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Abstract: H -integral near-rings are intended to fill the wide gap between
the disparate types of integral near-rings on one hand and near- rings with
large annihilator ideals (zero- near-rings at the extreme end) on the other
hand. If H is a subset of a near- ring N, N is said to be H - integralif H has no
divisors of zero and N2 C H. After preliminary results and some motivating
examples are presented, we show that such a near-ring N “consists” of an
ideal K with K? =0 and an integral near-ring; if the latter is finite, N is a
semidirect sum of these two parts. This gives rise to a construction method to
obtain a large class of H - integral near- rings in an easy way. The last section
considers distributively generated H -integral near- rings. In this case and if
K has finite index, N/ is a finite field.

1. Basic facts

In this paper, we consider left near - rings (N, +, .), hence (N, +)
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is a group (not necessarily abelian), (IV,.) a semigroup and ni(nz +
+n3) = nying +nyng for all ny,ng,nz € N. See [4] or [5] for the general
theory- of near-rings. For n € N and S € N we use the notations
nS := {ns|s € S} and S? := {s152]$1,52 € S} throughout the paper.
A subset S of N is called integral, if S has no non - zero divisors of zero.
Ny, N, denote the zero- symmetric (constant) parts of IV, respectively.
Definition 1.1. If H is an integral subset of a near-ring N with
N? C H then N is called H -integral.

If N is H -integral with H = {0} then N has zero multiplication
and may be considered as “known” from the near - ring point of view. If,
on the other extreme, H = N then N is an integral near-ring. Again,
this case is well - studied (cf. e.g. [5], section 9b2). Hence in the sequel
we mainly restrict ourselves to the study of H - integral near - rings with
{0} # H # N. Note that 0 € H for each H -integral near- ring, as well
as H? C H; however, H need not be closed under addition, even if
(N,.) is commutative (cf. [5],-29 and 30 on p. 411 for such cases with
(N,+) = Ss, the symmetric group of order 6).

A near-ring N may be H -integral for more than one H. If N?

is integral, for instance, then N is H - integral for each H between N 2
and N. More precisely we have
Proposition 1.2. Let H be the set of all subsets H of N such that
N is H - monogenic. Then NH and this is the smallest element of H,
while UH 138 the biggest one.
Proof. H is clearly closed w.r.t. intersections, hence N is the smallest
element in H. But H is also closed under unions: If by € H; € H,
h, € Hy € H, hih, =0 implies (hlhl)hz = hl(hlhz) =h0=0. Since
hih, € N? C H,, we get either hy = 0 or h1h; = 0 (but then h; = 0).
So UH is the greatest element in H. ¢

We now give two examples of H -integral near - rings.

Example 1.3. Let N; be an arbitrary, N, an integral near-ring. De-
fine, in N := Ny x Ny, (z,y) - (¢,y") := (0,yy'), + component - wise.
Then N is H := {0} x Np-integral.

In other cases, however, N is not so simply composed of an integral

and an arbitrary part, even if NV is commutative:
Example 1.4. Let (G,+) be a non- abelian group and K < G such
that G/ is cyclic of prime or infinite order. Let z + K be a generator
of G/x. I g1,92 € G, there are integers ny,ny such that g; € niz + K
(i = 1,2). Define g1*¢g2 := (ninz)z. By [2], Th. 2.1, (G,+,") is
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a commutative near-ring. It is straightforward to see that G is H -
integral with H = (z). Note that if z is of composite order, G would
not be (z) - integral.

Not all non- trivial distributive near-rings are H -integral, since
some are nilpotent, a property which no H -integral near-ring with
H # {0} can have.

For a subset S of a near-ring N, we denote its annihilator {a €
€ N|Sa =0} by (0: S), while [0 : S] denotes the two - sided annihilator
{a € (0 : S)|aS = 0}. Also, let S* := S\ {0}. We now list a num-
ber of properties of H -integral near-rings, some being technical (but
necessary ), some seem to be of independent interest.

Theorem 1.5. Let N be H -integral and Ny its zero - symmetric part.
Suppose NZ # {0}.
(1) For each h € H*, (0: h) = (0: Ny); hence K := (0 : h) is the

same for each non-zero h € H, and K 1is an ideal in N.

(2) HNK =(hAN)NK = {0} for all h € H*.

(3) K C Ny.

(4) For each n € N, n € K <= n is nilpotent «= n? = 0. Each
nilpotent element is therefore zero - symmetric.

(5) For each n,m € N, nm =0<=[(n € K, m € Ny) orm €
€ K]<=>nmekK.

(6) No has the IFP (insertion - of - factors property).

(7) Ift € N\ K, zn = zm(mod K) <= n = m(mod K).

(8) K 13 a prime ideal.

(9) N/K s an integral and prime near - ring which is N - isomorphic

to hN for each h € H*.

(10) If P (N) and N (N) denote the prime and the nil radical of N
then P(N) =N(N) =K.

(11) If N = Ng has the DCC on N - subgroups, too, then K also coin-
cides with all Jacobson - type radicals J,(N) (v=10,1/2,1,2).

(12) If N is not integral, it is never P-, N-, ..., Jy - semisimple.

(13) For each S C N, (0: S) = K or (0 : S) = N. Hence each
annihilator right ideal is in fact an ideal (N 1s “almost small” [5]
9.11).

(14) If N is planar then N is integral.

Proof. (1): We first show that (0: A) C (0: Ng). Take k € (0: k) and

0 # mm' € Ng. Then for each ng € Ny, hkng = 0, whence kny = 0,

since both h and kng are in H. So kNy = 0. Also, (0k)(mm') =

?
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= 0(km)m' = 0m' = 0, and since mm' # 0 we get 0k = 0. So noknek =
= 0k = 0, and Nok = 0 is shown. Conversely, let £ € (0 : Np). Then
for each ng € Ny we get knogkng = 0, so kNg = 0. Hence hkmm' = 0,
from which we deduce that hk = 0.

(2): Since hN C H, we consider k € HN K. If H # {0}, take
h € H*. By (1), we can write K as K = (0 : k), so h? = 0, hence h = 0.

(3): Follows from the proof of (1).

(4): By (3), K C Ny, and each k € K has k* = 0 by (1). Con-
versely, suppose that n” = 0 some r € N. Then n? = 0; hence it
sufficies to show that if some a € N fulfills a> = 0, then ¢ € K. If
nga # 0 for some ng € Ny then ngaan = 0 for all n € Ny, hence
aNy = {0}. As in the proof of (1), we see that Noa = 0, so anyhow
ac K.

(5): If nm = 0, take an arbitrary ny € No. Then nnmnj = 0, so
either n2 = 0 and hence n € K by (4), or n? # 0, then mNy = 0. In
the first case, write m = mg + m. € No + N, 0 = nm = nmpy +nm, =
= nmg + m. Now nmg € HN K = {0}, som; =0 and m € Ny. In
the second case, take ab € N2, ab # 0. Then for each ¢ € N we get
ecmab = 0 and hence Ngm = 0. This shows that m € (0 : N) = K.
Conversely. suppose that (n € K, m € Ny) or m € K. In both cases,
nm € H N K (since K is an ideal), so nm = 0 by (2). Finally, the
second equivalence follows from (2), too.

(6) fnm =0thenn € K,orm € K by (5). Hence nzm = 0 for
all x € Ny.since ntm € H N K.

(1) 2n =zm(modA)= z(n—m)=zn—-azm=0=>n—-mekK
by (5) Conversely, n —m € K = zn — 2m = z(n —m) € K, since K
18 an ideal

(8) Let I, J beidealsof N with I-J C K. ThenI-JCHNK,
so 1 J = {0} SupposeI C K, and takez € I \ K. For each j € J,
29 =0=10. by (7), j € K hence J C K.

(9: fhe H*, ¢ N — hN,n — hn is an N - epimorphism with
kernel (0 : h) = Ak N/g is integral by (5) and prime by (8).

(10): The intersection P(N) of all prime ideals of NV is contained
in K by (8). Conversely, if P is a prime ideal then K C P because of
K-k = {0} C P Hence K = P(N). By (4) and (5), K contains all
nil ideals, and hence also their sum A (N). On the other hand, K itself
is nil and hence K = N(N).

(11): Follows from [5], 5.61, while
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(12): is a consequence of (10) and the fact that P(N) C Jo(N)
always holds.

(13): If n € K then nNg = {0} by (1) and (3). Hence Ny C (0 : n).
Ifn' =ny+n, €(0:n)then 0 = nn' = nny + nn, = 0+ n'. Hence
(0 : n) = Ny. If, on the other hand, n ¢ K then a € (0 : n) implies
na = 0, consequently a € K by (5), so (0: n) C K. But also nK =0
by (5), so (0: n) = K. So all (0: n) are either = K or = N, and the
same applies to all (0: .5).

(14): A planar near-ring N fulfills N? = N by [5], 8.102. Hence
H = N, and N is integral. ¢

Although for all hy,h; € H*, the near-rings h{ N and hyN are
integral and N -isomorphic, they are not necessarily equal ([5], no. 37
on p. 411), nor are they always near -integral domains ([7], no. 74 on
p. 112).

The condition N§ # {0} in Th. 1.5 is indispensable: Define on
N :=7Z x Z (with componentwise addition) (a,b) - (¢, d) := (0, 3bc + d),
where b denotes the remainder € {0,1,2,} of b after division by 3. N
becomes so a near-ring with Ng = Z x {0}, N, = {0} x Z, N? = N..
If we take H := N.U {(1,1)}, N can be checked to be H -integral.
((0,0) : N) = Ny, but ((0,0) : (1,1)) also contains, for instance, the el-
ement (—1,3), since (1,1)(—1,3) = (0,3-1-(—1)+3) = (0,0). Therefore
we adapt for the rest of this paper the
Convention: All near-rings have N¢ # {0}. So all H -integral near-
rings have H # {0}.

2. Decompositions and constructions

In (9) of Th. 1.5 we have seen that an H -integral near-ring N is
an extension of K by hN (h any element of H*). In fact, we often can
get even more:

Theorem 2.1. Let K be H -integral such that N/g is not (group-)
isomorphic to one of its proper subgroups. Then (N,+) is a semidirect
sum of K and hN (h any element in H*).

Proof. All that remains to be shown after Th. 1.5 is that N
= hN+K. By the first isomorphism theorem for groups, (hN+K)/x
& hN/(hnnk) = hN/{0) 2 RN = N/, hence N/x = (hN + K)/x, so
N = hN 4 K as desired. ¢

11l
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Note that the assumption on N/g in Th. 2.1 is trivially fulfilled
if N/ is finite. This theorem has a lot of consequences. For that, call
a near-ring N almost constant if N is constant or 0m = 0, nm = m for
all n # 0. :

Corollaries 2.2. Let N be H -integral and N/ g finite.

(1) For each h € H*, hN i3 (as a near-ring!) isomorphic to N/k.
Hence all h;N (h; € H*) are pairwise isomorphic near-rings.

(ii) N has no non - zero nilpotent elements iff N is integral.

(iii) If AN is not almost constant then (N,+) 1s nilpotent iff (K, +) is
nilpotent.

Proof. (i): Since (N, +) is a semidirect sum of K and AN (for h € H*),

the map ¢ : N — hN, z = k4 hn — hn is a (well- defined) group

epimorphism. For z,2' € Nz = k+ hn, 2’ = k' + hn' (k, k' € K,

n,n' € N) we get zz' = (k+hn)(k'+hn') = (k+hn)k'+ (k+ hn)hn' —

—hnhn' + hnhn' = k" + hnhn' for a suitable k" € K (because K is an

ideal of N). Hence ¢(zz') = ¢(z)¢(z'), Ker ¢ = K; and we are done.

(ii): If N has no non-zero nilpotent elements then K = {0}, so
N =hN C N2 C H, so N is integral. The converse is clear.

(iii): By [5], 9.45 and 9.51 (AN, +) is nilpotent if A € H*. So by
Th. 2.1 (or by [6], p. 382), (V,+) is nilpotent iff (K,+) is. ¢

Let us remark that (iii) cannot be improved: Take any group
(G,+) and define g * ¢’ := ¢' for all ¢g,¢' € G. Then (G,+,*) is H-
integral for H = G, and hG = H =G for all h € H, K = {0}. We also
remark that the proof of (i) in Cor. 2.2 shows that for all a,a’ € AN
and k, k' € K, (k+ a)(k' + d') = ad'(mod K).

Corollary 2.3. Let N be H -integral, h € H*, hH a finite ideal of N.
Then N = K @ hN (the direct sum in the near-ring sense).

Proof. AN is then normal, hence (N, +) = K+hN. Also, if z = k+hn,
z' = k'+hn' are “typical” elements of N, then zz' = (k+hn)(k'+hn') =
= (k+hn)k'+(k+hn)hn' = (k+hn)hn' = (k+hn)hn'—hnhn'+hnhn' =
= hnhn' = kk' + hnhn' (since (k + hn)hn' — hnhn' € K N AN = {0}).
Hence the result. ¢

Now we show that the semidirect decomposition in Th. 2.1 is in
some sense the only decomposition of that kind.

Theorem 2.4. Let N be H -integral, h € H*, A a nilpotent ideal of
N, B an integral N - subgroup of N. If (N,+) is a semidirect sum of
A and B then A =K and (B,+,.) = (hN,+,.).

Proof. By (10) of Th. 1.5, A C K C Ny. Conversely, if ¥k € K
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then k =a+b (a € 4, b € B). Now 0 = ak = a® + ab = ab, hence
baba = b0a = Oa = 0. But ba € BN C H, so ba = 0 as well. Hence
0 = bk = ba + b*, whence b® = 0, hence b = 0 and A = K. As in the
proof of Cor. 2.2 (i), N/kx = B (as near-rings). Since N/x = AN as
well, we have the desired result. ¢

We turn to construction methods for H - integral near - rings. The
first one comes from Th. 2.1 and contains both Examples 1.3 and 1.4
as special cases:
Construction Method 1. Take any near-ring Ny, an integral near-
ring N3, and a semidirect sum (N, +) of (N1, +) (normal) and (N2, +).
Define in N : (n1 +n2)-(n] +n}) := nanb. Then (N, +,.) is H -integral
for each H such that N, C H C {n1 + na|n1 # 0}.

A special case of this construction is.supplied by a method due to
G. Ferrero [1].
Construction Method 2. Let (G, +) be a group which is a semidirect
sum of the normal subgroup K and the finite subgroup 4. Let ® be
a fixed - point - free group of automorphisms of 4, and R a (complete)
system of representatives of the orbits of A* under . If z = k + a,
' = k'+a arein G, define z -y = 0 if a = 0 and z -y = ¢(d’) if
a is in the orbit of r € R and f(r) = a with f € F. Then (G,+,.)
is H-integral with H = {k+alk € K, a € A*} U {0}, K = (0: @),
G/x = A, R =set of all left identities of (4,.).

Note that the Method 2 works because this construction gives an
integral near-ring (A4, +,.) and (k + a)(k' + a') = aa’ as in Method 1.
That R is the set of left identities of (4,.) is straightforward.

3. Distributively generated H -integral near- rings

In this final section, we briefly discuss the special class of d.g.
H -integral near-rings. Let N" be the second commutator subgroup
of (N,+). We will use the following
Lemma 3.1. (“Ité’s Theorem”, [3]) If a group G is the sum of two
abelian subgroups, then G" = {0}.
Theorem 3.2. Let N be a d.g. near-ring such that K # N has finite
indez in N. Then N/ is a finite field. If, moreover, (K,+) is abelian
then N'' = {0}.
Proof. Recall that Th. 2.1 is applicable; N is zero- symmetric because




50 H. E. Heatherly, H. Olivier, G. Pilz

itis d.g. Ifd=k+ hn (k € K, h € H*, n € N) is distributive then by
Theorem 1.5 (1), hn is distributive, too.So AN is again d.g., and by [5],
9.48 (d), hN (and the isomorphic copy N / k) are fields. In particular,
(hN,+) is abelian. If (K, +) is abelian too, we can apply It6’s Theorem
3.1. ¢

Surprisingly enough, it possible for (N, +) to be non - nilpotent,
even if N is “almost aring”: the near - ring N on p. 411 of [5], no. 29is a
distributive, commutative and anticommutative H - integral near- ring
with AN = GF(2), K cyclic of order 3 and (N, +) = the non- nilpotent
group Ss.
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