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Abstract: The author has previously studied primeness in the near-ringN0(G)
of continuous zero-preserving functions of an additive topological group G. In
this paper, we consider primeness in the near-ring N(G) of all all continuous
functions of G, and characterise the various prime radicals in certain cases. We
then discuss primeness in the sandwich near-ring N(X,G, θ), where X and G
are a topological space and a topological group, respectively, and θ : G → X
is a continuous mapping.

1. Preliminaries

In this paper, all near-rings will be right distributive, and will only
be zero-symmetric when explicitly so stated. Implicitly, this means that
all functions will act from the left. For the basics on near-rings, we refer
to any of the standard texts, e.g. [13] and [14]. If N is a near-ring,
the notation “I / N ” and “I /` N ” will mean “I is an ideal of N ” and
“I is a left ideal of N ”, respectively. Recall that a subgroup A of the
additive group of a near-ring N is called an N-subgroup of N if NA ⊆ A,
Let (G,+) be a (not necessarily Abelian) group, and let M(G) denote
the set of all self-maps of G. As is well known, M(G) is a near-ring
with respect to pointwise addition and composition of maps. The set
M0(G) := {a ∈ M(G) : a(0) = 0} is a subnear-ring of M(G) which is
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zero-symmetric, i.e. a0 = 0 for all a ∈M0(G). M(G) and M0(G) provide
prototypes for all near-rings (resp. all zero-symmetric near-rings) in the
sense that every near-ring (resp. zero-symmetric near-ring) is isomorphic
to a subnear-ring of M(G) (resp. M0(G)) for a suitable choice of G (cf
[14], Corollary 1.18). The following result is well known.

Proposition 1.1. [13, Theorems 1.42 and 1.43 ] Let (G,+) be a group.
Then:

1. M0(G) is a simple near-ring.

2. If |G| 6= 2, then M(G) is a simple near-ring.

From the late 1960’s various authors began to add a topological
flavour to the study of near-rings of self-maps by requiring that the group
be topological and that the self-maps be continuous. In the sequel, all
topological groups will be T0, and hence completely regular.

Definition 1.2. Let (G,+) be a topological group. Then
1. N(G) := {a ∈M(G) : a is continuous};
2. N0(G) := {a ∈M0(G) : a is continuous}.

It is clear that N(G) and N0(G) are subnear-rings of M(G) and
M0(G), respectively. Moreover, if the topology on G is discrete, then
N(G) = M(G) and N0(G) = M0(G). For surveys of early work done on
these near-rings, we refer to [11] and [12]. For information on the theory
of topological groups, any of the standard texts may be consulted, for
example [9]. In order to avoid trivial cases and exceptions, all topological
groups and topological spaces considered in the sequel will be assumed
to contain more than one element.

Several notions of primeness for near-rings exist in the literature,
We will consider some of these.

Definition 1.3. A near-ring N is

• 0-prime if A,B / N, AB = {0} implies A = {0} or B = {0};

• 1-prime if A,B /` N, AB = {0} implies A = {0} or B = {0};

• 2 -prime if A,B N -subgroups of N, AB = {0} implies A = {0} or
B = {0};



On Primeness and Radicals in Near-rings of Continuous Functions 5

• 3-prime if a, b ∈ N, aNb = {0} implies a = 0 or b = 0 [7];

• equiprime (e-prime) if a, x, y ∈ N, anx = any for all n ∈ N implies
a = 0 or x = y [4].

We remark that an equiprime near-ring is necessarily zero-symmetric
[4]. The relationships between the different definitions of primeness are
as follows:

equiprime⇒ 3−prime⇒ 2-prime; 3-prime⇒ 0-prime and 1-prime⇒0-
prime. 2-prime⇒1-prime holds for zero-symmetric near-rings, but not for
arbitrary near-rings. An ideal P of N is called ν-prime (ν ∈ {0, 1, 2, 3, e})
if the factor near-ring N/P is ν-prime. Note that if P is an e-prime ideal
of N , then P is left invariant since N/P is a zero-symmetric near-ring.
The ν-prime radical of N,Pν(N), is the intersection of the ν-prime ideals
of N .

The equiprime radical Pe is of special interest in that it is the only
known Kurosh-Amitsur prime radical for both zero-symmetric and all
near-rings [4].

2. The Near-ring N(G)

Previously the author has studied primeness in the zero-symmetric
case. See for example [1], [2], [3] and [5]. In this section we will consider
primeness in N(G), which is not a zero-symmetric near-ring. In the
sequel, if k ∈ G,ϕk will denote the self-map of G defined by ϕk(g) := k
for all g ∈ G.

Proposition 2.1. N(G) is 3-prime, and hence both 2-prime and 0-
prime.

Proof. Let 0 6= a, b ∈ N(G). Then there exists g ∈ G such that a(g) 6= 0.
Then aϕgb(h) = a(g) for all h ∈ G. Hence aϕgb 6= 0 and so N(G) is
3-prime. ♦

Since N(G) is not zero-symmetric if G has more than one element,
it cannot be equiprime or Pe-semisimple in this case. However, it may
or may not be Pe-radical, as the following examples show.

Example 2.2. Let G be a topological division ring whose characteristic
is not 2. Then N(G) is simple [10, Theorem 2.4 ]. Since it is not Pe-
semisimple, it is Pe-radical. Note that the proof given in [10 ] is not valid



6 Geoffrey L. Booth

in the case that G has characteristic 2, and the result does not in fact
hold in this case.

Example 2.3. Consider N(Z2) with the discrete topology. It is well
known that the constant part C of this near-ring is an ideal of N(Z2)
and that N(Z2)/C is isomorphic to Z2. Hence C is an equiprime ideal
of N(Z2). It follows that Pe(N(Z2)) = C.

G is said to be 2-transitive if v, w, x, y ∈ G, v 6= w implies that
there exists a ∈ N(G) such that a(v) = x and a(w) = y. Note that the
class of 2-transitive topological groups includes the 0-dimensional as well
as the arcwise connected ones.

Lemma 2.4. Suppose that G is 2-transitive and that 0 6= I /` N(G).
Then IG = G.

Proof. Let g ∈ G. We will show that there exist b ∈ I and h ∈ G such
that g = b(h). This holds trivially if g = 0, so suppose that g 6= 0.
Let 0 6= a ∈ I. Then there exists h ∈ G such that a(h) 6= 0. Let
0 6= k ∈ G. Then (a + ϕk)(h) = a(h) + k 6= k. Since G is 2-transitive,
there exists m ∈ N(G) such that m(a(h) + k) = g and m(k) = 0, i.e.
m(a + ϕk)(h) = g and mϕk(h) = 0, whence (m(a + ϕk)−mϕk)(h) = g.
But m(a + ϕk) −mϕk ∈ I since a ∈ I and I /` N(G), and the proof is
complete. ♦

Proposition 2.5. Let G be a 2-transitive topological group. Then N(G)
is 1-prime.

Proof. Suppose that 0 6= I, J /` N(G). Then (IJ)G = I(JG) = IG (by
Lemma 2.4) = G (again by Lemma 2.4). Hence IJ 6= 0 and so N(G) is
1-prime. ♦

Proposition 2.6. Suppose that G is disconnected and has arcwise con-
nected, open components, and let G0 denote the component of G which
contains 0. Let I := {a ∈ N(G) : a(G) ⊆ G0} and J := {a ∈ N(G) :
a(G0) = {0}}. Then I ∩ J ⊆ P1(N(G)) ⊆ I.

Proof. Clearly, I /N(G) and J /`N(G). Hence I ∩ J /`N(G). Moreover
(I ∩ J)2 = {0} ⊆ P1(N(G)). Since P1(N(G)) is the intersection of the
1-prime ideals of N(G), I ∩ J ⊆ P1(N(G)).

We now show that N(G)/I is isomorphic to N(G/G0), where G/G0

has the quotient topology with respect to the canonical epimorphism of G
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ontoG0. If a ∈ N(G), let a : G→ G0 be defined by a(g+G0) := a(g)+G0

for all g ∈ G. Then a is well defined, for suppose that g, g′ ∈ G0 are such
that g + G0 = g′ + G0. Then g and g′ are elements of the same coset
of G0. By the continuity of a, and since the cosets of G0 are precisely
the components of G, a(g) and a(g′) are elements of the same coset of
G0. It is easily checked that a + b = a+ b and a · b = (a · b) for all
a, b ∈ N(G). Now let c ∈ N(G/G0). Let the set of cosets of G0 in G
be {Gk : k ∈ I}, where I is an indexing set. Choose a representative gk
from G\Gk for each coset Gk. Let a : G→ G be defined by a(h) := gk if
h ∈ Gk. Since the cosets of G0 are open (and hence clopen, i.e both open
and closed), it follows that the mapping a → a is continuous. Moreover
a = c. Hence the mapping a → a defines an epimorphism of N(G)
onto N(G/G0). Moreover, the kernel of this epimorphism is I. Hence
N(G/G0) is isomorphic to N(G)/I. Since the components of G0 are
open, the topology onN(G/G0) is discrete, and hence 2-transitive. Hence
N(G/G0) is a 1-prime near-ring and so I is a 1-prime ideal of N(G). It
follows that P1(N(G)) ⊆ I, as required. ♦

We now turn our attention to the equiprime radical of N(G).

Proposition 2.7. Let G be a disconnected topological group and let I
and J be as in Proposition 2.6. Suppose further that the components
of G are open and that the index of G0 in G is not equal to 2. Then
Pe(N(G)) = N(G).

Proof. Let P be a proper equiprime ideal of N(G). Then JI = {0} ⊆ P .
Since P is an equiprime (and hence 1-prime) ideal of N(G), either I ⊆ P
or J ⊆ P . Suppose that I ⊆ P . Since G0 is not of index 2 in G,G/G0

does not have order 2. Hence M(G/G0) is a simple near-ring. As in the
proof of Proposition 2.6, N(G/G0) is isomorphic to N(G)/I. Since the
cosets of G0 in G are open and hence clopen the quotient topology on
G/G0 is discrete, so N(G/G0) = M(G/G0), and hence N(G/G0) is a
simple near-ring. It follows that I is a maximal ideal of N(G). Hence
P = I or P = N(G). But since P is an an equiprime ideal, it is left
invariant. However, I is not left invariant. For if g ∈ G\G0 and a
is an arbitrary element of I, then ϕga = ϕg 6∈ I. Hence P = N(G),
contradicting our assumption that P is a proper ideal of N(G). Thus
J ⊆ P . Now define the function a : G→ G by

a(g) :=

{
0 if g ∈ G0

g otherwise .
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Since the cosets of G0 are clopen, a is continuous. Clearly a ∈
J ⊆ P . Choose a representative g1 from a coset G1 6= G0. Define
m,n : G→ G by

m(g) :=

{
g − g1 if g ∈ G1

0 otherwise and n(g) :=

{
g + g1 if g ∈ G0

0 otherwise .

The continuity ofm and n again follow from the fact that the cosets of G0

inG are clopen. It may easily be checked thatman(g) =

{
g if g ∈ G0

0 otherwise .

Since P is an equiprime (and hence left invariant) ideal ofN(G),man ∈ P
and so a + man ∈ P . But a + man = i, the identity mapping on G.
Hence P = N(G), contradicting our assumption that P is a proper ideal
of N(G). Thus N(G) has no nonzero proper equiprime ideals and so
Pe(N(G)) = N(G). ♦

Recall that M(Z2) is not simple, but has three ideals: {0}, M(Z2)
and its constant part (M(Z2))c. We will now consider the situation for
N(G) when G has two components.

Proposition 2.8. Let G be a disconnected topological group, and let I
and J be as in Proposition 2.6. Suppose further that the index of G0 in
G is 2. Then Pe(N(G)) = C := {a ∈ N(G) : a maps G into a single
coset of G0}.

Proof. Let the cosets of G0 in G be G0 and G1, and let P be a proper
equiprime ideal of N(G). As in the proof of Proposition 2.7, we have that
J ⊆ P or I ⊆ P . Suppose that I ⊆ P . As in the proof of Proposition
2.6,N(G)/I is isomorphic to N(G/G0), which is in turn isomorphic to
N(Z2) = M(Z2). Let Ψ be the natural epimorphism of N(G) ontoM(Z2)
with kernel I and let C := Ψ−1((M(Z2))c) = {a ∈ N(G) : a maps G
into a single coset of G0}. Clearly I ⊆ C. Then C/I is isomorphic to the
constant part of M(Z2), which is isomorphic to the constant near-ring
on the 2-element group, and so is simple. Hence I is a maximal ideal
of C. Similarly, N(G)/C is isomorphic to the two-element field Z2, and
so is simple, and so is simple, whence C is a maximal, equiprime ideal
of N(G). Hence P must be equal to I, C or N(G). As in the proof of
Proposition 2.7, I is not left invariant, and since P is a proper ideal of
N(G), it follows that P = C in this case.

Now suppose that J ⊆ P . Using the argument employed in the
proof of Proposition 2.7, we conclude that P = N(G) in this case. It



On Primeness and Radicals in Near-rings of Continuous Functions 9

follows that the only proper equiprime ideal of N(G) is C, and hence
Pe(N(G)) = C. ♦

The notion of strongly prime was defined for rings by Handelman
and Lawrence [8], and extended to near-rings by Groenewald [6]. It is
well known that this notion is strictly stronger than that of prime, even
for non-commutative rings.

Definition 2.9. A near-ring N is :

1. Strongly prime if for every 0 6= a ∈ N there exists a finite subset F
of N (called an insulator of a) such that aFx = 0 implies x = 0,
for all x ∈ N .

2. Uniformly strongly prime if N is strongly prime and the insulator
F is independent of the choice of a.

3. Completely prime if xy = 0 implies x = 0 or y = 0 for all x, y ∈ N .

Proposition 2.10.

1. N(G) is strongly prime.

2. N(G) is not completely prime.

Proof. (1) Let 0 6= a ∈ N . Then there exists g ∈ G such that a(g) 6= 0.
Let F := {ϕg}. Then aϕgx(h) = a(g) 6= 0 for all x ∈ N(G) and h ∈ G.
Hence N(G) is strongly prime.

(2) Let 0 6= g0 ∈ G. Let a be defined by a(g) = g− g0 for all g ∈ G.
If h ∈ G, then aϕg0(h) = a(g0) = g0 − g0 = 0, and so aϕg0 = 0. But
a, ϕg0 6= 0 and hence N(G) is not completely prime. ♦

Proposition 2.11. Suppose that G is infinite, and is either 0-dimensional
or it contains an arc. Then N(G) is not uniformly strongly prime.

Proof. Let F := {f1, . . . , fn} be a finite subset of N(G). Let 0 6= g ∈ G.
For 1 ≤ i ≤ n, the range of fiϕg contains a single element, ki say. Let
K := {k1, . . . , kn}. Let 0 6= h ∈ G\K.
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Suppose that G is 0-dimensional. For 1 ≤ i ≤ n there exists a

clopen set Ui such that ki ∈ Ui and h 6∈ Ui. Let U :=
n⋃
i=1

Ui. Then U is

clopen, K ⊆ U and h 6∈ U . Define the mapping a as follows. Let

a(x) :=

{
0 if x ∈ U
h otherwise .

Then 0 6= a ∈ N(G) and afiϕg(x) = afi(g) = a(ki) = 0 for all
x ∈ G and 1 ≤ i<n. Hence afiϕg = 0 for 1 ≤ i ≤ n and so aFϕg. But
a, ϕg 6= 0 and so N(G) is not uniformly strongly prime.

Now suppose that G contains an arc. The set K is closed and
h 6∈ K. Since G is completely regular, there exists a continuous mapping
α : G → [0, 1] such that α(K) = 0 and α(h) = 1. Since G contains
an arc, there exists a continuous mapping β : [0, 1] → G such that
β(0) = g0 and β(1) = g1, where g0 6= g1. We may assume without
loss of generality that g0 = 0. If necessary, replace β with γ, where
γ(t) := β(t) − g0 for all t ∈ [0, 1]. Let a := βα. Then a 6= 0 and
afiϕg(x) = afi(g) = a(ki) = βα(ki) = β(0) (since ki ∈ U) = 0. Hence
afiϕg = 0 for 1 ≤ i ≤ n and so aFϕg = 0. But a, ϕg 6= 0 and so N(G) is
not uniformly strongly prime in this case. ♦

3. Sandwich Near-rings

Let X and G be a topological space and a topological group, respec-
tively, and let θ : G→ X be a continuous mapping. Let N(X,G, θ) de-
note the set of all continuous mappings from X into G. Then N(X,G, θ)
is a near-ring with pointwise addition and multiplication defined by
a · b := aθb for all a, b ∈ N(X,G, θ). In the sequel X will be completely
regular, and hence Hausdorff. If g ∈ G, λg will denote the mapping
defined by λg(x) := g for all x ∈ X.

Proposition 3.1. If cl(θ(G)) = X, then N(X,G, θ) is 3-prime (and
hence both 0-prime and 2-prime), where cl(θ(G)) denotes the closure of
θ(G) in X.

Proof. Suppose that 0 6= a, b ∈ N(X,G, θ). Let x ∈ X be such that
a(x) 6= 0. By continuity of a, there exists an open neighbourhood U of x
such that a(y) 6= 0 for all y ∈ U . Since cl(θ(G)) = X, there exists g ∈ G
such that θ(g) ∈ U . Hence aθ(g) 6= 0. Then λgθnθb(z) = g for all z ∈ X.
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Thus aθλgθnθb(z) = aθ(g) 6= 0 and so aθλgθnθb 6= 0. Hence N(X,G, θ)
is 3-prime. ♦

If certain additional conditions are imposed onX or G, the converse
of Proposition 3.1 holds.

Proposition 3.2. Suppose that X is 0-dimensional or G is arcwise con-
nected. Then the following are equivalent :

1. cl(θ(G)) = X.

2. N(X,G, θ) is 3-prime.

3. N(X,G, θ) is 3-semiprime.

Proof. (1)⇒ (2): Follows from Proposition 3.1.
(2)⇒ (3): This is obvious.
(3) ⇒ (1): Suppose firstly that X is 0-dimensional. Let x ∈

X\cl(θ(G)). Since X\cl(θ(G)) is open and N(X,G, θ) is 0-dimensional,
there exists a clopen set U such that x ∈ U ⊆ X\cl(θ(G)). Let 0 6∈ g ∈ G.
Define a : X → G by

a(y) :=

{
g if y ∈ U
0 otherwise .

Then 0 6= a ∈ N(X,G, θ). Since θ(G)⊂X\U, aθ(h) = 0 for all
h ∈ G. Hence aθnθa(z) = 0 for all n ∈ N(X,G, θ) and z ∈ X. Hence
aθnθa 6= 0 and so N(X,G, θ) is not 3-semiprime.

Now let G be arcwise connected. x ∈ X\cl(θ(G)). Since X is
completely regular, there exists a continuous mapping α : X → [0, 1]
such that α(cl(θ(G)) = 0 and α(x) = 1. Let 0 ∈ g ∈ G. Since G is
arcwise connected, there exists a continuous mapping β : [0, 1] → G
such that β(0) = 0 and β(1) = g. Let a := βα. Then 0 6= a ∈ N(X,G, θ)
and aθ(h) = 0 for all h ∈ G. Hence aθnθa(z) = 0 for all n ∈ N(X,G, θ)
and z ∈ X. Hence aθnθa 6= 0 and so N(X,G, θ) is not 3-semiprime in
this case. ♦

N(X,G, θ) is called 2-transitive if for all x, y ∈ X such that x 6= y
and g, h ∈ G, there exists a ∈ N(X,G, θ) such that a(x) = g and a(y) =
h. It is easily seen that N(X,G, θ) is 2-transitive if X is 0-dimensional
or G is arcwise connected, inter alia.
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Lemma 3.3. Suppose that N(X,G, θ) is 2-transitive and that there exists
an element x1 of X such that θ−1(x1) contains exactly one element. Let
0 6= I /` N(X,G, θ). Then IX = G.

Proof. Let g ∈ G. We must show that there exists x ∈ X and b ∈
N(X,G, θ) such that a(x) = g. This is trivial if g = 0, so suppose
that g 6= 0. Let 0 6= a ∈ N(X,G, θ) and let x ∈ X be such that
a(x) 6= 0. Let h be the unique element of G such that x1 = θ(h). Since
a(x) + h 6= h, θ(a(g) + h) 6= x1 = θ(x), whence θ(a + ψh)(x) 6= θψh(x).
Since N(X,G, θ) is 2-transitive, there exists m ∈ N(X,G, θ) such that
mθ(a+ ψh)(x) = g and mθψh(x) = 0, so (mθ(a+ ψh)−mθψh) = g. Let
a := mθ(a + ψh) −mθψh. Then mθ(a + ψh) −mθψh ∈ I and a(x) = g,
as required. ♦

Proposition 3.4. Suppose that N(X,G, θ) is 2-transitive, that cl(θ(G)) =
Xand that there exists an element x1 of X such that θ−1(x1) contains
exactly one element. Then N(X,G, θ) is 1-prime.

Proof. Let 0 6= U, V /` N(X,G, θ). Then UθV (X) = Uθ(G) by Lemma
3.3. If uθ(g) = 0 for all u ∈ U and g ∈ G, it follows from the continuity of
u and the fact that cl(θ(G)) = X that u(x) = 0 for all x ∈ X and u ∈ U ,
so U = 0, contrary to our assumption. Hence UθV 6= 0, so N(X,G, θ) is
1-prime. ♦

Theorem 3.5. Suppose that G, is arcwise connected and that there exists
an element x1 of X such that θ−1(x1) contains exactly one element. Then
the following are equivalent.

1. cl(θ(G)) = X.

2. N(X,G, θ) is 1-prime.

3. N(X,G, θ) is 1-semiprime.

Proof. (1)⇒ (2). Follows from Proposition 3.4.
(2)⇒ (3). Obvious.
(3)⇒ (1). Suppose that cl(θ(G)) 6= X and let x ∈ X\cl(θ(G)). Let

K := {a ∈ N(X,G, θ) : a(cl(θ(G)) = 0} Then K /` N(X,G, θ). Since X
is completely regular, there exists a continuous map α : X → [0, 1] such
that α(cl(θ(G)) = 0 and α(x) = 1. Let 0 6= g ∈ G. Since G is arcwise
connected, there exists a continuous mapping β : [0, 1] → G such that



On Primeness and Radicals in Near-rings of Continuous Functions 13

β(0) = 0 and β(1) = g. Let a := βα. Then 0 6= a ∈ K, so K 6= 0.
But KθK(X) ⊆ K(θ(G)) = 0, so KθK = 0. Hence N(X,G, θ) is not
1-semiprime, and the result follows. ♦
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