
€ A,',-I‘i‘j ={zely, |zTi:C A} (by definition).

(2): Let z € A;,i. Then D;ilu.z C I‘,-ci(I‘i,-CAic,-) C A C
CTIii*xA; C I‘;}Aii by the definition of the latter. By 1.11 we
have z € PZ_ZCIA” Since I';_; * Ay € A, and A;,; is an ideal of the
I‘ic,'c—l",-,--bimodule [;.:, we get F;;%Aii C A;,;. Hence A = FﬁiAii
and so I';;_ * I‘ﬁ:Aii = Ty, * Aii € Ay;. For the second equality, let
x € Ty ; such that T'y;,o € Ay By 112, 2 € Ay = I’;;:Ai,- follows.
Conversely, if z € A;_;, then I';; x C Ty Az © Ayse

(3): Let z € A;_;,. Then zT;; C Ay Ti.i C© Ay hence z €
€ A,—c,-]."z-:} = I’;;:A,-,Ti—c} from (2) above. The equality FE:A“-I‘Z-_C% =
= {z €Ty, | Ts.2Ti.: C Ay} is obvious from (1) and (2) above.

(4): If the equality holds, then clearly z € T, with 2T ; C Ay
implies z € A,'il"z-_; = A;; . Conversely, let z € A,-,T‘E. Then zT';,; C
C A;; and by the assumption, z € A;;,. Thus Ay, = Ai,-I‘z-_c}. Let
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(TS F IA”F L — {a el | Diial’;,; C Aii}- Then Dy oyl C A;;
and by “the assumption, T,y CA;,. By 112 y € A;,;, follows.

2.9 Proposition. Let T be a 3-semiprime ideal of My(T"). Fori,j,k €
€ Ny and z € Pz'j.'

(1)

«lj;2 C Tpy implies z € Tjy;

wn particular, T;; 18 a 3-semaiprime ideal of T';;.
(2) J:ijrkj - 'Tij implies z € 7;1

Proof. (1): For any U € Mz(F) there is some ay E Tgi (k=1,i.) by
1.7, such that sf;Usf; = sf;Usi;s?; = sLU(sh; 4 88, )sh; = s¥; (s% +

1t 1)

+ sa'?) o= M € T since Ta;r € CEF],:E C T;;. Since T is 3-

lete z_] 1)

semiprime, s7; € T and hence z € T;; follows.
(2): Suppose zI'jxT'x; € T;; but = ¢ T;;. By (1) above, there is a

yely = I‘JLI‘M (cf. 1.10) such that zyz ¢ 7;;. Assume y = Z orarb,

where o, € {+,—}, a, € I'jz and b, € T't;. Then arobrow Q_f T;; for
some ry € {1,2,...,n}. Once again, by (1) above (with i = j), there
is a u € T'j; such that ar b,z war,bryz ¢ T;5. But arybryzuar bz =
(arobre )z(uar, )(broz) € T2k T'k; C T';i T35 € 745 a contradiction. ¢
2.10 PI‘OpOSitiOl‘l. Let1€ N, be ﬁ:ced and let A:(AiivAiic7Aici7Aicic)
be an deal of T' = (T, Ui, Ui i, Tisi ). Then A* 1s a 3-semiprime ideal
of M3(T") if and only of A satisfies:

(1) A;i 18 a 3-semiprime ideal of T'y; and

(2) ‘ zl';,: C A“(.’L‘ € Fiic) implies © € Aiic-

Proof. If T := A* is a 3-semiprime ideal of My(T), then A;; = 7T;; a
3-semiprime ideal of T';; follows from Prop. 2.10(1). If z € T';;, such
that zI';_; € Ay, then 2T ;. © ATy, © Ay, = 755, and by Prop.

2.10(2) we have z € T;;, = Ay;,.
Conversely, suppose (1) and (2) are satisfied. Let U € My(T)
such that UM,(I")U C A*. Suppose U [an a”] = [bll b12j|. By 1.8
azy az2

U(s3k + s32k) = shtk 4 552 for k € N, and
V—SL]U( $ik ““)sij( Mk 4 g5k ) € A* for all k,jEN,, z,y€l;.

y big bor\ .z by bak ybjk Thjk __  _ybjrzhjk *
ButV~sk1( + s, )sk]( + 5 )_Skk Spr = Spp €A
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and so ybjrzbjr € Agg. Thus Tijbjrlkjbjr © Agg for all j,k € Nao. By
(1), Aji is a 3—semiprime ideal of T';; and by Props. 2.6 and 2.10, also
A, =T lA”F is a 3-semiprime ideal of I'; ;.. This means, for any
k € N,, (Fk] ]k)I‘kk(Fk] bjk) C Agi and since Agg is a 3-semiprime
ideal of T'gg, I'k;bjk € Agx. By 1.12 we have bji € Aji for all j,k € Ns.
Hence UTT C AT; 50 U € A*. {

2.11 Corollary. Let i € Ny be fized and let T = (T'i;, Tis,, Ui i, Tisi,)
be @ morita context. Let T be a 3-semiprime ideal of My(T). Then:

Tii, = Tul;; = {z € Tis, | aTy,i C Tii},
(1) Ti.i =T; Tii = {z € Ti,i | i,z C Tii} and
Tii, =T;. Tl ; = {z € Tui, | Dus. 2T C Tii};

tele

T = (T, Tii Tiy Tii,) = (Tis, T T3, T ITH,P T ) =

1c1?

=TT 5 T T, T ).

1.7 T lele™ 12.? icy ’clc ite ’ zclc

(2)

Proof. (1): Let A := T, = (T3, T, Ti,i, Ti i, )- By Prop. 2.5, A* =
= (7.)* = T. The result then follows from Props. 2.10 and 2.8. (2)
follows by using (1) above twice; once for ¢ and then for ¢.. {
2.12 Corollary. Leti € Ny be fized. Let A;; be an ideal of T'y; such
that Ty, + T, 1A” C A;;. Let A be the 1deal A= (A“,A”I‘l i,F“lA”,
F;:A”I‘Zcz) of the morita context I’ (cf. Prop. 2.2). Then A* is a 3-
semzprzme ideal of M5(T") if and only of Ay s a 3- 3emiprz'me ideal of
T';;. If any one of these two conditions holds, then AMI‘_ = Apr =
= I‘]nlAJk for all j,k,n € N;.
Proof. The sufficiency is clear from Prop. 2.10. Conversely, since
zl;,i € A;; implies z € A”Fl ., once again Prop. 2.10 yields the result.
For z € An]ij, .T].-‘kj C Anj and so :Eijij C And‘]-k C Anr- By
the assumption and Prop. 2.9 we get z € A,i. Conversely, z € Apg
implies 2T'y; C A,j and so = € And‘;jl. Since I'nj * Ajr © Api and
Apk is an ideal of the I',,,-T'gx-bimodule T',,x, we have I‘;} Ajr € Apk.
Conversely, for z € Ay, we have I'y;Tjnz C TpjAj CTyjx Ay C
- I‘_lA]k Forj=n,z €,z = FnJF]nm C I"j'nlAjk, and for j = n,,
by 1.11 we get z € I, A]k Thus I‘ A]k = Ank. O
2.13 Prop051t10n. Let A = (AH,AH,AN,AM) be an ideal of the
morita contert I' = (I'11,1'19,T'91,T22). Then
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 5)+ 40

Before proceeding with the proof, we need:
2.14 Lemma. For each U € My(T), there 1s a Uy € Mz(l;-) with the

property:
ai1 a2 b11 b1z
IFuU = ,
f [021 azz] {bzl 522]

then U, | “11 +Aun a2+ Bz _ bin + Ann big + Axn
q as1 + A21 as9 + A22 b21 + A21 622 + AZ? .

Proof (by induction on w(U)). If U € My(I") with w(U) = 1, then
U = s%_ for some k,n € Ny, ¢ € ['y,,. Let U, := s}, where y = z +
+ Agn. Then U, € Mg(—g—) and it has the required property. Suppose
for all V € M,(T) with w(V) < m, m > 2, such a V; € Mz(%) has
been found. Let U € M,(T") with w(U) = m. Then U = U; + U; or
U = U,U, where U;,U; € My(T) with w(U;) < m and w(Us) < m.
If U = U1 + UQ, let Uq = (Ul)q +(U2)q and lf U = UlUQ, let Uq =
= (U1)4(Usz)q- It follows readily that for both possibilities, U, has the
desired property. We also remark that, even if Uy + U; = U = U; + U,
or Uy +U, = U = UjU} respectively, where w(U]) < m and w(Uj) < m,
then U, is well-defined since for each case, (U1)q+(Uz)q = (U1 )+ (Uz)q
or (Ur)g + (Uz)q = (Uq)q(U;)q respectively. ¢

Proof (of Prop. 2.13). For each U € M,(T), the U, € M(%) given
by the Lemma is obviously uniquely determined by U; hence we have
a well-defined function

r .
w: Ma(T') — MZ(Z), given by ¢(U) = Uj.
Since (U1 +Uz)y = (U1)q+(Uz)y and (U1Uz)g = (U1)q(Uz)g, it is a near-

ring homomorphism. Let us abbreviate the elements of I't and (%)4_

by [aij] and [a;; + A;j] respectively (meaning of course, for example

for [aij]7[aij] = [Z;i Z;z]) Note that Uq[a,‘j + A,‘j] = [bij -+ Aij]

if and only if Ula;;] = [bij + di;] for some dgn € Agp, k,n = 1,2,
Hence we get kerp ={U € My(T")|U, =0} ={U € M(D)|UTT CA*} =

= A*. Finally we show ¢ is surjective from which Mg}") & Mg(%)

will follow. Let V € M2(£) and let U be an element of M3(I') which
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is obtained from V by replacing each sfj+A"" present in V by sf;. Of
course there may be many different such U’s (z in sj; can be replaced
by other representative from z + A;;); for our purposes any one such U
will do. A straightforward induction on w(V') will show that V = Uy;
hence ¢ is surjective. ¢

Let ¢ € N; be fixed. For & = 1,2, let A;; be a subgroup of T';;.
Then 7;(Ai1,Asp) = {m(a,b) | @ € A;y,b € Az} is a subgroup of T
(which is normal if each A;x is normal in I';). Let Ri(Ai1,Ai2) ==
= {U c MQ(F) | UF+ C_i Ti(Ail,Aig)}.
2.15 Proposition. R;(A;1, Ayz) 18 a right invariant subgroup of Ma(T).
It is a right ideal of Ma(T) if Ajx i3 normal in Ty for k =1,2. If Ay

28 a subnear-ring of T';;, then
@it Ri(Ai1, Aig) — Ay, defined by ¢;(U) := m;(U(7i(1)))

18 a near-ring homomorphism. It is surjective if A;;I'i; C Ay for all
7 =1,2. Moreover, kerp; C {U € Ri(Ai1,Ai2) | UR(Ai1,As2) = 0};
in particular, (ker p;)? = 0.
Proof. It is straightforward to see that R;(A;1, A;2) is a right invariant
subgroup, which is a right ideal of My(T") if the A;;’s are normal. We
show that ¢; is well defined, i.e. p;(U) € A;;. Firstly note that for any
U € Ri(Ai1,As2), Usl, = s¥ for some unique u € A;;. Thus
0i(U) = mi(U(1:4(1))) = mis(Usy(ria(1))) = mis(ski(ria(1))) = u € As.
Let Ui,Uz € Ri(Ai1, i) with Us}; = s and Uzs};, = si?. Then
(Ur 4 Ua)sl; = 372 and so ¢i(Uy + Uz) = uy +ug = o(Ur) + o(Us).
Furthermore, @;(U1Us) = 7ii(Uy(Uas};mii(1))) = mii(Ursgsi?mii(1)) =
= mii(8;0 857 mia(1)) = w85t 2 1ii(1)) = urug = @(Ur)p(Uz2). Let K €
€ kerg.oi and U € Ri(Ail,AiQ}. For any ajr € ij, i,k € Ny, and
for some b;; € A;; and by € Ay, KU [all a12] = K(7;(bi1,bi2)) =
a21 Q22

= Ks}ri(bi,bin) = sfl-'ri(bﬂ,biz) = 0 since K € kerp; implies k =
= @i(K) = 0 where Ks}, = sk. Thus (kery;) - Ri(Ai1,Ai2) = 0.
Finally, suppose A;;I';; € Ay for j = 1,2, Let d € A;;. Then 3;-11- €
€ Ri(Ai,Aiz) and p;(s%) = d. Thus ¢; is surjective. ¢

Once again, let ¢+ € N3 be fixed and for each k = 1,2, let Ag; be
a subgroup of T'x;. Let Ci(Ayq, Ag;) := {7} + 52 | zk € Agi, k= 1,2}
Note that if Ag; for £ = 1,2, then C;(A1;, Ag;) = Ci(T'y;,Toi) = C; (cf.
1.7).
2.16 Proposition. Suppose I';zpAr; € Aj; for all k,j € Ny. Then
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Ci(Ari, Ng;) 18 a left invariant subgroup of Ma(T') and if vi: Ci( A, Ag;)
— Ay; 18 defined by vi(si} +s32) := i, then v; i8 a surjective near-ring
homomorphism with (ker v;)? = 0.
Proof. C;(Aq;, Ag;) is clearly a subgroup of M(T). Let U € M, (") and
let 87} 4 522 € Ci(A1i, Az;). We show that U(s7} + s57) € Ci( Aui, Aai)
by induction on w(U). If w(U) =1, then U = szj for some k,j € N»,
Yy e ij. Then

sU.(s3 +s32) = st = sii + sk € CilBaiy Aai)
by 1.2 and since yz; € I'g;Aj; C Ags.

Suppose V(5% + s5,) € Ci(A1i,Ag;) for all V€ Ma(T') with
w(V) < m (m > 2) and s§; + sb. € Ci(Ari,Dgi). Let U € M, (T)
with w(U) = m. Then U = Uy + U or U = U, U for some Uj; € My(T)
with w(U;) < m, j = 1,2. Then U(s(} + s37) = Us(si} + s37) +
+ Us(sTt + 552) € Ci(Ani, Agi) by the induction assumption, or, by 1.7,
U(s2 4+ 422) = Dy(Un (5% + 522)) = Da(slk + o82) € Ci( A Ai), once
again by the induction assumption.

Note that by the assumptions on Ay; and Ag;, Aji is a subnear-
ring of I';;. Clearly v; is a group homomorphism and ~;((s7§ 557 )(s7} +
FoB)) = (B ST = ayy = (s + 520) - (o + 8). Tt is
clear that 7; is surjective and kervy; = {si} + s3; € Ci(A1i, Agi) | zi =
= 0} = {S::C': | T;, € Alcl} Thus, (ker(’yi)Z =0. ¢

3. Radical theory

Here we investigate the relationship between the radical of the
near-ring M>(T') and the radicals of the near-rings ['1; and I'y. We once
again stress our assumption that I' = (Ts:, Tis., Tiviy Disi, ) is always a
standard morita context for near-rings. We shall give two approaches to
establish this relationship. The first is by placing additional conditions
on a Kurosh—Amitsur radical, and the second will be by considering
conditions on a class of near-rings such that the corresponding Hoehnke
radical has the desired properties. Throughout this section M is a class
of 2-semiprime near-rings. Let ¢ be the corresponding Hoehnke radical,
ie. oN =N(I an ideal of N | N/I € M) for all near-rings N.
Conditions on p. Here we suppose that o is a Kurosh-Amitsur radical.
For more information on the relevant requirements for this to hold, [5]
can be consulted. Of importance here, are the following:
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Let R, := {near-rings N | pN = N} be the radical class deter-
mined by g. Then
3.1.1 R, is homomorphically closed;

312 pN e R, forall N;

3.1.3 R, is closed under extensions, i.e. if I is an ideal of N such that
both I and N/I are in R,, then N € R,;

3.1.4 if I is an ideal of N with I € R, then I C gN;

3.1.5 since M consists of 2-semiprime near-rings, R, contains all the
near-rings with zero multiplication.

Examples of such radicals are the Jacobson radicals J; and Js, the

Brown-McCoy radical G and the equiprime radical e determined by

the classes of 2-primitive, 3-primitive, simple near-rings with identity

and the equiprime near-rings respectively. If a 2-primitive near-ring N

has an identity, then it is 3-primitive and consequently the J; and J3

radicals of any near-ring with identity coincide. Additional properties

that the radical p may satisfy are:

o is right strong (resp. left invariantly strong) if whenever I is
a right ideal (resp. left invariant subgroup) of N with oI = I, then
I CpoN.

o is hereditary on right ideals (resp. hereditary on left invariant
subgroups) if whenever I is a right ideal (resp. left invariant subgroup)
of N € R,, then I € R,.

In the sequel, we let T := o(M3(T)). Since 7 is an intersection
of 3-semiprime ideals (= intersection of 2-semiprime ideals since M(I")
has an identity), 7 itself is 3-semiprime and thus full (cf. 2.5).

3.1.6 Proposition. Suppose o is right strong. Then o(T';;) C T;; for
allt =1,2.

Proof. Let i € N, be fixed. Let A;; = o(I';;) and let A;;, =T';,. Then
A;r is a normal subgroup of I';x and A;T'ip C Ay for each £ = 1,2. By
Prop. 2.15, ¢;: Ri(Aii, Aii,) — Ay is a surjective near-ring homomor-
phism with K? = 0 where K = ker ;. (Note the inconsistency here, as
well as in a few other places in the sequel of our notation; strictly speak-
ing for 7 = 2, we should write R;(Aii,,Ai;) instead of R;(Aii, Asi,).)
By 3.1.5,3.1.2 and 3.1.3 we get 'R,i(A,'i, Aiic) € Rg. Since Ri(Aii, A,‘,‘C)
is a right ideal of M>(T") and p is right strong, we get Ri(A, Aii,) C
C Q(MZ(F)) =T. Let z € o(T';;) = Aj;. Then s}, € Ri(Aii7Aiic) CT,;
hence z € T;;. ¢

3.1.7 Proposition. Suppose g 18 hereditary on right ideals. Then
T:i C o(Ty;) for all: =1,2.
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Proof. Let i € N, be fixed. For each k € N3, let A;x = T;x. Then A
is a normal subgroup of I';x and A;;T;, C Ay for all £ = 1,2. By Prop.
2.15, Ri(Aii, Aii,) is a right ideal of My(T') and ¢;: Ri(Ayu, Aii) —
— A;; is a surjective near-ring homomorphism. Let U € R;(A;;, Aii,)-
Then UT't C 7(Au,Au.) € (7)Y, Thus U € (T.)* = 7; hence
Ri(Aii, Aii,) € T = o(M(T')) € R,. By our assumption on p,
Ri(Aii, Aii,) € R, and thus also 7;; = Ay; € R, (by 3.1.1). Since
7:i is an ideal of T';;, we have 7;; C o(T';;) by 3.1.4.

Since T = o(M>(T")) is a 3-semiprime ideal of M;(T"), we have by
Cor. 2.11(2)

T. =(Ti, T, 7.0, Tii. ) =
:(q—ih zzP—I F 17—”7’T1c1c)

et

= (Tis, T i, Tii T3, Tii).

1.1 ictey Licte 11, !

Let 01(T) := (o(T11), o(T11)T57, T3 0(T11), (T3 o(T11))T 2_11) and let
02(T) == (T3 0(T22))T 15, T3 @(T'22), o(T'22)T'1y 5 0(T22))-
In general, neither of these need to be an ideal of the morita context I’
and they need not be equal. However, if g;(T") = p2(T'), then p1(T) is
an ideal of I" (cf. 2.2) and in this case we say the radical of I" exists and
call it the radical of the morita contezt I'. We denote it by o(T).
3.1.8 Corollary. Suppose g 13 right strong and hereditary on right
ideals. Then o(Tj;) = T;; for all j € Ny and o(I") = p1(T') = po(T);
hence o( My(T')) = o(T)".
Proof. By 3.1.6 and 3.1.7 we have o(T “) = 7;; and by the discussion
preceding the corollary, we get p1(I') = 7, = 02(T"). Hence p(I") exists
oo () — T T g T~ (T~ (T 0
3.1.9 Proposition. Suppose g 1s hereditary on left invariant subgroups.
Then T;; C o(T';;) for alli € N,.
Proof. Let : € N, be fixed and for each k& € N, let Ay; = Tii.
Then Ap; is a subgroup of I'y; and T'jp Qg € Aj; for all k,7 € No.
By Prop. 2.16, Ci(Aii, Ai,:) is a left invariant subgroup of M3(I') and
vi: Ci(Ai, A;;) — Ay is a surjective near-ring homomorphism. Now
Ci(Aii, Ai;) C T = po(M2(T)): Indeed, for all n,m € Ns, let ap, €
€ I'nm. For z; € A;; and z;, € A;,;, we have

; a a
(s% +s2%) | TH "2 = ri(mian, Tiain) + TiL (T a0, T ai2) € (T)T
€ a21 G213

since zxa;; € Ap;Ty; = Tiulij C Ty for all k, j € Ny, Thus s}/ —I—Sf:f €
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€ (7,)* = 7. Since p is hereditary on left invariant subgroups, we get
Ci(Aii, Ai i) and thus also A;; = T;; in R, (by 3.1.1). Thus 735 C o(Ti;)
by 3.1.4.
3.1.10 Proposition. Suppose o 13 left invariantly strong. For 1 € N,
fized, let A;; = o(Ty;) and let A;,; be the subgroup of I';_; generated by
Ti.ilii. If Tii A € Ay, then o(Ti;) € T
Proof. Firstly note that I'jzAg; € Aj; for all 5,k € N; by Propo-
sition 2.16, C;(Ai;,A;,;) is a left invariant subgroup of M,(T") and
7i: Ci(Aiiy Ag,i) — Ay is a surjective near-ring homomorphism with
K? = 0 where K = ker 6. By 3.1.5, 3.1.2 and 3.1.3 we get C;(Ayi, Ai i) €
€ R,. By the assumption on p, we get Ci(Au, Ayi) C o(Mz(T)) =T.
For z € o(T'ii) = Aui, 85 € Ci(Ais, Aii) € T hence z € Tj;. O

As in 3.1.8, we get:
3.1.11 Corollaries. If

(i) p 1s right strong and hereditary on left invariant subgroups
or if
(ii) o 1s hereditary on left invariant subgroups and left invariantly
strong such that T';; A; ; C o(T;;) where Aj ; is the subgroup
of I';,; generated by T'; ;0(T';;) for all j = 1,2
then

o(Ty;) = T;; for alli € Na, o(T) ezists and o( Ma(T)) = (o(T'))*. O

3.2 Conditions on M. Throughout this section,I'=(T'11,I'13,I'21,I'22)
is a fixed standard morita context and M is a class of 2-semiprime
near-rings with g the corresponding Hoehnke radical. We write 7 for
o(Ma(T)).
3.2.1 Proposition. Suppose M satisfies:

(I) If A is an ideal of Ma(T') with My(T")/ A € M, then T/ Aj; € M

for 1 € Ns.

Then o(T'ii) € Tii-
Proof. Let z € o(T;;) and let A be an ideal of M,(I") with M,(I")/ A €
€ M. By condition (I) z € o(T';;) C A;; and so s§; € A. Since this holds
for all such ideals A of My(T'), s%; € o(M2(T")) =7. Thus z € T;;. §
3.2.2 Proposition. Suppose M and [ satisfy:

(I1) For i € Ny, if Ay 18 an ideal of I';; with T'y;/Ay; € M, then
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Piic * FE:A“' C A;; and Mg(F)/A* e M

where A* = (A”,A”P;:,P;:A”,F;:A“Fz—;)

Then Ti; € o(Tis).

Proof. Let x € 7;;. Then s% € 7. Let Aj; be an ideal of I';; with
T'ii/Aii € M. By condition (II) we get s%; € T = o(M(T")) C A%
hence z € (A*)” =A;;. Thus z € Q(Pii). O

3.2.3 Theorem. Suppose M and T satisfy conditions (I) and (II).
Then o(T'y;) = Ti; for i € Ny, o(T) ezists and o(Mz(T)) = (o(T'))*.
Proof. By the previous two results and Cor. 2.11, we have that o(T)
exists and o(T") = 7,. Thus o(M3(T)) =T = (7.)* = (o(I))*. O

3.2.4 Proposition. The conditions (I) and (II) are equivalent to (A)
and (B) where:

(A) For i € Ny, if Ay 1s an ideal of T'y; with Tii/Aii € M, then

T, * PE:A,',' C A;; and Picic/Fi‘i:AiiPi‘c} € M.

(B) Let A = (All,Alg,Agl,Azg) be an ideal Of T". Then Mz(F/A) €
€ M if and only if Ti;/Aii € M for 1 € Na.

Proof. Suppose (I) and (II) hold. Let ¢ € N, and suppose A;; is an

ideal of I';; with F,‘i/Aii € M. By (H), Ty, = P;:Aii C A;; and so

for A = (Ai, AiiTy 5 T Aui T AuTi 1), A% is an ideal of My(T') for

which M5(T')/A* € M. By (I) we then get I'; ;. /T;;' Aul';; € M and

so (A) holds.

Let A = (Alla AIZ’ A21,A22) be an ideal of T'. If MQ(P/A) € M,
then My(T')/A* € M (by Prop. 2.13) and from (I) we get I';;/Ai; €
€ M. If Ty;/Ai;; € M, then (II) gives My(I'/A) = My(TY/A* e M
which shows the validity of (B).

Conversely, suppose (A) and (B) hold. Let A be an ideal of M,(T")
such that My(T')/ A € M. Then My(T'/A,) € M and by (B), T'yi/ A =
= (T'/A.)i: € M. Thus (I) holds. Let A be an ideal of I';; with
Pz‘,’/Aii € M. By (A), Ly, * P;:A“ C A;; and I‘,Czc/I‘;: A“P;j e M.
For the ideal

A= (Ali, A1, Agq, Agg) = (A117A11P;113 Fl_glAu,ngl Anrfgl) =
= (D37 D22l , T Aoz, A2oTr5, Ag2)

we then have T';;/A;; € Mfori € Na. By (B), Ma(T)/A* = My(T'/A) €
M which yields (II). ¢

Contrary to the ring case the conditions (I) and (II) for the near-
ring case can apparently not be expressed in terms of standard morita
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context without reference to ideals (e.g. in the case of (II), I';; € M
implies My(I") € M). The reason being that for an ideal A;; of T'y;,
A = (A1, ATy, T A1, T3 ATy ) is not necessarily an ideal of
T (cf. Prop. 2.2).

4. Examples

4.1. Let M be a class of 2-semiprime near-rings which has the matrix
extension property, i.e. if A is a near-ring with identity, then A € M
if and only if M, (A) € M where M,(A) is the n X n matrix near-ring
over A. Let N be a 0-symmetric near-ring with identity. Then I’ :=
= (N,N*t,N* N)is astandard morita context (all multiplications are
just the near-ring multiplication). In this case M>(T") =2 M,3(N) (cf.
[3]) and T and M clearly satisfy the conditions (A) and (B). Hence
o(Ma(T)) = (o(I'))*. But o(M2(T)) = o(M2(N)) and

(o(T))" = {U € My(N) | U [Z] - {gg%g” ~ (o(N)).

Hence o( M3(N)) = (o(IN))*, confirming a well-known result (cf. [7]).
4.2. Let M be the class of all 2-semiprime near-rings. Let I' =
= (T'11,T12,21,'92) be a standard morita context. By Prop. 2.9, if
A is a 2-semiprime ideal (= 3-semiprime ideal) of M,(T'), then A;; is a
2-semiprime ideal of I';; and so condition (I) is satisfied. If the context
I" has the property that for each 1 € N3, whenever A;; is a 3-semiprime
ideal of T';;, then T';;_ *Fﬁini C A;;, then also condition (II) is satisfied
by Cor. 2.12.

Let us mention that the context I' = (T'17,T12,021,T22) =
.= (N,G, H,M,(N)) (cf. [4]) has the property that for any ideal A;; of
Tii, Tiio * T3 Ay C Ay
4.3. Let M be the class of 3-primitive near-rings. Then p = J;. Ander-
son, Kaarli and Wiegandt [2] have shown that J; is a right strong radical
(a note of caution, they deal with left near-rings and consequently show
that Ja is left strong). Thus J3(T';;) C Ti; where T = o(M>(T")) for any
standard morita context I". This result also follows from condition (I)
which we now verify:
4.3.1 Proposition. The class of 3-primitive near-rings satisfies con-
dition (I). ‘
Proof. Condition (I) will follow from: M,(I") 2-primitive implies I';;
2-primitive for any standard morita context I' = (I'11,T'12,T21,T22)
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(by using Prop. 2.13 and the fact that the concepts 3-primitivity and 2-
primitivity coincide on near-rings with identity). If My (T') is 2-primitive,
there is a faithful M;(T")-group G which has no non-trivial My(T')-
subgroups. Let H = s},;G. Then H is a subgroup of G, for if h; = sla1
and hy = s},g, are elements of H, then h; — hy = si(g1 — g2) € H.
Here we have used the fact that for any distributive element U € M,(T),
U(g1 + g2) = Ugs + Ugs. Indeed, if g3 = 0 or g; = 0 it clearly holds.
Suppose thus g; # 0 and g, # 0. Then My(I)g; = G = M;(T")g2 and
so0 g1 = Vg1 and g2 = Wy, for some V,W € M,(T"). Then U(g, +g2) =
=U((V+W)g1) = UV +W))g1 = (UV)g1 +(UW)gy = Ugy + Uga.

We now show that H is a faithful I';;-group of type 2. Define
I‘,‘,‘ xH—-H by

(a,s5;9) — s&g forall aely;, g€ G.

It is well-defined since s%;g = sj;(s%g) € s;;G = H. Also, (a+b)(skg) =
= asjg + bsj;g and (ab)shg = s¥g = sti(shi(sk9)) = a(b(shg)) =
= a(b(s};9)). Thus H is a I';;-group. Moreover, if aH = 0, then s% €
€ (0: G)myry) = 0. Thus @ = 0 and so H is faithful. Finally, for
0 # si,g € H, we show I';;(shg) = H: Let 0 # slg' € H. Then
519" € G = My(T)(skg); say skg' = Usl,g for some U € My(T"). Then,
for some aj € T'j; (j = 1,2) we have sl;g' = sk(sk¢') = s, (Uskyg) =
= s;U(si; + 5809 = shi(sif + 5i55)g = sig = ai(s}g) € Giu(skg). As
the other inclusion is obvious, we have H = I‘,','(S}ig). Thus I';; is a
2-primitive near-ring. {
4.4. Let M be the class of equiprime near-rings. Recall, a near-ring N
is equiprime if anz = any for all n € N implies @ = 0 or £ = y. Then
o = e 1s the equiprime radical.
4.4.1 Proposition. The equiprime radical is right strong.
Proof. Let I be a right ideal of the near-ring N with e(I) = I. Let
P be any equiprime ideal of N. We show K := {z € I | zI C P) is
an equiprime ideal of I. It is clearly an ideal. Let a,z,y € I such that
arz — aiy € K for all ¢ € I. Then aizj — aiyj € P for all¢,j € I. If
a ¢ K, then aiy ¢ P for some ¢y € I. Suppose also z —y ¢ K. Then
zjo — yjo ¢ P for some j, € I. Since P is an equiprime ideal of N,
there is an ng € N such that (aig)ng(zjo) — (aio)no(yjo) ¢ P. But
(aig)no(zjo) — (aio)no(yjo) = aliono)zjo — a(zono)yjo € P since IN C
C I, which is a contradiction. Thus K is an equiprime ideal of I and
sol =e(I)C K;ie. I? CP. Let a € I. Then aNa = (aN)aCI? C P
and since P is an equiprime ideal, it is 3-prime and so ¢ € P. Thus



Substructures and radicals of morita contexts ... 195

I C P and we conclude that I C e(N). §

This result yields e(T';;) C 7;; where 7 = e¢(M3(T")). It also follows
from condition (I) which we now verify.
4.4.2 Proposition. The class of equiprime near-rings satisfy condition
I).
%’z'oof. Let A be an equiprime ideal of M3(I'). We show A;; is an
equiprime ideal of I';;. Let a,b,c € T';; such that anb — anc € A;; for
all n € T';;, ie. s?i"b_“"c € A for all n € T';;. Suppose both a and
b— c are not in A;;. Then both s% and s}, — s¢, are not in A and
consequently there is a U € M,(T) such that s&Us?; — s&UsS; ¢ A.
Now Us}; = s} + s5? for some z; € Ty;, j = 1,2 (cf. 1.7), and so
S?izib_'azic = s&(si+557)shi— st (s +551)s5; = shUshsh—sfUslsh; =
= s&Usl; — s&UsS; ¢ A; a contradiction. ¢
4.4.3 Proposition. Let I' = (I'y1,T'12,121,T92) be a standard morita
context such that T';;, *l"i_iclA,-i C A;; for any equiprime ideal A;; of T'y;.
Then T' and M satisfy condition (II).
Proof. Let A;; be an equiprime ideal of I';;. We show that A* is an
equiprime ideal of M>(T") where A is the ideal of I'=(T";;,i. . Ti.i, s, ),
cf. Prop. 2.2 and our assumption, defined by A=(A;,Au, A i, )=
(A, Aiiri:%,ri_iclﬁii, Fi_iclAiiF,-_j)- For this we need a preliminary re-
sult:
4.4.4 Lemma. Forn,k,j € Ny, ifa € T'ng, z,y € T'x; and abz —aby €
€ Ayj for all b € Ty, then a € Ay or z —y € Agj. In particular, for
n=k=j=1c, A = Fi_ilA,-iI‘i_% 18 an equiprime ideal of T';_;_.
Proof. As every equiprimecideal is 3-semiprime, we may use the second
part of Cor. 2.12 (which we often do without any further mentioning).
Ifad¢ Apr = l"i_nlAik, then ua ¢ Ay = Ai,‘]f‘;il for some u € I';,. Thus
uav ¢ A;; for some v € I'y;. For any ¢ € Ty, ¢ € T'j; and d € Ty,
(uav)d(gzc) — (uav)d(qyc) = [u(avdgz — avdqy) + avdqy) — vavdgy]c €
€ (Tin * Ap;)Tj; C ATy € Ayj. Since Ay; is an equiprime ideal of
Tii, we have qzc — qyc € A;; for all ¢ € T'ix, ¢ € I'j;. Thus gz — qy €
€ A“I‘J_zl = Ai]‘ for all ¢ € I';;. Since 1 = 1r,, € Tir = Tril'sk, we
have 1 = 3 oyg1hy where oy € {+,—}, g+ € I'ti and h; € T';x. Now

t=1

z—y=1lr—ly =oc1g1hiz+... +0mdmhAmT—0mgmhmy—...—0191h1Y.
For each t, otgihiz — o1gihey = (019:)[(hex — Rey) + hay] — (o191)hey €
€ I'ti * A;; € Agj, which is normal in I'y;, and we may conclude that
Ty E Akj. O
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Proof (of 4.4.3). We abbreviate an element ;11 z12 of I't by [z;;].
21 T22

Let A,B,C € M,(T') such that AUB — AUC € A* for all U € My(T).
Suppose A ¢ A* and B — C ¢ A*. Then [a;;] = Alzj] ¢ At
+ and [b;; — ¢;;] = Blzi;] — Clzi;] = (B — C)[zi;] ¢ AT for some
[2ij], [z:;] € TF. Suppose a := az; ¢ Ay and b — ¢ = bpg & Apg.
Now a ¢ Ag; = Akpl"j"Pl implies au ¢ Ay, for some u € T'j,. From
the above Lemma, we know there is a d € I'pp, such that audb —
—audc ¢ Agg. Let V= (5,7 +5,7)s%4 € My(T). Since AVB—AVC €
€ A*, also s3; AVB—si, AVC € A*. Thus (s34 AVB =53, AVC)[z;] =
= shi(s1) +5; )53 lbis] — siy (774557 ) ste[eis] = shud [bis]—s g2t cij] =

Y11 Y12

Y21 Y22
= 1,2. In particular, for t = ¢, we get yr; = audb — audc € Apg — a
contradiction. {

€ At where yi; = audbyy; — audcp; and yi,; = 0 for t =
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