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Abstract: The concept of the Brocard circle of a triangle in an isotropic
plane is defined in this paper. Some other statements about the introduced
concepts and the connection with the concept of complementarity, isogonality,
reciprocity, as well as the Brocard diameter, the Euler line, and the Steiner
point of an allowable triangle are also considered..

The isotropic (or Galilean) plane is a projective–metric plane, where
the absolute consists of one line, i.e., absolute line ω, and one point on
that line, i.e., the absolute point Ω. The lines through the point Ω are
isotropic lines, and the points on the line ω are isotropic points (the points
at infinity). Two lines through the same isotropic point are parallel, and
two points on the same isotropic line are parallel points. Each isotropic
line is perpendicular to each nonisotropic line. Therefore, an isotropic
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plane is in fact an affine plane with the pointed direction of isotropic
lines where the principle of duality holds.

In [7], it is shown that by a suitable choice of coordinates each
allowable triangle in an isotropic plane can be set in the so-called standard
position, i.e., that its circumscribed circle has the equation y = x2, and
its vertices are of the form A = (a, a2), B = (b, b2), C = (c, c2), where
a + b + c = 0. We shall say then that ABC is a standard triangle. To
prove geometric facts for each allowable triangle it is sufficient to give a
proof for the standard triangle.

With labels

p = abc, q = bc + ca + ab,

p1 =
1

3
(bc2 + ca2 + ab2), p2 =

1

3
(b2c + c2a + a2b)

and with the Brocard angle ω of the standard triangle ABC ([6]) given
by the formula

ω = − 1

3q
(b− c)(c− a)(a− b),

a number of useful equalities are valid, as for example

p2 + pp1 + p21 = −q3

9
.

Each circle in the isotropic plane is given by the equation y = ux2+vx+w,
and inversion with respect to this circle is the mapping given by the
substitutions x→ x, y → 2ux2 + 2vx + 2w − y (see [9]).

According to [7], [1], [4], [12], [8] and [10], the centroid G, the
symmedian center K, the Steiner point S and Crelle–Brocard points Ω1

and Ω2 of the standard triangle are defined by the formulas

(1) G =

(
0,−2

3
q

)
, K =

(
3p

2q
,−q

3

)
, S =

(
−3p

q
,−9p2

q2

)
,

(2) Ω1 =

(
p− p1

q
,
27p21 − 2q3

9q2

)
, Ω2 =

(
p− p2

q
,
27p22 − 2q3

9q2

)
,

respectively.
The Euler line E is defined by the equation x = 0 and the Brocard
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diameter B by x = 3p
2q
. The orthic line H and the Lemoine line L are

given by the equations x = − q
3
and

(3) y =
3p

q
x +

q

3
,

respectively.
The straight line joining CB–points Ω1 and Ω2 is determined by the
equation

(4) y =
3p

q
x− 54p2 + 5q3

9q2
,

the circumscribed circle Kc is given by y = x2 and the first Lemoine circle
L1 is determined by

(5) y = 2x2 − 3p

q
x +

27p2 − 2q3

18q2
.

The tangential triangle of the triangle ABC has the Feuerbach point
Φt = (0, 0).
Now we are going to prove some interesting facts about the aforemen-
tioned concepts.

Theorem 1. Symmedian center and CB–points Ω1 and Ω2 of the triangle
lie on the same circle. Ω1 and Ω2 are symmetric with respect to the
Brocard diameter of the considered triangle. (Figure 1)

Proof. The circle with the equation

(6) y = 2x2 − 3p

q
x− q

3

passes through the points K, Ω1, Ω2 from (1) and (2) because for the
first two points we get

2

(
3p

2q

)2

− 3p

q
· 3p

2q
− q

3
= −q

3
,
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2
(p− p1)

2

q2
− 3p

q
· p− p1

q
− q

3
=

1

q2
(2p21 − p2 − pp1)−

q

3

=
1

q2
(3p21 − p2 − pp1 − p21)−

q

3

=
1

q2
(3p21 +

q3

9
)− q

3
=

1

9q2
(27p21 − 2q3),

and in the same way, this also holds for the point Ω2. ♦
By analogy with the Euclidean case, the circle from Theorem 1 will be
called the Brocard circle of the considered triangle.

Corollary 1. The Brocard circle Kb of the standard triangle ABC has
equation (6).

The intersection of the Euler line and the orthic line of the triangle
ABC is the point

(
0,− q

3

)
. Owing to (6), this immediately gives the

following statement.

Corollary 2. The Brocard circle Kb of the triangle passes through the
intersection of its Euler line E with its orthic line H (Figure 1).

Owing to equations (6) and (5), it follows that the first Lemoine
circle of the standard triangle ABC can be obtained from its Brocard
circle by the translation in the isotropic direction for the span

27p2 − 2q3

18q2
+

q

3
=

27p2 + 4q3

18q2
.

If we eliminate x2 from equation (6) and the equation y = x2 of
the circumscribed circle of the triangle ABC, we get the equation of
the potential line of these two circles in the form (3), i.e., we have the
following statement.

Corollary 3. The Lemoine line L of the triangle is the potential line of
its circumscribed circle Kc and its Brocard circle Kb.

Theorem 2. The Lemoine line L and the Brocard circle Kb of the
triangle are mutually inverse curves with respect to its circumscribed
circle Kc.
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Proof. Inversion with respect to its circumscribed circle is given by
the substitution y → 2x2− y, and by this substitution equations (3) and
(6) can be transformed into each other. ♦

Theorem 3. The Feuerbach point Φt = (0, 0) of the tangential triangle
of a given triangle is the inverse point of the centroid G of this triangle
with respect to its Brocard circle Kb.

Proof. Inversion with respect to the Brocard circle (6) is given by
the substitution y → 4x2 − 6p

q
x − 2q

3
− y. The point Φt = (0, 0) can

obviously be transformed into the point G from (1). ♦

Theorem 4. The Brocard circle of the triangle touches the potential
line of its Lemoine circles at its symmedian center (Figure 1).

Proof. In [5], it is shown that the potential line of the Lemoine
circles of the standard triangle ABC with the equation

(7) y =
3p

q
x− 9p2

2q2
− q

3

passes through its symmedian center. It is enough to prove that circle
(6) touches line (7). However, these two equations imply the equation

2x2 − 6p

q
x +

9p2

2q2
= 0, i. e.

(
x− 3p

2q

)2

= 0

with the double solution x = 3p
2q
. ♦

The assertion of Theorem 4 in Euclidean plane can be found in [3].

Theorem 5. The polar line with respect to the Brocard circle of the
point L, isogonal to the reciprocal point K ′ of the symmedian center K
of the triangle ABC, is the straight line joining CB–points Ω1 and Ω2 of
the triangle ABC. The points K and L are parallel (Figure 1).

Proof. By [13], owing to

q2x2 − 9pxy − 3qy2 − 6pqx− 4q2y + 9p2

=
9p2

4
+

9p2

2
− q3

3
− 9p2 +

4q3

3
+ 9p2 =

27

4
p2 + q3 =

1

4
(27p2 + 4q3),
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3pqx2 + 4q2xy − 9py2 + (9p2 + 4q3)x− 12pqy − 4pq2

=
27p3

4q
− 2pq2 − pq2 +

27p3

2q
+ 6pq2 + 4pq2 − 4pq2

=
81p3

4q
+ 3pq2 =

3p

4q
(27p2 + 4q3),

9p2x2 + 12pqxy + 4q2y2 + 8pq2x− (9p2 − 4q3)y − 12p2q

=
81p4

4q2
− 6p2q +

4q4

9
+ 12p2q + 3p2q − 4q4

3
− 12p2q

=
81p4

4q2
− 3p2q − 8q4

9
=

1

36q2
(729p4 − 108p2q3 − 32q6)

=
1

36q2
(27p2 + 4q3)(27p2 − 8q3),

the reciprocal point of the point K =
(

3p
2q
,− q

3

)
is the point with the

coordinates

−3p

4q
(27p2 + 4q3) :

1

4
(27p2 + 4q3) = −3p

q
,

1

36q2
(27p2 + 4q3)(27p2 − 8q3) :

1

4
(27p2 + 4q3) =

1

9q2
(27p2 − 8q3),

i.e., the point
(8) K ′ =

(
−3p

q
,

1

9q2
(27p2 − 8q3)

)
.

For this point we get

y − x2 =
1

9q2
(27p2 − 8q3)− 9p2

q2
= −54p2 + 8q3

9q2

=− 2

9q2
(27p2 + 4q3),

xy + qx− p=− p

3q3
(27p2 − 8q3)− 3p− p = − p

3q3
(27p2 + 4q3),

px− qy − y2 =−3p2

q
− 1

9q
(27p2 − 8q3)− (27p2 − 8q3)2

81q4

=− 1

81q4
(729p4 + 54p2q3 − 8q6)

=− 1

81q4
(27p2 + 4q3)(27p2 − 2q3),
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and owing to [9], its isogonal point is the point with the coordinates

− p

3q3
(27p2 + 4q3) : − 2

9q2
(27p2 + 4q3) =

3p

2q
,

− 1

81q4
(27p2 + 4q3)(27p2 − 2q3) : − 2

9q2
(27p2 + 4q3) =

1

18q2
(27p2 − 2q3),

i.e., the point

(9) L =

(
3p

2q
,

1

18q2
(27p2 − 2q3)

)
.

The polar line of the point (xo, yo) with respect to circle (6) has the
equation

(10) y + yo = 4xox−
3p

q
(x + xo)−

2q

3
.

For the point L = (xo, yo), from (9) we obtain

4xo −
3p

q
=

3p

q
,

−yo −
3p

q
xo −

2q

3
=

2q3 − 27p2

18q2
− 9p2

2q2
− 2q

3
= −54p2 + 5q3

9q2
,

and the polar line of the point L with respect to circle (6) is given by
equation (4), and it is the line Ω1Ω2. The points K and L are obviously
parallel. ♦

If we consider the points K ′ and L from (8) and (9) and the points
Ω′

1 and Ω′
2 from Theorem 7 in [10], we obtain that K ′ = Ω′

1 and L = Ω′
2.

With xo = 0 and yo = −2
3
q, equation (10) gets the form y = −3p

q
x

and the Steiner point S from (1) satisfies it.
We have proved the following statement.

Theorem 6. The polar line of the centroid of a triangle with respect to
its Brocard circle passes through its Steiner point.

The mentioned polar line obviously passes through the point
Φt = (0, 0), the Feuerbach point of the tangential triangle AtBtCt of
the triangle ABC. According to [12], Th. 5, this polar line is a tangent
line of its circumscribed Steiner ellipse of the triangle ABC at its Steiner
point.
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Figure 1.

Theorem 7. Let K ′ be the reciprocal point of the symmedian center K
of the triangle ABC and L and L′ the isogonal and complementary point
of the point K ′, respectively. If the point L′′ is the intersection of the
Lemoine line and the Brocard diameter of the triangle ABC, then the
point L is the midpoint of the points L′ and L′′ and all three points lie
on the Brocard diameter of the triangle ABC (Figure 1). (see [11]).

Proof. From the equalities 2L′ = 3G −K ′, (1) and (8) we get the
coordinates x, y of the point L′ 2x = 3p

q
and

2y = −2q − 1

9q2
(27p2 − 8q3) = −27p2 + 10q3

9q2
,
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wherefrom

(11) L′ =

(
3p

2q
, − 1

18q2
(27p2 + 10q3)

)
.

With x = 3p
2q

from equation (3) of the Lemoine line it follows

y =
1

6q2
(27p2 + 2q3),

and therefore
L′′ =

(
3p

2q
,

1

6q2
(27p2 + 2q3)

)
.

As

1

2

[
1

6q2
(27p2 + 2q3)− 1

18q2
(27p2 + 10q3)

]
=

1

18q2
(27p2 − 2q3),

the point L from (9) is the midpoint of the points L′ and L′′. ♦

The complementary point K1 of the symmedian center K satisfies
the equality 2K1 = 3G−K, wherefrom

K1 =

(
−3p

4q
,−5

6
q

)
.

With x = −3p
4q

and y = 5
6
q, for this point we get

q2x2 − 9pxy − 3qy2− 6pqx− 4q2y + 9p2

=
9

16
p2 − 45

8
p2 − 25

12
q3 +

9

2
p2 +

10

3
q3 + 9p2

=
135

16
p2 +

5

4
q3 =

5

16
(27p2 + 4q3),

3pqx2 + 4q2xy − 9py2 + (9p2 + 4q3)x− 12pqy − 4pq2

=
27

16
· p

3

q
+

5

2
pq2 − 25

4
pq2 − 27

4
· p

3

q
− 3pq2 + 10pq2 − 4pq2

=−81

16
· p

3

q
− 3

4
pq2 = − 3p

16q
(27p2 + 4q3),
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9p2x2 + 12pqxy + 4q2y2 + 8pq2x− (9p2 − 4q3)y − 12p2q

=
81

16
· p

4

q2
+

15

2
p2q +

25

9
q4 − 6p2q +

15

2
p2q − 10

3
q4 − 12p2q

=
81

16
· p

4

q2
− 3p2q − 5

9
q4 =

1

144q2
(729p4 − 432p2q3 − 80q6)

=
1

144q2
(27p2 + 4q3)(27p2 − 20q3),

and according to [13], its reciprocal point K2 has the coordinates

3p

16q
:

5

16
=

3p

5q
,

1

144q2
(27p2 − 20q3) :

5

16
=

1

45q2
(27p2 − 20q3),

i.e., we get

(12) K2 =

(
3p

5q
,

1

45q2
(27p2 − 20q3)

)
.

For the point L′ from (11) with x = 3p
2q
, − 1

18q2
(27p2 + 10q3) we obtain

y − x2 =− 1

18q2
(27p2 + 10q3)− 9p2

4q2
= − 5

36q2
(27p2 + 4q3),

xy + qx− p =− p

12q3
(27p2 + 10q3) +

3

2
p− p = − p

12q3
(27p2 + 4q3),

px− qy − y2 =
3p2

2q
+

1

18q
(27p2 + 10q3)− 1

324q4
(27p2 + 10q3)2

=− 1

324q4
(729p4 − 432p2q3 − 80q6)

=− 1

324q4
(27p2 + 4q3)(27p2 − 20q3),

and according to [9], its isogonal point has the coordinates

p

12q3
:

5

36q2
=

3p

5q
,

1

324q4
(27p2 − 20q3) :

5

36q2
=

1

45q2
(27p2 − 20q3),

and in fact it is the point K2 from [13]. We have proved

Theorem 8. The isogonal point of the point L′ from Theorem 7 is also
the reciprocal point of the complementary point of the symmedian center
K of the triangle ABC.
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The point isogonal to the reciprocal point of the complementary
point of the symmedian center of the triangle can be found in Euclidean
geometry (see [2]).
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