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Abstract: Two fixed point theorems for Markov operators on (L)-spaces are
proven: first under the assumption of existence of positive lower element A
for the Markov operator P, i.e. H(P"’d—h)_” —0 for all probability distri-
butions d, and second under the assumption of existence of prositive upper
element h for P, i.e. ”h” <2 and ”(P"’d—h)+H —0 for all probability dis-
tributions d. Both of them are abstract version of Lasota-Yorke theorems for
Markov operators on L! but their proofs are something different.

Let L be a (L)-space, i.e. Banach lattice in which the norm has
the following properties

la] < [b] = [la]| < [[8]],
@20,520=|latbl|=lal]| +|[]],
where
la| =at +a7,at =aV0,a" =(-a) V0.

Lemma 1. Ifa,b€ L,a >0, 5> 0, then
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lla — 8] = llall - |I3]| + 2lI(a — )~ [ = [13]] = |lal| + 2[|(a — b)*]I.
Proof. It is true because
|I(a = 8)* | + |18l = ll(a — B) + (a — B)~ + b|| = ||al| + [|(a — B)7]|. ©
Denote by
L+={GEL:G>0}
the set of all positive elements of L and by
L,={deLy:|d=1}
the set of all probability distributions of L.
A linear mapping P : L — L is called a Markov operator on L iff
P(L,) C Ly.
Every Markov operator P on a (L)-space L has the following properties
Pa > 0, ||Pa|| = ||a|| for a € L4
Pa<Pbfora<b
(Pa)* < Pat, (Pa)~ < Pa~
|Pa| < Plal, ||Pal| < |a]l.
An element h € L will be called a lower element for the Markov
operator P iff
lim ||(P"d — h)~|| = 0 for every d € L,.
n—oo

Denote by Hj the set of all lower elements for a Markov operator P.
Theorem 1. If the set Hy is nonempty, then the Markov operator P
has a unique fized probability distribution dy. Moreover

P"d — dy for alld € L,.

We begin the proof of this theorem with a set of lemmas.
Lemma 2. If h € Hy, then ||h|| < 1.
Proof. For d € L, and n € N we have

h < P*d+ (P"d—h)~
and consequently
Ial] <1+ [[(P*d—R)~|. ¢

Lemma 3. If h € HyN Ly, then h is a unique fized probability distri-
bution for P and P™"d — h for alld € L,.
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Proof. By Lemma 1 we have for all d € L,

||[P™d — h|| = 2||(P™d — R)~|| — 0.
So
P*h —» h, P"*1hp 5 h

and by continuity of P
Ptlp o Ph.

Hence Ph = h. Now if h is a fixed probability distribution too, then
h = P"h — h.

Finally h=h. O
Lemma 4. If h1,h2 € Ho, then hl \ h2 € Ho.
Proof. It is obvious that h; V hy € L. For the proof that

H(Pﬂ'd— hl vV hz)_” — 0
it is enough to verify that
I(d =By V ha)~ || < [|(d — hy)~|| + |[(d — hg)~ H
for d € L,. It is true because

(d—hyVhy)” =(hyVhy—d)VO< (hy — d)v0+(hz—d)v0—
=(d - hi)~ +(d hz)_

Lemma 5. If h € Hy, then Ph € H,.
Proof. It is obvious that Ph € L. Now observe that

(P — PR)™|| < ||P(P""d ~ h)~|| = |[(P™d — h)~|| - 0. &

Lemma 6. If h € Hy and Ph = h, then (2 — ||h||)k € H,.

Proof. Let z = ||h|| and assume that 2 < 1. For a given d € L,
consider the sequence

ra=(1—2)"1(P"d - h).
Since h € Hy we have ||r;|| — 0 and (see Lemma 1)
il = 1420 — ) (PR - B o 1.
Therefore, for any given € > 0 there exists m € N such that

llrmll < €/8, llrmll <1+ €/4.
For
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8 = (rml/llrmll) — *m
we have

llell = ll(Irm|/llrmll) — lrm| + 2 - vl < (llrm]l = 1) + 2[lr ]l < /2
and 7, + 8 € L,. Since h € Hy we hafre
|(P™(rm + 8) — h)~|| < £/2 for n > ne(m).

Multiplication by 1 — z € (0,1) gives

[|((P**™d — h+ (1 —z)P"s — (1 — z)h)"|| < €/2 for n > no(m).
Consequently for n > ng(m)

I(P™F™d — (2 —z)h)~ || < e/2+ (1 —=2)||P"s|| < /2 + |ls]| < e
Finally (2 — z)h € Hy. ¢
Proof of Theorem 1. Let (see Lemma 2)

zog = sup{||h||: h € Ho} >0
and {hn} be a sequence of lower elements such that |[hn|| = zo. Re-
placing, if necessary, {h,,} by the sequence {h,} defined by
hy=hy, hny1 =hpVhpy1,nEN
we get an increasing sequence of lower elements (see Lemma 4) such
that ||hs|| — 2. Since
lhm = hall = ||hm || — llhall <€

for m > n > no(e), there exists hg € Ly such that h, — hy and
[|ho|| = 0. Moreover hy € Hy, because

I(P™d — ho)~|| < [|(P™d — ha) || + |0 — hall

for all d € L, and n,k € N. Finally hy is the largest element in H,.
Suppose it is not. Then there exists h € H; such that the inequality
h < hg is not true and for the lower element h = hV hq we have ||h|| >
> z¢ which is impossible. Now by Lemma 5, Phy € H, and conse-
quently Phy < hy. Moreover Phy = hy, because the operator P pre-
serves the norm on L. Therefore, according to Lemma 6, (2 —z¢)ho €
€ Hy. Hence (2 — z9)ho < ho and consequently (2 — zo)ho = ho,
because zg < 1 (see Lemma 2). Finally ||h¢|| = 1 and applying Lemma
3 finishes the proof. {



Two fized point theorems for abstract Markov operators 119

An element h € L will be called an upper element for the Markov
operator P iff ||h|| < 2 and

lim ||(P"d — h)*|| = 0 for every d € L,.

Denote by H? the set of all upper elements for the Markov operator P.
Theorem 2. If the set H® is non-empty, then the Markov operator P
has a unique fized probability distribution dy. Moreover P™d — dy for
alld € L,.
Lemma 7. If h € H®, then ||h|| > 1 and Ph € H°. If hy,h, € HO,
then hy A hy € HO.

The proofs of these facts are analogous to the proofs of Lemmas
2,4 and 5. ¢
Lemma 8. If the set H® is non-empty, then for all dy,d, € L,

Jim [IP"(d - )] =o0.
Proof. Fix two arbitra.ry probability distributions d; and d;. For a =
= d; — d; we have

lla*|l = lla~[l = llal|/2 = @

because
la*|| +1=la* + dp|| = [la+ a* + dy|| = ||la= + dy|| = [|a—|| + 1.
Assume for a moment that o > 0 and h € H°. Then

IPal| = a||(P™(a* /&) — k) — (P™(a” /) — h)]| <
< of[|P™(a™ /) = k|| + [|[P™(a™/a) — h])).

Since at/a, a” Ja € L, then there exists n; € N such that

(P (a™ /) — BY*I| < (2 - [|A]])/4,
(P (a™/a) — R)*|| < (2~ ||n])/4.

Therefore, by ’Lemma 1
IP"a|| < |lal| [|R]|/2.
For a = 0 this inequality is obvious. Finally, for d;, d, € L, we have
||P™(dy — d)|| < ||d1 — da]| [|R]|/2.
In the same way we can find a ny € N such that
[P ¥7(dy — dy)|| < ||[P™dy — P™rdy|||R]|/2 < (|dy — da|(]]R]|/2)?
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becaise P preserves the norm on L. After k steps we obtain

||Prattma(dy — dy)]| < |ldy — d|I(]IRI1/2)*,

where ny,...,n; are suitable choosen natural members. Hence
lim ||Prit-trr(d; —dy)|| =0
n—oo

and since the sequence {||P"a.||r} is decreasing, for a € L, we get
Tim [|P(d: — )| = 0. 0
Proof of Theorem 2. For h € H® we define the decreasing sequence
{hy} of upper elements (see Lemma 7) by
hy = h, hot1 = hn A Phn, n €N,
Since the sequence {||hn||} is decreasing and bounded, and
lhm — k]l = [[hm|| = ||hal| <€

for m > n > my(e), there exists h® € Lt such that h, — h® and
[|h®|| < 2. Moreover h® € H®, because

I(Pmd = R)FII < [[(P™d — hae)* || + [[he — B°|

foralld € L, and n,k € N. An element h? is a fixed point of P, because
from inequality hn4y < Phy we have h® < Ph° and because ||[Ph°|| =
= ||h?]| the inequality h® </PA® is impossible. Finally &° = h®/||h%|| is
a fixed probability distribution of P. Moreover by Lemma 8 we have

||P"d — d°|| - 0 as n — oo

for all d € L,, and consequently if d! is a fixed probability distribution
of P too then

|ld* — d°|| = ||P™(d! — d°)]| = 0,
which finishes the proof. ¢
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