H-INTEGRAL NEAR-RINGS

H. E. Heatherly

Dept. Math., Univ. Southw. Louisiana, Lafayette, La 70504, USA.

H. Olivier

Dept. Math., Univ. Southw. Louisiana, Lafayette, La 70504, USA.

G. Pilz

Institut für Mathematik, Universität Linz, A - 4040 Linz, Austria

Received September 1989

AMS Subject Classification: 16 A 76

Keywords: Near-ring, integral, prime ideal, radical, nilpotent.

Abstract: H-integral near-rings are intended to fill the wide gap between the disparate types of integral near-rings on one hand and near-rings with large annihilator ideals (zero-near-rings at the extreme end) on the other hand. If H is a subset of a near-ring N, N is said to be H-integral if H has no divisors of zero and $N^2 \subseteq H$. After preliminary results and some motivating examples are presented, we show that such a near-ring N "consists" of an ideal K with $K^2 = 0$ and an integral near-ring; if the latter is finite, N is a semidirect sum of these two parts. This gives rise to a construction method to obtain a large class of H-integral near-rings in an easy way. The last section considers distributively generated H-integral near-rings. In this case and if K has finite index, N/K is a finite field.

1. Basic facts

In this paper, we consider left near-rings (N, +, .), hence (N, +)

is a group (not necessarily abelian), (N, .) a semigroup and $n_1(n_2 + + n_3) = n_1 n_2 + n_1 n_3$ for all $n_1, n_2, n_3 \in N$. See [4] or [5] for the general theory of near-rings. For $n \in N$ and $S \subseteq N$ we use the notations $nS := \{ns|s \in S\}$ and $S^2 := \{s_1s_2|s_1, s_2 \in S\}$ throughout the paper. A subset S of N is called *integral*, if S has no non-zero divisors of zero. N_0, N_c denote the zero-symmetric (constant) parts of N, respectively. Definition 1.1. If M is an integral subset of a near-ring N with $N^2 \subseteq H$ then N is called M-integral.

If N is H-integral with $H = \{0\}$ then N has zero multiplication and may be considered as "known" from the near-ring point of view. If, on the other extreme, H = N then N is an integral near-ring. Again, this case is well-studied (cf. e.g. [5], section 9b2). Hence in the sequel we mainly restrict ourselves to the study of H-integral near-rings with $\{0\} \neq H \neq N$. Note that $0 \in H$ for each H-integral near-ring, as well as $H^2 \subseteq H$; however, H need not be closed under addition, even if (N, .) is commutative (cf. [5], 29 and 30 on p. 411 for such cases with $(N, +) = S_3$, the symmetric group of order 6).

A near-ring N may be H-integral for more than one H. If N^2 is integral, for instance, then N is H-integral for each H between N^2 and N. More precisely we have

Proposition 1.2. Let \mathcal{H} be the set of all subsets H of N such that N is H-monogenic. Then $\cap \mathcal{H}$ and this is the smallest element of \mathcal{H} , while $\cup \mathcal{H}$ is the biggest one.

Proof. \mathcal{H} is clearly closed w.r.t. intersections, hence $\cap \mathcal{H}$ is the smallest element in \mathcal{H} . But \mathcal{H} is also closed under unions: If $h_1 \in \mathcal{H}_1 \in \mathcal{H}$, $h_2 \in \mathcal{H}_2 \in \mathcal{H}$, $h_1h_2 = 0$ implies $(h_1h_1)h_2 = h_1(h_1h_2) = h_10 = 0$. Since $h_1h_1 \in \mathbb{N}^2 \subseteq \mathcal{H}_2$, we get either $h_2 = 0$ or $h_1h_1 = 0$ (but then $h_1 = 0$). So $\cup \mathcal{H}$ is the greatest element in \mathcal{H} . \Diamond

We now give two examples of H - integral near - rings.

Example 1.3. Let N_1 be an arbitrary, N_2 an integral near-ring. Define, in $N := N_1 \times N_2$, $(x, y) \cdot (x', y') := (0, yy')$, + component-wise. Then N is $H := \{0\} \times N_2$ -integral.

In other cases, however, N is not so simply composed of an integral and an arbitrary part, even if N is commutative:

Example 1.4. Let (G, +) be a non-abelian group and $K \leq G$ such that $G/_K$ is cyclic of prime or infinite order. Let x + K be a generator of $G/_K$. If $g_1, g_2 \in G$, there are integers n_1, n_2 such that $g_i \in n_i x + K$ (i = 1, 2). Define $g_1^*g_2 := (n_1n_2)x$. By [2], Th. 2.1, (G, +, *) is

a commutative near-ring. It is straightforward to see that G is H-integral with $H = \langle x \rangle$. Note that if x is of composite order, G would not be $\langle x \rangle$ -integral.

Not all non-trivial distributive near-rings are H-integral, since some are nilpotent, a property which no H-integral near-ring with $H \neq \{0\}$ can have.

For a subset S of a near-ring N, we denote its annihilator $\{a \in N | Sa = 0\}$ by (0:S), while [0:S] denotes the two-sided annihilator $\{a \in (0:S) | aS = 0\}$. Also, let $S^* := S \setminus \{0\}$. We now list a number of properties of H-integral near-rings, some being technical (but necessary), some seem to be of independent interest.

Theorem 1.5. Let N be H - integral and N_0 its zero - symmetric part. Suppose $N_0^2 \neq \{0\}$.

- (1) For each $h \in H^*$, $(0:h) = (0:N_0)$; hence K := (0:h) is the same for each non-zero $h \in H$, and K is an ideal in N.
- (2) $H \cap K = (hN) \cap K = \{0\}$ for all $h \in H^*$.
- (3) $K \subseteq N_0$.
- (4) For each $n \in N$, $n \in K \iff n$ is nilpotent $\iff n^2 = 0$. Each nilpotent element is therefore zero-symmetric.
- (5) For each $n, m \in N$, $nm = 0 \iff [(n \in K, m \in N_0) \text{ or } m \in K] \iff nm \in K$.
- (6) N_0 has the IFP (insertion of factors property).
- (7) If $x \in N \setminus K$, $xn \equiv xm \pmod{K} \iff n \equiv m \pmod{K}$.
- (8) K is a prime ideal.
- (9) $N/_K$ is an integral and prime near-ring which is N-isomorphic to hN for each $h \in H^*$.
- (10) If $\mathcal{P}(N)$ and $\mathcal{N}(N)$ denote the prime and the nil radical of N then $\mathcal{P}(N) = \mathcal{N}(N) = K$.
- (11) If $N = N_0$ has the DCC on N -subgroups, too, then K also coincides with all Jacobson -type radicals $J_v(N)$ (v = 0, 1/2, 1, 2).
- (12) If N is not integral, it is never \mathcal{P} -, \mathcal{N} -, ..., J_2 -semisimple.
- (13) For each $S \subseteq N$, (0:S) = K or (0:S) = N. Hence each annihilator right ideal is in fact an ideal (N is "almost small" [5], 9.11).
- (14) If N is planar then N is integral.

Proof. (1): We first show that $(0:h) \subseteq (0:N_0)$. Take $k \in (0:h)$ and $0 \neq mm' \in N_0^2$. Then for each $n_0 \in N_0$, $hkn_0 = 0$, whence $kn_0 = 0$, since both h and kn_0 are in H. So $kN_0 = 0$. Also, (0k)(mm') = 0

- = 0(km)m' = 0m' = 0, and since $mm' \neq 0$ we get 0k = 0. So $n_0kn_0k = 0$ and $N_0k = 0$ is shown. Conversely, let $k \in (0:N_0)$. Then for each $n_0 \in N_0$ we get $kn_0kn_0 = 0$, so $kN_0 = 0$. Hence hkmm' = 0, from which we deduce that hk = 0.
- (2): Since $hN \subseteq H$, we consider $k \in H \cap K$. If $H \neq \{0\}$, take $h \in H^*$. By (1), we can write K as K = (0:h), so $h^2 = 0$, hence h = 0.
 - (3): Follows from the proof of (1).
- (4): By (3), $K \subseteq N_0$, and each $k \in K$ has $k^2 = 0$ by (1). Conversely, suppose that $n^r = 0$ some $r \in \mathbb{N}$. Then $n^{2^r} = 0$; hence it sufficies to show that if some $a \in N$ fulfills $a^2 = 0$, then $a \in K$. If $n_0 a \neq 0$ for some $n_0 \in N_0$ then $n_0 a a n = 0$ for all $n \in N_0$, hence $a N_0 = \{0\}$. As in the proof of (1), we see that $N_0 a = 0$, so anyhow $a \in K$.
- (5): If nm = 0, take an arbitrary $n'_0 \in N_0$. Then $nnmn'_0 = 0$, so either $n^2 = 0$ and hence $n \in K$ by (4), or $n^2 \neq 0$, then $mN_0 = 0$. In the first case, write $m = m_0 + m_c \in N_0 + N_c$, $0 = nm = nm_0 + nm_c = nm_0 + m_c$. Now $nm_0 \in H \cap K = \{0\}$, so $m_c = 0$ and $m \in N_0$. In the second case, take $ab \in N_0^2$, $ab \neq 0$. Then for each $c \in N$ we get cmab = 0 and hence $N_0m = 0$. This shows that $m \in (0 : N) = K$. Conversely, suppose that $(n \in K, m \in N_0)$ or $m \in K$. In both cases, $nm \in H \cap K$ (since K is an ideal), so nm = 0 by (2). Finally, the second equivalence follows from (2), too.
- (6) If nm = 0 then $n \in K$, or $m \in K$ by (5). Hence nxm = 0 for all $x \in N_0$, since $nxm \in H \cap K$.
- (7) $xn \equiv xm \pmod{K} \Rightarrow x(n-m) = xn xm \equiv 0 \Rightarrow n-m \in K$ by (5) Conversely, $n-m \in K \Rightarrow xn - xm = x(n-m) \in K$, since K is an ideal
- (8) Let I, J be ideals of N with $I \cdot J \subseteq K$. Then $I \cdot J \subseteq H \cap K$, so $I \cdot J = \{0\}$ Suppose $I \subseteq K$, and take $i \in I \setminus K$. For each $j \in J$, ij = 0 = i0, by (7), $j \in K$ hence $J \subseteq K$.
- (9): If $h \in H^*$, $\phi : N \to hN$, $n \to hn$ is an N-epimorphism with kernel (0:h) = K N/K is integral by (5) and prime by (8).
- (10): The intersection $\mathcal{P}(N)$ of all prime ideals of N is contained in K by (8). Conversely, if P is a prime ideal then $K \subseteq P$ because of $K \cdot K = \{0\} \subseteq P$ Hence $K = \mathcal{P}(N)$. By (4) and (5), K contains all nil ideals, and hence also their sum $\mathcal{N}(N)$. On the other hand, K itself is nil and hence $K = \mathcal{N}(N)$.
 - (11): Follows from [5], 5.61, while

(12): is a consequence of (10) and the fact that $\mathcal{P}(N) \subseteq J_2(N)$ always holds.

(13): If $n \in K$ then $nN_0 = \{0\}$ by (1) and (3). Hence $N_0 \subseteq (0:n)$. If $n' = n'_0 + n'_c \in (0:n)$ then $0 = nn' = nn'_0 + nn'_c = 0 + n'_c$. Hence $(0:n) = N_0$. If, on the other hand, $n \notin K$ then $a \in (0:n)$ implies na = 0, consequently $a \in K$ by (5), so $(0:n) \subseteq K$. But also nK = 0 by (5), so (0:n) = K. So all (0:n) are either = K or = N, and the same applies to all (0:S).

(14): A planar near-ring N fulfills $N^2 = N$ by [5], 8.102. Hence H = N, and N is integral. \Diamond

Although for all $h_1, h_2 \in H^*$, the near-rings h_1N and h_2N are integral and N-isomorphic, they are not necessarily equal ([5], no. 37 on p. 411), nor are they always near-integral domains ([7], no. 74 on p. 112).

The condition $N_0^2 \neq \{0\}$ in Th. 1.5 is indispensable: Define on $N := \mathbb{Z} \times \mathbb{Z}$ (with componentwise addition) $(a,b) \cdot (c,d) := (0,3bc+d)$, where b denotes the remainder $\in \{0,1,2,\}$ of b after division by 3. N becomes so a near-ring with $N_0 = \mathbb{Z} \times \{0\}$, $N_c = \{0\} \times \mathbb{Z}$, $N^2 = N_c$. If we take $H := N_c \cup \{(1,1)\}$, N can be checked to be H-integral. $((0,0):N) = N_0$, but ((0,0):(1,1)) also contains, for instance, the element (-1,3), since $(1,1)(-1,3) = (0,3\cdot1\cdot(-1)+3) = (0,0)$. Therefore we adapt for the rest of this paper the

Convention: All near-rings have $N_0^2 \neq \{0\}$. So all H-integral nearrings have $H \neq \{0\}$.

2. Decompositions and constructions

In (9) of Th. 1.5 we have seen that an H-integral near-ring N is an extension of K by hN (h any element of H^*). In fact, we often can get even more:

Theorem 2.1. Let K be H-integral such that N/K is not (group-) isomorphic to one of its proper subgroups. Then (N, +) is a semidirect sum of K and hN (h any element in H^*).

Proof. All that remains to be shown after Th. 1.5 is that N = hN + K. By the first isomorphism theorem for groups, $(hN + K)/_K \cong hN/_{(hN\cap K)} = hN/_{\{0\}} \cong hN \cong N/_K$, hence $N/_K = (hN + K)/_K$, so N = hN + K as desired. \Diamond

Note that the assumption on $N/_K$ in Th. 2.1 is trivially fulfilled if $N/_K$ is finite. This theorem has a lot of consequences. For that, call a near-ring N almost constant if N is constant or 0m = 0, nm = m for all $n \neq 0$.

Corollaries 2.2. Let N be H - integral and $N/_K$ finite.

- (i) For each $h \in H^*$, hN is (as a near-ring!) isomorphic to $N/_K$. Hence all h_iN ($h_i \in H^*$) are pairwise isomorphic near-rings.
- (ii) N has no non-zero nilpotent elements iff N is integral.
- (iii) If hN is not almost constant then (N, +) is nilpotent iff (K, +) is nilpotent.
- **Proof.** (i): Since (N, +) is a semidirect sum of K and hN (for $h \in H^*$), the map $\phi: N \to hN$, $x = k + hn \to hn$ is a (well-defined) group epimorphism. For $x, x' \in N$ x = k + hn, x' = k' + hn' $(k, k' \in K, n, n' \in N)$ we get xx' = (k + hn)(k' + hn') = (k + hn)k' + (k + hn)hn' -hnhn' + hnhn' = k'' + hnhn' for a suitable $k'' \in K$ (because K is an ideal of N). Hence $\phi(xx') = \phi(x)\phi(x')$, Ker $\phi = K$; and we are done.
- (ii): If N has no non-zero nilpotent elements then $K = \{0\}$, so $N = hN \subseteq N^2 \subseteq H$, so N is integral. The converse is clear.
- (iii): By [5], 9.45 and 9.51 (hN, +) is nilpotent if $h \in H^*$. So by Th. 2.1 (or by [6], p. 382), (N, +) is nilpotent iff (K, +) is. \Diamond

Let us remark that (iii) cannot be improved: Take any group (G,+) and define g*g':=g' for all $g,g'\in G$. Then (G,+,*) is H-integral for H=G, and hG=H=G for all $h\in H$, $K=\{0\}$. We also remark that the proof of (i) in Cor. 2.2 shows that for all $a,a'\in hN$ and $k,k'\in K$, $(k+a)(k'+a')\equiv aa'(\operatorname{mod} K)$.

Corollary 2.3. Let N be H - integral, $h \in H^*$, hH a finite ideal of N. Then $N \cong K \oplus hN$ (the direct sum in the near-ring sense).

Proof. hN is then normal, hence (N, +) = K + hN. Also, if x = k + hn, x' = k' + hn' are "typical" elements of N, then xx' = (k + hn)(k' + hn') = (k + hn)k' + (k + hn)hn' = (k + hn)hn' + (hnhn' + hnhn') = hnhn' = kk' + hnhn' (since $(k + hn)hn' - hnhn' \in K \cap hN = \{0\}$). Hence the result. \Diamond

Now we show that the semidirect decomposition in Th. 2.1 is in some sense the only decomposition of that kind.

Theorem 2.4. Let N be H - integral, $h \in H^*$, A a nilpotent ideal of N, B an integral N - subgroup of N. If (N, +) is a semidirect sum of A and B then A = K and $(B, +, .) \cong (hN, +, .)$.

Proof. By (10) of Th. 1.5, $A \subseteq K \subseteq N_0$. Conversely, if $k \in K$

then k=a+b ($a\in A,\ b\in B$). Now $0=ak=a^2+ab=ab$, hence baba=b0a=0a=0. But $ba\in BN\subseteq H$, so ba=0 as well. Hence $0=bk=ba+b^2$, whence $b^2=0$, hence b=0 and A=K. As in the proof of Cor. 2.2 (i), $N/_K\cong B$ (as near-rings). Since $N/_K\cong hN$ as well, we have the desired result. \Diamond

We turn to construction methods for H-integral near-rings. The first one comes from Th. 2.1 and contains both Examples 1.3 and 1.4 as special cases:

Construction Method 1. Take any near-ring N_1 , an integral near-ring N_2 , and a semidirect sum (N,+) of $(N_1,+)$ (normal) and $(N_2,+)$. Define in $N: (n_1+n_2)\cdot (n'_1+n'_2):=n_2n'_2$. Then (N,+,.) is H-integral for each H such that $N_2\subseteq H\subseteq \{n_1+n_2|n_1\neq 0\}$.

A special case of this construction is supplied by a method due to G. Ferrero [1].

Construction Method 2. Let (G, +) be a group which is a semidirect sum of the normal subgroup K and the finite subgroup A. Let Φ be a fixed-point-free group of automorphisms of A, and R a (complete) system of representatives of the orbits of A^* under Φ . If x = k + a, x' = k' + a' are in G, define $x \cdot y = 0$ if a = 0 and $x \cdot y = \phi(a')$ if a is in the orbit of $r \in R$ and f(r) = a with $f \in F$. Then (G, +, .) is H-integral with $H = \{k + a | k \in K, a \in A^*\} \cup \{0\}, K = (0 : G), G/K \cong A$, R =set of all left identities of (A, .).

Note that the Method 2 works because this construction gives an integral near-ring (A, +, .) and (k + a)(k' + a') = aa' as in Method 1. That R is the set of left identities of (A, .) is straightforward.

3. Distributively generated H-integral near-rings

In this final section, we briefly discuss the special class of d.g. H-integral near-rings. Let N'' be the second commutator subgroup of (N, +). We will use the following

Lemma 3.1. ("Itô's Theorem", [3]) If a group G is the sum of two abelian subgroups, then $G'' = \{0\}$.

Theorem 3.2. Let N be a d.g. near-ring such that $K \neq N$ has finite index in N. Then $N/_K$ is a finite field. If, moreover, (K, +) is abelian then $N'' = \{0\}$.

Proof. Recall that Th. 2.1 is applicable; N is zero-symmetric because

it is d.g. If d = k + hn $(k \in K, h \in H^*, n \in N)$ is distributive then by Theorem 1.5 (1), hn is distributive, too.So hN is again d.g., and by [5], 9.48 (d), hN (and the isomorphic copy $N/_K$) are fields. In particular, (hN, +) is abelian. If (K, +) is abelian too, we can apply Itô's Theorem 3.1. \Diamond

Surprisingly enough, it possible for (N, +) to be non-nilpotent, even if N is "almost a ring": the near-ring N on p. 411 of [5], no. 29 is a distributive, commutative and anticommutative H-integral near-ring with $hN \cong GF(2)$, K cyclic of order 3 and (N, +) = the non-nilpotent group S_3 .

References

- [1] FERRERO, G.: Classificazione e costruzione degli stems p-singolari, Ist. Lombardo Accad. Sci. Lett. Rend. (A) 102 (1968), 597-613.
- [2] HEATHERLY, H. E.: Distributive near-rings, Quart. J. Math. Oxford (Ser 2) 24 (1973), 63-70.
- [3] ITÔ, N.: Über das Produkt von zwei abelschen Gruppen, Math. Z. 62 (1955), 400-401.
- [4] MELDRUM, J. D. P.: Near-rings and their links with groups, Pitman Publ. Co. (Research Notes Ser. 134), London, 1985.
- [5] PILZ, G.: Near-rings, North-Holland/American Elsevier, 2nd ed., Amsterdam-New York, 1983.
- [6] SCOTT, W. R.: Group Theory, Prentice Hall, Englewood Cliffs, N. J., 1964.
- [7] YEARBY, R. L.: A computer-aided investigation of near-rings on low order groups, Diss. Univ. Southw. Louisiana, Lafayette, La., 1973.