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Abstract: Studies of a physical problem led to the functional equation

(1) flgz)=2 (f(z4+1)+Ff(z—1)+2f(2)) for all zeR
with the boundary condition
(2) f(z)=0 for all z with |2|>Q:=5Z;

where ¢€]0,1[ is a fixed real number. It turns out that the behaviour of
solutions of (1) which fulfill the boundary condition (2) is quite different, de-
pending heavily on the value of ¢. An — in some sense “complete” — answer
on the general solution of (1) under the condition (2) (including investiga-
tions on continuity, differentiability, measurability, integrability) can be given

in the following cases: 0<g¢<3, ¢=%, and ¢=3.

Studies of a physical problem (cf. [4]) led Prof. R. Schilling to the

functional equation given below. It was known that in the case ¢ = %
there is a continuous solution with bounded support. Now the question
arose to find all the solutions of this equation. :

Let the functional equation

(1) fle) = 1 (fo+ 1)+ fa =1 +2f(@)) forallz cF

and the boundary condition
(2) f(z) =0 forallz with |z|>Q:= iq—
—4q
be given, where ¢ €]0,1[ is a fixed real number. In the previous paper
[2] we dealt with the problem of finding solutions of equ. (1) with un-

bounded support. Now we turn over to some results on solutions with
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bounded support. As we will see, the problem (and its solutions) have
a quite different behaviour depending on the values of ¢. Though the
problem in general is far from being solved, some special cases can be
treated in the sequel:

ITII1. Solutions with bounded support

a) The case 0 <q< 1

In this case we have 0 < Q@ < 1 < 1 - Q < 1. The following
theorem will give 5 conditions (a)-(¢) equivalent to (1)-(2). Though
they are more than two (as originally given) their structure is much
more easier than (1)4(2):

Theorem 20. Let g < 3. Then the system (1) and (2) is equivalent to

the system

(@) f(=) =2¢f(¢) for allz € [-Q, Q)]
(B)  f(z) =4qf(e(z +1)) for allz € [-Q, Q)]
() f(=) =44¢f(g(z - 1)) for all z € [-Q, Q)
(6) f(z)=0 for all z with ¢Q < |z| < ¢(1 — Q)
(&)  flz)=0 for |z] > Q.
Proof. (a) Let f fulfill (1) and (2). We show that f is a solution of
(a)-(e):

(€) is trivial, as (2)=(¢).

(a) Let 2 € [-Q,Q]. Thenz+1 > Q, z—1 < —Q. Thus
flz+1)= f(z—1)=0and f(¢gz) = 41—qu(:1:), i.e. (a) holds.

(B) Let z € [-Q,Q]. Theny :=z+1€ [1-@Q,1+ Q] and
therefore y > @, y+1 > Q, y—1 ==z € [-Q,Q], qv € [¢(1 — @),
q(1 + @)]. Remembering that ¢(1+Q)=Q we have qy € [-Q, Q] and
flay) = 1;f(y — 1), thus f(g(z +1)) = & f(2).

(7) like (B).

(6) Let ¢Q < |z] < ¢(1—Q) and put y := 2. Then @ < |y| <1-Q
and therefore [y| > @, [y +1| > @, |y — 1| > @, thus f(y) = f(y+1) =
= f(y — 1) = 0. That implies f(z) = f(qy) = 0.

(b) On the other hand, suppose that f is a function which fulfills
(a)—(g). We show that f is a solution of (1)-(2):

(2) is trivial, as (2)=(¢).
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(WIze[-Q,Q thenz —1< —Q, z+4+ 1> Q, and therefore
f(z+1) = f(z—1) = 0 by (¢). Thus («) implies that f(qz) = El-éf(w) =
= ﬁ(f(m +D)+ f(z—-1) +2f(x)) IfQ < |z|] <1— @ then |z| > @Q,
|z =11 > @Q, [z +1| > Q. By (¢) f(z) = f(z+1) = f(z - 1) = 0.
By (6) f(gz) = 0, and thus f(gz) = %q(f(:c + 1)+ f(z — 1) + 2f(z)).
fze[l-Q,1+Q],thenz>Q,z+1>@Q,z—-1¢€[-Q,Q] and
gz € [-Q,Q]. (B) and (¢) imply f(z — 1) = 4¢f(gz) and therefore
f(gz)=7; (f(e+1)+f(z—1)+2f(z)). The case z€[-(1 + @), ~(1-Q)]
is treated like [1 — @, 1+ Q] by use of (y) and (¢). If |z| > 1+ @, then
lz| > Q, |t +1] > Q, |z — 1| > @, |¢gz| > @, and therefore (¢) implies
that (1) is fulfilled. ¢

As the next theorem shows, the conditions (a)—(e) give rise to a

detailed description of all the solutions:
Theorem 21. Suppose that f is a solution of (a)—(g). Let

Ay i=A{z | qQ <lz] < q(1-Q)}
and @o,01,0-1: [—Q,Q] — [—Q, Q)] be the functions
po(@) =gz, pi(2) = alo+1), poa(a) = gla—1).
Define the sets A, recursively by

Ant1 = o(An) Up1(An) Up_1(4n).

Then the following holds:
(a) Each A, and the set A:= |J A, are open;

neEN
(b) MA) =2Q, where X is the Lebesgue measure on R;
(c) f(z) =0 for each z € A (i.e. f =0 a.e.);

(d) [-Q,Q)\ A= {m |z =Y aiq’, where a; € {0,1,——1}}, and this

n=1

set 18 uncountable.
Proof. g, ¢1,¢—1 are linear-affine, order-preserving homeomorphisms.

(a) As A; is open, by induction each A, is open and, therefore,
the set A, too.

(b) First we show that (A,)nen is a family of pairwise disjoint
sets. We compute a detailed description of A,. Let J :=]Q,1 — Q.
Then A; = ¢J U(—¢q)J, and by induction one can easily see that A, is
the union of all the sets

n—1 n—1
Zaiqz +¢"J and Zaiqz —q"J,
=1 =1

where a; € {0,1,—1}. We show that all these sets are disjoint: Let
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m,n € N and a;, b; € {0,1,—1}, and

z € (7"2_:1 aiq' + qu> N (Tf b]-qj j:q”J).
i=1 j=1

Suppose that a; > b and m,n > 2: As J CJ0, 1| we have

(e o} . q 1
mZalq—Zlq'zalq—ql—;—q>a1q—§q;

=1

on the other hand

o0
. 1
z<big+ Y 1  =big+g—— < big+ 54,
i=2 1-q 2
a contradiction. Thus, if the intersection of two such sets is nonvoid
then necessarily a; = by, and by a simple induction argument we are
reduced to the case

m—1
T € (Z aiq' + qu> N (gJ).
i=1 ‘
Suppose m > 2: If a4 = 0 or a1 = —1 then z < Yo l¢t = ql—g—q = ¢Q,
1=2

and z € ¢J implies > ¢@, a contradiction. If a; =1, then z < ¢(1—Q),
w .
andz>qg— > l¢g'=¢q— ql—z—q = ¢(1—Q), a contradiction. Therefore,

=2

the only possible case is m = 1, and we have shown that all these sets are
n—1 .

disjoint. Now the Lebesgue measure of an interval > aiqg*+q™J is equal
i=1

to ¢"A(J) = ¢"(1—-2Q), and therefore we get A\(4) = 2A\(J) 3 ¢"37~1,

n=1
n—1 .
because there are 3"~ polynomials ) a;¢’ with a; € {0,1,—1}. Thus
=1
1 1 1-3g
AA) =2 1-2Q)=2 = 20Q).
(A) q1_3q( Q) T 5,14 — 2

(c) Using f(z) = 0 for z € Ay (by (6)), by induction and (a),
(8), (v) we can show that f(z) = 0 for z € A, where n € N. Thus
f(z) = 0 for each z € A.
(d) As A is an open set [—~Q, Q] \ 4 is a closed set which contains
n—1 .
all the border points of the intervals Y a;q' + ¢™J, that is, all the
i=1
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points
n—1
D ad+q"Q = Z zqizlq
=1 i=n+1
and
n—1 . n—1
S ad e (1-Q) =Y ad = (" + 3 (-1).
1=1 i==1 i=n+1

Furthermore, all the limit points of these border points belong to the
set [_Q7 Q] \ A.

On the other hand, A(A) = 2Q, and therefore [-Q, Q] contains
no proper interval belonging to [—@,Q] \ A. Thus every element of
[—Q,Q] \ A is a limit point of the points given above. Now the set
{x |lz=Y" a;q*, where a; € {0,1, -1}} is homeomorphic to the product

n=1
o0 .
space {0,1,—1}"N via the bijection (a;)ien — . aiq’, because ¢ < 3
i=1 i
It is easy to see that the set of border points of the intervals is dense

in the set
o0

{w |z = Zaiqi, where a; € {0,1,—1}},
n=1

and this set is closed. ¢
Corollary 4. Let ¢ < 3. Then any solution of (1) and (2) is equal to
0 almost everywhere (and therefore measurable). Thus any continuous
solution is 1dentically zero. o

The next theorem gives an idea how to find all the solutions of
(1) and (2) in the case ¢ < . But before we have to give a definition.
Definition 2. Let ¢ < % and use the notations of Th. 21. Let

=[-Q,Q)\ A= {3: |z = iaiqi, where a; € {0,1,—1}}.

n=1

Define a relation ~ on B by

oo oo

Zaiqi ~ Zbiqi: & Idm,n € N : apyi = bpy; for all 2 € NL

=1 1=1
It is easy to see that ~ is an equivalence relation on B. Furthermore,
~ has the following property: '
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Lemma 4. If z,y € B, then ¢ ~ y 1ff there is a 2 € B and there are 1,

oWk, Wi, wp € {01, Yo, 9—1} such that z = Y1(ha(. .. r(2)...))
and y = wy(wa(...wp(z)...)).

o] X oo .
Proof. For j € {-1,0,1} we have cpj(z ciq’) =Jq+ Y, ci-1q'. Now
o . o . 1=1 =2
let z = )7 a;¢*, y = Y big". First suppose that z ~ y and let m,n be
i=1 =1

oo . 00 .
as in the definition. Let z = Y apyi¢* = 3 buyiq¢'. Then

T = Qg (goaz(. e pa, (2). .. )) and y = ¢, (cpbz(. e (2). .. ))
On the other hand, if z = f ‘c,-q’. and

T =Pa; (Par (- Pan(2)...)) and y =g, (pp,(.-. 0p.(2)...))

foray,as,... ,am,B1,B2,... ,0n € {—1,0,1}, then am+; = ¢; = bpyi. O
Theorem 22. Let f be a solution of (a)~(g). Then the following holds:
(2) f(2) =0 forz ¢ B;
(b) for z € B, the value f(z) determines the values f(y) on the equiv-

alence class [z] = {y |y ~ z};

(¢) ifz =Y aiq" is periodic, i.e. there are positive integers m, p such
1=1
that Amy; = Amypti for alli € N, and if 5 is the number of zeroes
in the period, i.e. s = #{i | m <i <m+p,a; =0}, then f(z) =0
whenever (4¢q)P # 2°.
Proof. (a) was shown in Th. 21.

(b) is a trivial consequence of Lemma 4 and equations (a), (8),

(7)-

(c) We have
b . oo .
1=1 =1

Then y = ¢a,.,, (c,pam+2 (... Pams,(y)---)) and therefore by (a),
(8), (v): fly) = (2¢)°(4¢)»°f(y). Thus, f(y) = 0 whenever
(2¢)°(4¢)P~° # 1, and in this case we have f(z) = 0 by (a)-(7). 0

Let us denote by B, the set B, := {z | ¢ € B and z periodic},
and by By, the set B\ B, (those z which are not periodic), then we
can state the following
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Lemma 5.
(a) Ifz € By and z ~ y, then y € B,.
(b) The set of periods of minimal length form a system of representa-
tives for ~ on B,.
The proof is easy and omitted. ¢
Now we can give the general solution of (a)-(e) in the case ¢ < §.

We do this in the next 3 theorems, distinguishing between different
cases.

Theorem 23. Suppose that 0 < ¢ < %. Then the general solution can
be given in the following way:

(a) f(z)=0 forz € A and |z| > Q.

(b) Let (z)rex be a system of representatives for ~ on By, choose

(f(zr))rex arbitrarily and extend f onto the equivalence class [zy)

of zy as described in Th. 22(b).
(c) f(z) =0 for z € B,.
Theorem 24. Suppose that i < q < % and that ¢ = 2" for some

3
rational v. Then the general solution can be given in the following way;

(a) f(z)=0 forz € A and |z| > Q.

(b) Let (zx)rex be a system of representatives for ~ on By, choose
(f(zr))rex arbitrarily and eztend f onto the equivalence class [zy]
of xr as described in Th. 22(b).

(c) Let (Bp)pep be the system of periods of minimal length (which is
a system of representatives for ~ on By) and denote by £(B,) the
length and by 2(Bp) the number of zeroes of B,. Choose walues
9(Bp) in the following way: '

arbitrary if E(—'BL) =2+r

£(Bp)

0 otherwise.

g(ﬂp) =

For any p € P choose an element ©, € B, with period B,, define
f(zp) :=g(Bp) and eztend f onto B, as in (b).
Theorem 25. Suppose that i <g< % and that g # 27 for any rational
r. Then the general solution can be given in the following way:
(a) f(z) =0 forz € A and |z| > Q.
(b) Let (zx)rer be a system of representatives for ~ on Byy, choose

(f(zr))kek arbitrarily and eztend f onto the equivalence class [xy)
of zr, as described in Th. 22(b).
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(c) f(z) =0 for z € B,.
Proof. (a) was shown in Th. 21.
(b) If z is nonpenodlc T = Z a;q*, for no m # n the equality

Gm+i = Gn4; can hold for all 7 € N Therefore it is easy to see that the
computation of f(y) for y ~ z cannot give “different results” via the
choice of a z as in Lemma 4.

(c) If # ~ y and z is periodic, then y has the same period as z.
By Th. 22 f(z) #0is p0551b1e only in the case when (4¢)° = 22, that
is, g =27, wherer———2 Q

Corollary 5. Let ¢ = ;. Then Q = Z (%)i, which 1s periodic

with period 1. Also —Q = —3 = Z( 1)( )i is periodic with period 1.
Furthermore, —Q 1s not equivalent to Q. Thus £ =1, 2 =0, and as

1 =272 and 24 (~2) = } there ezist solutions f of (1)~(2) in this case
such that

FQ)#0 and F(-Q)#0 or
f(@Q=0 end f(-Q)#0 or
f(Q)#£0 and f(-Q)=0 or
f(Q)=0 and f(-Q)=0.

In other words, we have seen that any of the cases -Q,Q € S(f) C
C[-Q,Q], —QeS(f) C[-Q,Q[, Qe S(f)d -@.,Q), S(f/)d - Q, QI

really can occur.

After this investigation into the case ¢ < & we turn over to the

3
next value for ¢:

b) The case q = 3

The methods used in this case to give the solutions of (1)-(2) are
very similar to those used in the case ¢ < 31,’— First we give a system
equivalent to (1)-(2):

Theorem 26. Let ¢ =
equivalent to the system

[P

Then Q = % and the system (1)-(2) s
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() flz)= gf(fl;“‘"> for allz € é—%, %}
6  f@)=35(5+D) joratte e [-L,1]

11
(v)  fle)= %f(%(m + 1)) for allz € “_15’ 5]
(6)  f(z)=0 for all Jo| > 3.

Proof. This proof is nearly the same as the proof of Th. 20, but we have
to take care that = € [—@Q, @] does not imply that z+1, z—1 ¢ [-Q, @],
because ~@Q + 1 = Q.

(a) Suppose that f is a solution of (1) and (2). We show that f
fulfills (a)—(6):

(6) follows directly from (2).

(a)—(7) is shown in the same manner as in Th. 20 for all values
z € |1, 1| (for these values the same arguments as in Th. 20 hold).
z =1 As f(3) = f(=3%) =0, (a)~(7) are trivial consequences of (1)
and (2).

(b) On the other hand, let f be a solution of (a)—(6).

(2) is a trivial consequence of (6), and (1) can be derived from
(a)-(8) as in the case ¢ < 3.

As in the case ¢ < %, we give an equivalence relation ~ in order
to describe the solutions. Therefore, let I := [—%, %] and denote by
¢0,¢1,p—1: I — I the functions ¢j(z) = 3(z + j). We denote by A
the set

A= {1 (ol (2. ) |

and let B := I\ A. For two numbers

oo 1. o0 1.
z=) ai(3)" and y=) bi(3)",
i=1 =1

where a;,b; € {0,1,—1} and =,y € B, we define

R

kel,k>0,z¢c {01 —-—%},}
Y1 ... Yk € {¥1,00,0-1}

z~y: < Im,n: Qme; = by, forallz €N,
Lemma 6. With the notation above the following holds:

- . L .1_1 1\" nEN,Gie{O,l,—l}, .
@ a={e=La@ +e@®)"|"" 20000y b

=1
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00 .
(b) Each z € I has a representation z = 3. a;(1)’, where a; €
i=1
€ {0,1,—1}. This representation is unique whenever z € B. Fur-

thermore, the real number 3 ai(%)i (where a; € {(0,1,—1}) is an
=1

1=
element of B iff this representation has no period of length 1 (i.e.
for all m € N there is an n € N such that n > m and a, # an, ).
(c) The relation ~ is well-defined and an equivalence relation on the

set B.
(d) Let Q denote the set of rational numbers. Then

INQ=AU{z€eB |z has a periodic representation}.

(e) If z,y € B, z rational and = ~ vy, then y is rational, too.
Proof. (a) Let
r _" .li ln n €N, a,E{O,l,—l},}
A= {s ;a1(3) +a(3) wefot 1) )
It is easy to see that A C A’ and A’ C A. (b) and (d) are well known
from elementary analysis, (c) and (e) are immediate consequences. ¢
Now let B,:= BNQ be the rational points of B, and By, :=
:= B\B, the set of those z € B which have a nonperiodic represen-
tation. Furthermore, let (z})rex be a system of representatives for ~
on the set B,,. The preceding lemma gives the technical details for
proving the following theorems on the structure of the solutions.

Theorem 27. Let f be a .solution of (a) -(6). Then:
(a)Ifm,yEB,mwy,x— () y—Zb()iandm,nEN

z_
such that amy; = bpy; for all 1 € N, then O, 0, ...0q, f(z) =
= ap, ap, ... ap, f(y), where ag = 2 and ag =a_q = %;

3 37
(b) f(z) =0 for all z € Q.
Proof. (a) Let

=2 ami Z b (5

Then

L = Pa, ((100.2(' v (Sollm(z) e )) and Y=vn ((pb'z(' : -QObn(Z) e ))
By (a)—(v) we have a; f(¢;(u)) = f(u) for all u € I. Thus
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f(2) =g "oy . Qa, - f(2) =0, -y e, - f(y).
(b)Ifze Q, then z has a (not necessarily unique) periodic repre-

sentation z = E ( ) Let m,p € N, p > 1, such that amii = amip+i
for all 1 € N. Because of (a)—(7y) we have

Qg Qg * e O, - f(T) =0y ~Qay* oo Ay, - f(z),
ile.,
(Qamys * Qamys -+ Xapmyp —1) f(z)=0.
NOW Gapyy * Qapys "+ * Qamyp = (§>k(4)p—k for some k € N. As this
product cannot be equal to 1 we must conclude that f(z)=0. {
Corollary 6. In the case ¢ = % the only continuous solution of (1)

and (2) is identically 0.
Proof. By Th. 27, f(z)=0forallz € R\ T andforz € INQ. {

On the other hand, we can give the general solution of equations
(a)=(8):
Theorem 28. Let g: {z | k € K} — R be given arbitrarily and define
f:I—R by

g(zr) if T = T
__ Jdefined by the formula given in Th. 26(a) f © ~ i
H@)=10 frelnQ
0 1ol 2 3.

Then f 1s a solution of (a)-(6).
Proof. As any z which is equivalent to some z is an element of By,

o0 .
the representationz = Y a; (%)1 is unique. Therefore, f is well-defined.

1=1

It is easy to see that f fulfills (a)—(6). By Th. 27, the function f given
above is the only possible extension of the given function g. ¢

Next we will show that any measurable solution vanishes almost
everywhere.
Theorem 29. Let ¢ = % Then any (Lebesgue- )measurable solution of
(1) and (2) vanishes almost everywhere.
Proof. Let f be a measurable solution of (a)—(6), and denote by
A.:={z |z €I and |f(z)| > r} for any real » > 0. As A, CBC I

and () A, =0, the function p: r — u(r) := AMA;) (Lebesgue measure
r>0
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of A,) is nonincreasing, bounded by 1, and lim u(r) = 0. Now let

t(s) := s and u(s) := %3. Then one can immediately see that
11
eo(A) = |55 N4 by (a)
11 1

= b

901(As) ls 2[ﬂAu(3) Y (,3)
111 by (7)

(P—l(As) = 2 6 [ N Au(s)

for each s > 0. Using the numbers a; of Th. 27 we have A, =
= po(Aayr)Up1(Aa,r)Up_1(Aa_,r), and the sets ¢;(Aq;r) are pairwise
disjoint. Therefore, for each r > 0 the equation

2 2 /4
"()__< )+3“(3)
holds. By induction, we get the equation

=30 0

for each 7 > 0, n € N. Now 2223 = 32 > 27 = 33, thus 22/3( ) > 1.
As the function z — 2z is continuous, there is a v = g € Q such that

q
P, EN,v < % and 1 < 2p(%)q < (22/3(%)) . Thus for any n € N we

=3 (1)) G w3+
3 (DE @) <
SHIOREIE
N WIGRORNICIOME
ST (TR ()
(@ (3)) (T ) () -
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pn—1 n— n
=X (DE) G (G)))
Now choose a real number w such that v < w < % and define the

continuous function g on the interval [0,1] by

1 for0<z<w

w—=T
—v

0 forw<z<1.

Wit

g(z) = forv<z<w

> (GG -
=X (B G i) <

EMEOTE)

The last expression is the approximation of ¢ by Bernstein polynomials
at © = 2, and, therefore,

3
L =gy /2\k 1Nk ke 2
nh_,néok;( k )(3> <3> g(qn)‘— 9’(3) =0

Furthermore, ZP(—::,";)q > 1, and therefore limu((Q”(%)q)nr) = 0. Thus
we see that p(r) < 0 for each r > 0, and this fact implies that the
solution f has to vanish almost everywhere. {

Corollary 7. As any continuous function is measurable, the preceding
theorem gives another proof for the fact that in the case ¢ = % the zero
function is the only continuous solution of the system (1)-(2).

Finally, the last case which can be said to have been completely
solved is

c) The case q = 3

Theorem 30. Let ¢ = 1. Then the system (1) and (2) is equivalent to

the system
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(@)  fl)=0 for la] > 1

®)  f@=27("17) ~2f(z +1) for o € [-1,0]

0 (5 =353) - 3@ forz € [0,1

@ () = ) for s € [0,1]

@ A=) b e
Proof. (a) Let f be a solution of (1) and (2). We show that f fulfills

a)—(e):

( ((Zz) Let z = 2. By (2), f(2) = f(3) = 0, and therefore by (1)
£(1) = £(32) = 1(F(3) + F(1) + 2£(2)) = 3£(1). Thus f(1) = 0, and
f(—1) = 0 is shown in the same way.

(B) Let z € [-1,0] and let y := z + 1. Then f(y + 1) = 0 by (a)

cand f(%) = $(Fly+ 1)+ fly — 1) + 2f(y)), thus f(ZFL) = 1(f(z) +

+2f(z+1)) and f(z) = 2f (&) — 2f(z + 1).

(6) Let © € [0,1]. Thenz +2 >z 41> 1and &L € [0,1]. By
(1) and (@) — used for the real number z + 1 — we have f(Z}1) =
=5 (f(2) + fz +2) + 2f(z + 1)) = 1 f(a).

(¢) Let z € [0,1] and y := z — 1 € [-1,0]. By (1) and (a) we
have f(y ——i) = 0 and therefore f(¥) = T(fly+1)+2f(y)). By (B)
we get 2f(—22il-> _—2f(%+1) = %(f(y-i-l)—}—élf(}%) —4f(y+1)), or
2{%{?) —2f(’”2i) = %f(:z:) -I—2f(%) —2f(z), which implies (e)vby use

i'y) Let z € [0,1]] and y:=z —1,theny—2<y—1< -1, and
=% € [~1,0]. By (1) and (2) (used for the number y — 1) we have

F(32) = L(fly —2) + f(y) +2f(y — 1)) = 1 f(v). By (8),

y=1 —
2 (L5) -2f(Pg ) =
=1(Y57) = 2w = F (L) - fw + ).
Thus 2f(2) — 2f(%) = f(£) — f(z), which implies (7).
(b) On the other hand, let f be a solution of (a)—(¢). We show
that f fulfills (1) and (2):

(2) is an immediate consequence of ().
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(1): We show that (1) is fulfilled for any z € R:

(1.1) Let |z| > 2. Then f(z) = f(£) = f(z+1) = f(z - 1) =0,
and (1) is fulfilled.

(1.2) Let z € [1, 2] and y := z — 1. Then

@ & £(2) = 11 by @ & F(H) = 35w

which is fulfilled by (6).
(1.3) Let z € [0,1], y := = — 1. Then

@) & £(2) = 2 (e -1 +2f(=)) by (@) &

& fy) —2f(y+1) —2f(y+1) « (6).
(1.4) Let z € [-1,0] and y := = + 1. Then

@ & £(2) = (@ + 1) +27(@) by (a)
zf(:c—i—Q) _2f(m+2>
= e +2r(Th7) 2@+ ) by (B
ot (1) () ~r(2) o

saf (L10) = 47(2) - 1) by (9=
(1.5) Let z € [-2,-1}, y:=z + 1, w:=z + 2. Then

Z

Wef(2) = 5f@+1) by (a)e

oir(50) -5 (55D~ (ZF5) s b 91

w 3. /w 1
ﬁf(z) = §f(§> - §f(w)¢*(’)’)- 0

Corollary 8. Let g = %, and (a)-(€) as in the preceding theorem. Then
any function g: [0,1] — R which fulfills (v)-(¢) has a unique extension
to a solution f: R — R of (1) and (2).

Proof. As (1)-(2) is equivalent to (a)—(e), the statement is trivial be-
cause such an f is given on [—1,0] by (3), and for |z| > 1 by (a). The
only problem might arise at the points 0,1, —1 because of some fact of
“confusion”. But:
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(6) implies that g(1) = g(2+L) = 1g(1), therefore g(1) = 0;

(B) gives f(0) = 2f(3), the same as (6), and f(—1) = 2f(0) —
—2£(0)=0. ¢
Remark 4. As the proofs of Th. 30 and Cor. 8 show, the other case
— restriction to the interval [—1, 0] instead of [0,1] — can be dealt in
the same way. Thus for describing solutions of (1)-(2) we always may

restrict ourselves to solutions of (7)-(¢) on the interval [0, 1].
Theorem 31. Let ¢ = 1, and («)~(¢) as in Th. 30. A function

22

f:[0,1] — R 1s a solution of (v)~(&) iff

T4+ m m+1 z m + 2

(*) f( 2k )2(2— 2':51 )f(§)+< 27: _1>f(“’)
holds for any z € [0,1] and any nonnegative integers k,m such that
0<m<2F
Proof. (a) Suppose that () is fulfilled. We show that (y)~(¢) hold.
(7): Putm=0,k=2. (6): Putm=1,k=1 (e): Pt m=1,k=2.

(b) On the other hand, suppose that (v)—(¢) are fulfilled. We show
that (*) holds.

k = 0: Then m = 0, and (%) is nothing else but f(z) = f(z).

m = 0: f(%) = f(%), a trivial statement.

m = 1: nothing else but (§).

k > 1: We do the proof by induction on k:
m = 2n: Then %Im = f2n _ 2%,;{:711, and 0 < m < 2F implies that

2k 2k
0<n<2k1 , thus

H(37) - (5
- (- F6)+ (G- 0/6) -
-G o)+ (- 016)-

= (2= 5E0)1(5) + (P - 1) et

z+1 . .
m = 2n + 1: Then ”;’,}" = $+§f+1 = 22,6_*; , and 0 < m < 2% implies

that 0 < n < 251 thus

wIH

) (by induction)

f($ ;m) _ f(%cTn) = (by induction)
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= (-G () + (5= - )r(557) =
= (-5 (1(5) - 97@) + (G5 —1) 5@ =

2n + 2 T 2n +3
= (2= %) 1(5) + (o~ )@e- 0
Remark 5. The equation (%) can be written in the following way: let

z= ﬂz}cﬂ, then we have

fey=(1-2- 2"

) (27 () - 7)) + 52 f(2).

Proof. We have 2z — z = m. Using this equation in (%), we get

x —i—m) _ 2k—2kz+w——1f<x) 2kz—~m+2—2kf($) _

1) = f( ok k=1 2 ok
l—=z T 1
- (=) r(§) )+ o o
In order to describe the solutions of (a)-(g) we introduce some
equivalence relations on the interval [0,1]. Let M be the set

M := {2‘%|p,k62}.

It is easy to see that M is dense in R and a group with respect to
addition. Furthermore, M is invariant under multiplication with powers
of 2 resp. %

Definition. Let 2,y € [0,1[. We define

r~y:&Sr—yeM

and

e~y eIkel: 2% —ye M.

Lemma 7. The relations ~ and =~ on [0,1] are equivalence relations,
and for z,y € [0,1] we have
T & y& thereis az € [0,1] and there are nonnegative integers k,m,n,p
suchthat0 <m < 2¥, 0<n< 2P andz = 2—'2",:—"‘ andy = z;'—,,”

Proof. ~ is an equivalence relation because M 1is a group.

~: Reflexivity is evident, for symmetry we have 2%y — z =
= —27%(2kz —y) € —27FM = M. Transitivity: 2%z —y = m € M,
Wy —z=neM= 2P _ 2 =2"m 4 necM.
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As to the last statement of the lemma:

a) Suppose that there are z,k,m,n,p for  and y. Then z = z—;t,cﬂ,
Yy = —z—;;{i, thus 2¥z — 2Py = (24+m)—(2+n) = m—n € Z. Furthermore,
kP _y="2r cM=ary.

b) Suppose that z =~ y and 2z —y = & € M. Because of
symmetry we may assume that & > 0 and, of course, p > 0. Then
2k+Pg = 2Py 4 m. We put z := 2¥Pz(mod1). Then z € [0,1], and
ri=2rPr 2 €7, 0<r < 2P ¢ = 5’9’;’; Furthermore, 2Py =
=2k —m=z4+r—-m. Thus0<r—-m <2 and y = z+;p—m_ O

In the following [z] will denote the equivalence class of z € [0, 1]
with respect to the relation ~. We distinguish two types of these classes:
“type 17: there is an integer k, £ > 0 and a y € [z] such that

2ky —y e M,
“type 2”: for any k € N and any y € [z] we have 2%y —y ¢ M.

The following remark shows that these types exclude one another.
Remark 6. Suppose that [z] is of type 1 and 2Fy — y € M for some
k€N, y e [z]. Then:

«) For any z € [z] 22 — 2 € M holds;

B) © = 2 = 5 for some integer m, 0 < m < 2 _ 1. m can

be chosen in such a way that = = z;—p" for some nonnegative integers n
and p.

Proof. o) 2¥y—y=m e M,y =~ 2= 2Py—2z =n € M for some p € Z.
Thus z = 2Py —n and 2%z — z = 2F+Py _2kp _ 9Py 4 = 2P(2Fy —y) —
—2fn 4 n=2"m —2Fn4nec M.

8) By ), 2z —z =2 for some integers m,p. Let z:=2Pz(mod 1),
n=2Pz — z. Then n € 7 and therefore z ~ z. Furthermore, 2%z — z =
=2ktry 9k _2Pp 4 n =2°(2%z —2)—2"n4tn=m-2*n4+nel
Furthermore, z = 5—2'%—’3. O
Remark 7. Let us denote by (z) the equivalence class of z with respect
to ~. Then (z) C [z] for any z € [0,1[, and all the sets (z), [z] are
countable and dense subsets of [0,1[. Furthermore, if [z] is of type 2,
for two numbers y, z € [z] for which 2¥y —z € M and 2Pz —z € M we
have y ~ z if and only if k£ = p.

After these remarks we are able to describe the structure of the
general solution of (*):

Theorem 32. Let f be a solution of (%) on the interval [0,1], and let
z € [0,1]. Then the following holds:
(a) The function y — 2f (%) — f(y) =: ¢y is constant on [z].
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(b) If m € M and z +m € [0,1] then in any case
(%) f(z) = f(z +m) = me,.
(c) f is given on (z) by the formula
f(y) = (1 —y) +d, for constants c and d.
(d) If[z] is of type 1, then f is uniquely determined on [z] by the value
f(z), and each value of f(z) gives rise to a solution f on the set
[]. The value f(y) for y = = can be computed by the formula

1 —
) = f(@) 7=
(e) If [z] is of type 2, then f is uniquely determined on [z] by the
values f(z) and f(%), and any choice of values of f(z) and f(%)

gives rise to a solution f on the set [z].
Proof. (a) We show that for each y ~ = the value f(y) can be computed

from the values f(z) and f(%): Asy = z, there is a z € [0,1] and there
are nonnegative integers k,m,n,p such that z = z'{km 5;7"
Now () implies that

o) = 1(5) = (2 5o )4 (5) + (T~ 1)@
and

1(5) =1 (5) = (- "5)1(5) + (o 1)1

This system of two linear equations in the unknowns f(z), f (%) has a
unique solution for any given values of f(z), f (%) because the deter-
minant of the coefficients is nonzero. Computation of the determinant
of the coefficients:

det — (2_m+1>(m+2_1)_(2_m+1><m+2_1) _

and y =

9k—1 ok+1 ok 9k
= (@ = m - Dm 42254 (2 1 42 29) =
= 5%;(—22’““ +2Fm+2+2m +2) — (m+1)(m +2)+
42261 _ok(m 4 14 2m 4+ 4) + (m+1)(m +2)) = —51,-;.

By (%), the value f(y) can be computed from the values f(z) and f(%)
Furthermore, we see that 2f(%) — f(z) = 2f(§) — f(2). Thus the

function y — 2f (-g—) — f(y) is constant on each equivalence class [z].
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(b) Let m € M and suppose that z +m € [0,1]. As z ~ = + m,
we have ¢; = cz4m. Thus we may assume for proving (b) that m =
= & > 0. Let z := 2¥z(mod 1), n := 2%z — 2 € Z. Then z = ﬁ;ﬂ,
T+m= %’ﬂ By (%), we have

= 5(25) - (- D)) + (252 1)1
and

o= H(ZET) < (o P (51 (24252

Thus

f(2) = f(o +m) = 2 (21 (5) - £(2)) = me, = me,.
(c) Let ¢ := ¢, = 2f(%) — f(z), d = f(z) — ¢(1 — z). Then
f(z) = ¢(1 —z) +d, and for y € (z) we have (by (b)) f(y) = f(z) +
+(:L'—-y)c—d+c(1——a:)—|—c(:z— y) =d+¢(1—y).

(d) Suppose that [z] is of type 1. Then z = %, where z = 52—,
for some integers k,m,n,p, i.e. [z] = [z]. Now z = Z5™ and (x) imply

that

@ = (357 = (1- 2= 52) (24 (5) - 7)) + 5 o)
Thus

f@=1(%") = (1—-'”—1;oz)(2f(§>—f<z>)+55f<z)=

= (12— 208 Ly

FE) = 1(50) = (- 5 52 (or(3) - 1) + e -
— (-2 iE L L,

2 2p+1 —z
Thus (1 — z)f(£) — (1 — £)f(z) = 0. Therefore, the value (&) is
uniquely determined by f(z). In order to show that there is a solution
on [z] for any choice of the value f(z), one has to check that y —
— 1=L () is a solution of (*) on [z]. This is easy and omitted.
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(e) Suppose that [z] is of type 2. We only have to show that any
choice of values of f(z) and f(%) gives rise to a solution on the set
[z]. As it has been shown in (1), for any y € [z] the value f(y) can
be computed from f(z) and f ( —23-—) Thus it only has to be shown that
f(z) and f(%) can be chosen arbitrarily. Here we indicate an explicit
construction of the solution: Let f(z) and f (%) be given and define
¢:=2f(%) - f(z), d := f(z) —¢(1l — z) and g: [z] — R by g(y) =
= ¢(1 — y) + d2*, where 2%z — y € M. Then:

g(z) = c(1 - z) + d1 = f(a)

z z 1
o(3) =e(1-3) +d5=
2—z 1 l—z 1 1 T
=+ 5 f@) e = set () = £(3).
g is a solution of (y)—(¢). In fact, let y € [z], 2z —y € M:

b(3) - -

() = 2e(1- ¢

() 2

(1 —y)+d2¥) = %g(y)

D] =
~~

g(%) —%g(y) = c(l— %) +d2k? —ic(l—y)— ;};dIZ’“ —
=) et =),

Thus g is a solution and, therefore, g = f.

The only fact to show is that g is well defined (i.e. the integer k
is unique). Suppose that 2fz —y =m € M, 2Pz —y = n € M, where
k > p. Then 2Fz —2Pz = m —n € M and, therefore, 2Pz —z € M —a
contradiction to the assumption that [z] is of type 2. {

Theorem 33. The general solution of () on the interval [0, 1] is given
in the following way: Let {z;};eT be a system of representatives for the
relation ~. For each i € T choose ¢; € R arbitrarily and

()
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arbitrarily of [z;] 1s of type 2
z{ =0 if [zi] s of type 1.
Define f: [0,1[—R by f(y)=cfl—y)+d2F whenever 2%;—yec M.
The proof has been given in the preceding theorem. ¢
From this result one can easily deduce the general structure of
continuous solutions.
Corollary 9. Let f be a solution of () on [0,1] which is continuous
on a nondegenerate interval J. Then f(z) = ¢(1 — z) for some real
constant c.
Proof. As 20 — 0 = 0 € M, the set [0] is of type 1. Thus f is given
on [0] by f(z) = ¢(1 — z) for some constant c¢. As [0] is dense in [0, 1],
f(z) =c(1—=z)on J. Now let y € [0, 1[ be arbitrary. On (y) f is given
by f(z) = ¢'(1 — z) + d' for some constants ¢/,d’. As (y) is dense in
[0, 1], there are at least two elements u,u’ € (y) N J, u # «'. Thus we
have

d(l—u)+d = flu) = (1 —u)
dl—u)+d = flu')=¢1-u")

and therefore ¢’ = ¢, d = 0. As y was chosen arbitrarily we have
flz)=¢(1—-2z)on [0,1]. {

We also can use the result of Th. 33 to give the structure of solu-
tions of (*) which are continuous at one point:
Theorem 34. Let f: [0,1[— R be a solution of (*) which is continuous
at a point zq € [0,1[. Then f(z) = c(1 —z) for some constant c.
Proof. Let y € [0,1[ and z = £. Then [z] = [y], and we have

FO) = (1—t)+dy for tefy)

and

f(t) =cy(1—2t)+ dy% for t € (2).

As (y) and (z) are dense in [0, 1] and as f is continuous at zy we have

1 .
cy(1 — o) + dy§ = lim f(t) = f(zo) =
te(z)
= th_{f; () = cy(l —zg) + dy.
te(y)

Therefore, dy, =0 and ¢, = % As y was arbitrary, f(z) = ¢(1 — z),

— f(=0)
where ¢ = o O
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Remark 8. For getting the result of Th. 34 it is essential that the point
of continuity is an element of the open interval ] — 1,1[. The following
example shows that continuity at the point £ = 1 is not sufficient to
guarantee the continuity of the solution f: Let {z;};cr be a system
of representatives for the relation =, choose ¢; := z;, d; := 0 for each
1 € T and define f: [0,1[— R by f(z) = ¢;(1 — z) whenever z ~ ;. By
Th. 33, f is a solution of (*) and, by Th. 34, f is not continuous at any
point = € [0,1[. (As Th. 35 will show, f is not measurable, too.) As
c¢i € [0,1] for all 1 € T' we have 0 < f(z) < 1 — z on the interval [0, 1],
which implies that f is continuous at z = 1.

Next we deal with measurable solutions. A heavy instrument for
treating this question is Smital’s lemma, which can be written in the
following way:

Lemma 8. Let A, B C R be such that A has positive Lebesgue measure
and B is dense in R. Then the set A+ B has full Lebesgue measure,
i.e. the complement of A+ B has measure 0.

A proof can be found in [3].

Before we give the theorem on measurable solutions we need a
lemma which bases on Smital’s lemma:

Lemma 9. Let J C [0,1] be a nondegenerate interval, g: J — R a
measurable function which is constant on the equivalence classes (x)
for any z € [0,1[NJ. Then g is constant a.e.

Proof. Suppose that ¢ is not constant a.e. As g is real there must be
a number ¢ € R such that both of the sets A := {z | f(z) < ¢} and
B := {z | f(z) > c} have positive Lebesgue measure. As g is constant
on each equivalence class (z) we have A= JN(A+M)and B=Jn
N (B + M). By Smital’s lemma A(A) = A(B) = A(J), a contradiction
to the fact that AN B = (). Thus g must be constant a.e. ¢
Theorem 35. Let f: [0,1{— R be a solution of (%) which is measurable
on a measurable set S C [0, 1] of positive Lebesgue measure. Then there
18 a constant ¢ € R such that f(z) = (1 — z) almost everywhere.
Proof. We give the proof in several steps:

(a) By Smital’s lemma the set S+ (M\{0}) has full Lebesgue
measure, thus A(SN(S+(M\{0})) = A(S) > 0. Now S+ (M\{0}) =

= U (S+m), and M is countable. Therefore, thereis anm € M,
mEM\{0}

m # 0, such that A(SN (S +m)) > 0. Now choose such an m and
let A:=(SN(S+m)) —m. Then A C S and A +m C S, thus the
functions z — f(z), z — f(z + m) are both measurable on the set A.
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(b) As it was shown, on A the function

T —Cp = 2f<§) — f(z) is given by ¢; =

Now let n € M be arbitrary. Then we have
f(a +n) = f() = nes = f(2) + = (f(z +m) = £(2)).

Thus f is measurable on the set ((4+n)N|[0,1[), for arbitrary n € M,

and therefore measurable on B := [0,1[n |J (4 4+ n). By Smital’s
neM
lemma, A(B) = 1, and therefore f is measurable on the whole interval

[0, 1]

(c) By Th. 33, f is given by f(z) = ¢(z)(1 — z) + d(z), where c is
constant on the set [z] and d is constant on the set (z) for any = € [0, 1[.
As f is measurable the function c(z) = 2f(%) — f(z) is measurable,
too, which implies that d is also measurable. By Lemma 9, ¢ and d are
constant functions a.e. Keeping in mind the structure of the function
d as it is given in Th. 33 (d(z) = d;2*), the only possible case for d to
be constant a.e. is that d vanishes a.e. Thus f(z) =c¢(1 —z)+ 0 a.e. §

f(@) = f(z +m)

m
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