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Abstract: This paper deals with skew ruled surfaces in the Euclidean space
E3 which are right normalized, that is, they are equipped with relative norma-
lizations, whose support function is of a specific form. This class of relatively
normalized ruled surfaces contains surfaces whose relative image Φ∗ is either
a curve or a ruled surface the generators of which are parallel to those of Φ.
Moreover we investigate various properties concerning the Tchebychev vector
field and the support vector field of right normalized ruled surfaces.

1. Preliminaries

In this section we present briefly some definitions, results and
formulae of relative Differential Geometry of surfaces and Differential
Geometry of ruled surfaces in the Euclidean space E3. The reader can
use [3] and [5] as general references.

In the three-dimensional Euclidean space E3 we denote by Φ =
(U, x) a skew ruled Cr-surface (that is a surface of nonvanishing Gaussian

E-mail address: stamata@math.auth.gr



XXX I.I. Papadopoulou, S. Stamatakis

curvature), r ≥ 3, defined by an injective Cr-immersion x = x(u, v) on
a region U := (a, b) × R, where (a, b) ⊆ R is an open interval of R2.
We denote by 〈 , 〉 the standard scalar product in E3. We introduce the
so-called standard parameters u ∈ (a, b), v ∈ R of Φ, such that

(1.1) x(u, v) = s(u) + v e(u),

and

(1.2) |e| = |e′| = 1, 〈s′, e′〉 = 0,

where the differentiation with respect to u is denoted by a prime. Here
Γ : s = s(u) is the striction curve of Φ and the parameter u is the arc
length along the spherical curve e = e(u).

The distribution parameter δ(u) := (s′, e, e′), the conical curvature
κ(u) := (e, e′, e′′) and the function λ(u) := cotσ, where σ(u) := ^(e, s′) is
the striction of Φ (−π

2
< σ ≤ π

2
, signσ = sign δ), are the fundamental in-

variants of Φ and determine uniquely the ruled surface Φ up to Euclidean
rigid motions. In what follows we consider ruled surfaces for which κ = 0
for every u ∈ (a, b) or κ 6= 0 for every u ∈ (a, b). We also consider the
moving frame D := {e, n, z} of Φ, where n(u) := e′ is the central normal
vector and z(u) := e × n is the central tangent vector. It is well known
that the following equations are valid [3, p. 280]

(1.3) e′ = n, n′ = −e+ κ z, z′ = −κn.

Then we have

(1.4) s′ = δ λ e+ δ z.

We denote partial derivatives of a function (or a vector-valued function)
f in the coordinates u1 :=, u2 := v by f/i, f/ij etc. Then from (1.1) and
(1.4) we obtain

(1.5) x/1 = δ λ e+ v n+ δ z, x/2 = e.

Let I = gijdu
iduj and II = hijdu

iduj, i, j = 1, 2, be the first and the
second fundamental form of Φ, respectively, where

g11 = δ2λ2 + v2 + δ2, g12 = δλ, g22 = 1,
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(1.6) h11 = −κw
2 + δ′ v − δ2 λ

w
, h12 =

δ

w
, h22 = 0

and

(1.7) w :=
√

det(gij) =
√
δ2 + v2.

The unit normal vector can be written as

ξ =
δ n− v z

w
.

The Gaussian curvature K̃(u, v) and the mean curvature H̃(u, v) of Φ
are given by (see [3])

(1.8) K̃ = − δ
2

w4
, H̃ = −κw

2 + δ′v + δ2λ

2w3
.

A Cs- relative normalization of Φ is a Cs-mapping y = y(u, v), 1 ≤ s < r,
defined on U , such that
(1.9)
rank({x/1, x/2, y}) = 3, rank({x/1, x/2, y/i}) = 2, i = 1, 2, ∀ (u, v) ∈ U.

The pair (Φ, y) is called a relatively normalized ruled surface and the line
issuing from a point P ∈ Φ in the direction of y is called the relative
normal of Φ at P . The pair Φ∗ = (U, y) is called the relative image of
(Φ, y).

The support function of the relative normalization ȳ is defined by
q(u, v) := 〈ξ̄, ȳ〉 (see [2]). Because of (1.9), q never vanishes on U .
Conversely, when a support function q is given, the relative normalization
y of the ruled surface Φ is uniquely determined and can be expressed in
terms of the moving frame D as follows [6, p. 179]:

(1.10) y = y1 e+ y2 n+ y3 z,

where

(1.11)
y1 = −w

δq/1 + q/2(κw
2 + δ′v)

δ2
, y2 =

δ2 q − w2 v q/2
δw

,

y3 = −
v q + w2 q/2

w
.
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The coefficients Gij(u, v) of the relative metric G(u, v) of (Φ, y), which is
indefinite, are given by Gij = q−1 hij.

For a function (or a vector-valued function) f we denote by∇Gf the
first Beltrami differential operator and by∇G

i f the covariant derivative in
the direction ui, both with respect to the relative metric. The coefficients
Aijk(u, v) of the Darboux tensor are defined by

Aijk := q−1 〈ξ, ∇G
k ∇G

j x/i〉.

Then, by using the relative metric tensor Gij for “raising and lowering
the indices”, the Pick invariant J(u, v) of (Φ, y) is given by

J :=
1

2
Aijk A

ijk.

As we showed in [8] (see equation (2.2)) the Pick invariant is calculated
by

(1.12) J=
3
(
w2q/2 + v q

)
2δ2w3 q

·

·
{
w2
[
κqv + 2δq/1 + q/2

(
κw2 + δ′v − δ2λ

)]
− δ2q (λv − δ′)

}
.

The relative shape operator has the coefficients Bj
i (u, v) defined by

(1.13) y/i =: −Bj
i x/j.

Then, for the relative curvature K(u, v) and the relative mean curvature
H(u, v) of (Φ, y) we have

(1.14) K := det
(
Bj
i

)
, H :=

B1
1 +B2

2

2
.

We mention finally, that among the surfaces Φ ⊂ E3 with negative
Gaussian curvature the ruled surfaces are characterized by the relation

(1.15) 3H − J − 3S = 0

(see [7]), where S(u, v) is the scalar curvature of the relative metric G,
which is defined formally as the curvature of the pseudo-Riemannian
manifold (Φ,G).
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2. Right normalizations

We focus now our investigation on the main subject of this paper,
namely the right normalizations of a skew ruled surface Φ, that is, relative
normalizations which are given by (1.10) and (1.11) by means of the
support function

(2.1) q =
f + g v

w
,

where f and g are arbitrary Cs+1-functions of u, such that q 6= 0. These
normalizations are introduced in [8] by the authors.

When the function g vanishes in I, the relative normal at each point
P ∈ Φ lies on the corresponding asymptotic plane {P ; e, n} of Φ. Norma-
lizations of this type are called asymptotic and they have been studied
by I. Kaffas and S. Stamatakis [6]. Another special case arises when the
function f vanishes in I. Then the relative normal at each point P ∈ Φ
lies on the corresponding central plane {P ; e, z} of Φ. Normalizations of
this type are called central and they have been studied in [8]. Since both
asymptotic and central normalizations belong to the right ones and they
have been studied thoroughly in the above mentioned papers, we assume
that in what follows none of the functions f and g is vanishing.

From (1.10), (1.11) and (2.1) it follows that a right normalization
of the given ruled surface Φ is

(2.2) y =
(κ f − δ g′) v + δ′f − δ f ′ − δ2 κ g

δ2
e+

f

δ
n− g z.

Then, by using (1.3), (1.5), (1.13) and (2.2), we obtain the coefficients
Bj
i of the relative shape operator of a right normalization:

B1
1 = B2

2 =
δg′ − κf

δ2
, B1

2 = 0,

B2
1 =

1

δ3

[ (
2κδ′f − δκf ′ − δδ′g′ − δκ′f + δ2g′′

)
v + δ2f (κλ+ 1)

+ 2δ′ (δ′f − δf ′) + δ3g′ (κ− λ) + δ3κ′g − δδ′′f + δ2f ′′
]
.

Hence, via (1.14), the relative mean curvature H and the relative
curvature K are

(2.3) H =
δ g′ − κ f

δ2
, K = H2.
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Firstly, we observe that all points of Φ are relative umbilics (H2−K ≡ 0).
Thus, for the relative principal curvatures k1 and k2, which by definition
are the eigenvalues of the relative shape operator (see [5, p. 215]),
k1 = k2 = H holds. Then, from (1.12) we find for the Pick invariant

(2.4) J = 3g
κ g v2 + 2δ g′v + δ2g (κ− λ)− δ′f + 2δf ′

2δ2 (f + g v)
.

Consequently J vanishes identically if‌f

κ g v2 + 2δ g′v + δ2g (κ− λ)− δ′f + 2δf ′ = 0,

or, equivalently, after successive differentiations of this last equation
relative to v, if‌f

κ = g′ = δ2g (κ− λ)− δ′f + 2δf ′ = 0,

from which we have κ = 0, i.e., Φ is conoidal, g = c1 ∈ R∗
and f = |δ|1/2

(
c1
2

∫
|δ|1/2 λ du+ c2

)
, c2 ∈ R. Thus, the following has

been shown

Proposition 2.1. The Pick invariant of a right normalized skew ruled
surface Φ ⊂ E3 vanishes identically if‌f Φ is conoidal, the function g is a
nonvanishing constant c1 and the function f is given by

f = |δ|1/2
(
c1
2

∫
|δ|1/2 λ du+ c2

)
, c2 ∈ R.

Additionally, in view of (2.3a), a right normalized ruled surface with
vanishing Pick invariant is relatively minimal.

By using (1.15), (2.3a) and (2.4) we obtain the scalar curvature of
the relative metric

S = −κ g
2v2 + 2κ f g v + δ2g2(κ− λ) + 2κ f 2 − δ′f g + 2δ (f ′g − f g′)

2δ2 (f + g v)
.

The scalar curvature of the relative metric G vanishes identically if‌f

κ = δ2g2(κ− λ) + 2κ f 2 − δ′f g + 2δ (f ′g − f g′) = 0,

that is, if‌f κ = 0 and f = 1
2
|δ|1/2 g

(∫
|δ|1/2 λ du+ c

)
, c ∈ R. So, we have:
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Proposition 2.2. The scalar curvature S of a right normalized skew
ruled surface Φ ⊂ E3 vanishes identically if‌f Φ is conoidal and the function
f is given by

f =
1

2
|δ|1/2 g

(∫
|δ|1/2 λ du+ c

)
, c ∈ R.

We distinguish the right normalizations in two types.

2.1. Right normalizations of the first type

We say that a right relative normalization y is of the first type if
the relative image Φ∗ of (Φ, y) degenerates into a curve. Obviously this
occurs if‌f

δ g′ − κ f = 0

(cf. (2.2)). Thus, on account of (2.2) and (2.3a) we conclude that

Proposition 2.3. Let (Φ, y) be a right normalized ruled surface. Then
the following properties are equivalent:
(a) y is a right normalization of the first type.
(b) (Φ, y) is relatively minimal.
(c) The function g is given by

g =

∫
κ f

δ
du+ c, c ∈ R.

The right normalized ruled surfaces with vanishing Pick invariant
belong obviously to this subclass.

The relative image Φ∗ is the curve parametrized by

y =
δ′f − δf ′ − δ2 κ g

δ2
e+

f

δ
n− g z.

2.2. Right normalizations of the second type

A right relative normalization y is said to be of the second type if
the relative image Φ∗ of (Φ, y) does not degenerate into a curve of E3.
Then Φ∗ is a ruled surface whose generators are parallel to those of Φ.
From (2.2) we find the following parametrization of the striction curve
of Φ∗:

Γ ∗ : s∗ =
δ′f − δf ′ − δ2κ g

δ2
e+

f

δ
n− g z.
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Consequently Φ∗ can be parametrized like (1.1) and (1.2):

Φ∗ : y = s∗ + v∗ e, where v∗ :=
(κf − δ g′)v

δ2
.

Considering D as moving frame of Φ∗ we compute its fundamental
invariants:

κ∗ = κ, δ∗ =
κf − δg′

δ
,

λ∗ = −δ
3(κg′ + κ′g) + δ2(f + f ′′)− δ(δ′′f + 2δ′f ′) + 2δ′2f

δ2(κf − δg′)
.

By using (1.7) we infer that

w∗ =
√

det(g∗ij) = |H|w

and, thus, by means of (1.8a), the Gaussian curvature K̃∗ of Φ∗ is

K̃∗ = − δ6

w4(κf − δ g′)2
.

The focal surfaces, which are the loci of the edges of regression of the
developable surfaces consisting of the relative normals along the relative
lines of curvature, coincide. The parametrization of the unique relative
focal surface of Φ, which initially reads

x∗ = s+ v e+
1

H
y,

in view of (2.2) and (2.3a) becomes

x∗ = s+
(δ′f − δf ′ − δ2 κ g) e+ δ f n− δ2g z

δ g′ − κ f
,

i.e., the focal surface degenerates into a curve Λ∗ and all relative normals
along each generator form a pencil of straight lines.

3. The Tchebychev vector field of a right normaliza-
tion

In [6] it was shown that the coordinate functions of the Tchebychev
vector T (u, v) of (Φ, y), which is defined by

T := Tm x/m, where Tm :=
1

2
Aimi ,
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are given by
(3.1)

T 1 =
w2q/2 + v q

δ w
, T 2 =

2δ w2q/1 + δ′q (δ2 − v2)
2δ2w

+
T 1(κw2 + δ′v − δ2λ)

δ
.

By means of (1.5) and (2.1) the Tchebychev vector of a right normaliza-
tion can be expressed in terms of the moving frame D as follows:

(3.2) T =
2κ g v2 + (δ′g + 2δ g′)v + 2δ2κ g − δ′f + 2δf ′

2δ2
e+

g

δ
(v n+δ z).

The vectors T are orthogonal to the generators if‌f 〈e, T 〉 = 0.
Taking (3.2) into consideration we find

2κ g v2 + (δ′g + 2δ g′)v + 2δ2κ g − δ′f + 2δf ′ = 0,

or, after successive differentiations of this last equation relative to v, if‌f

2κ g = δ′g + 2δ g′ = 2δ2κ g − δ′f + 2δf ′ = 0.

After standard treatment of this system we deduce that κ = 0,
g = c1|δ|−1/2, c1 ∈ R∗, and f = c2|δ|1/2, c2 ∈ R∗. So, we have the
following

Proposition 3.1. The Tchebychev vector field T of a right normalized
skew ruled surface Φ ⊂ E3 is orthogonal to the generators of Φ if‌f Φ is
conoidal and the functions g and f are given by

g = c1|δ|−1/2, c1 ∈ R∗ and f = c2|δ|1/2, c2 ∈ R∗.

A curve Λ on Φ is defined by means of v as a function of u, i.e.,
Λ : v = v(u). Then for its tangent vector we have

(3.3) x′ = (δ λ+ v′) e+ v n+ δ z.

From (3.2) and (3.3) it follows: x′ and T are parallel or orthogonal if‌f

(3.4) 2κ g v2 + (δ′g + 2δ g′) v + 2δ2κ g − δ′f + 2δf ′ − 2δg (δ λ+ v′) = 0

or

(3.5)
[
2κgv2+(δ′g + 2δg′) v+2δ2κ g−δ′f+2δf ′

]
(δ λ+ v′)+2δ g w2 = 0,

respectively. Among the curves of Φ we consider the following families:
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• The u-curves, i.e., the curves of constant striction distance, whose
differential equation is

(3.6) v′ = 0.

• The curved asymptotic lines, which are different from the rulings.
The differential equation of the curved asymptotic lines, which ini-
tially reads II = 0, becomes on account of (1.6) and (1.7)

(3.7) κ v2 + δ′v + δ2(κ− λ)− 2δ v′ = 0.

• The K̃-curves, i.e., the curves along which the Gaussian curvature
is constant (cf. [4]). The differential equation of the K̃-curves is
dK̃ = 0, that is,

(3.8) 2δ v v′ + δ′
(
δ2 − v2

)
= 0.

From (3.6) and (3.4), resp. (3.5), we have: T is tangential or orthogonal
to the u-curves if‌f

(3.9) 2κ g v2 + (δ′g + 2δg′) v + 2δ2g(κ− λ)− δ′f + 2δf ′ = 0

or

(3.10) 2g(κλ+1)v2 +λ(δ′g+2δg′)v+2δ2g(κλ+1)+λ(2δf ′− δ′f) = 0,

respectively. From (3.9) we find that T is tangential to the u-curves if‌f

κ = δ′g + 2δg′ = 2δ2g(κ− λ)− δ′f + 2δf ′ = 0,

that is, if‌f κ = 0, g = c1|δ|−1/2, c1 ∈ R∗, and f = |δ|1/2
(
c1
∫
λ du+ c2

)
,

c2 ∈ R.
From (3.10) we derive that T is orthogonal to the u-curves if‌f

κλ+ 1 = λ(δ′g + 2δ g′) = 2δ2g(κλ+ 1) + λ(2δ f ′ − δ′f) = 0.

By direct computation we deduce that κλ + 1 = 0, i.e., the striction
curve of Φ is an Euclidean line of curvature, g = c1|δ|−1/2, c1 ∈ R∗ and
f = c2|δ|1/2, c2 ∈ R∗. Therefore, we obtain
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Proposition 3.2. The Tchebychev vector field T of a right normalized
skew ruled surface Φ ⊂ E3 is
(a) tangential to the u-curves of Φ if‌f Φ is conoidal and the functions g
and f are given by

g = c1|δ|−1/2, c1 ∈ R∗ and f = |δ|1/2
(
c1

∫
λ du+ c2

)
, c2 ∈ R.

(b) orthogonal to the u-curves of Φ if‌f the striction curve of Φ is an
Euclidean line of curvature and the functions g and f are given by

g = c1|δ|−1/2, c1 ∈ R∗ and f = c2|δ|1/2, c2 ∈ R∗.

From (3.6) and (3.4) we infer that T is tangential or orthogonal to
the curved asymptotic lines if‌f

(3.11) κgv2 + 2δg′v + δ2g(κ− λ)− δ′f + 2δf ′ = 0,

or

2κ2gv4 + κ (3δ′g + 2δg′) v3

+
[
4δ2g

(
κ2 + 1

)
+ 2δ2κλg − δ′κf + δ′2g + 2δκf ′ + 2δδ′g′

]
v2

+
(
3δ2δ′κg + δ2δ′λg − δ′2f + 2δδ′f ′ + 2δ3κg′ + 2δ3λg′

)
v

+ δ2
(
4δ2g + 2δ2κ2g + 2δ2κλg − δ′κf − δ′λf + 2δκf ′ + 2δλf ′

)
= 0,

(3.12)

respectively. From (3.11) we have that T is tangential to the curved
asymptotic lines if‌f

κ = g′ = δ2g(κ− λ)− δ′f + 2δf ′ = 0,

from which we take κ = 0, g = c1 ∈ R∗ and

f = |δ|1/2
(
c1
2

∫
|δ|1/2λ du+ c2

)
, c2 ∈ R.

From (3.12) we deduce that T is orthogonal to the curved asymptotic
lines if‌f

κ = κ (3δ′g + 2δg′) =

= 4δ2g
(
κ2 + 1

)
+ 2δ2κλg − δ′κf + δ′2g + 2δκf ′ + 2δδ′g′ =

= 3δ2δ′κg + δ2δ′λg − δ′2f + 2δδ′f ′ + 2δ3κg′ + 2δ3λg′ =

= 4δ2g + 2δ2κ2g + 2δ2κλg − δ′κf − δ′λf + 2δκf ′ + 2δλf ′ = 0,
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from which we obtain, initially, κ = 0. Solving the arising system of
differential equations we arrive at a contradiction. So, we have

Proposition 3.3. The Tchebychev vector field T of a right normalized
skew ruled surface Φ ⊂ E3 is
(a) tangential to the curved asymptotic lines of Φ if‌f Φ is conoidal, the
function g is a nonvanishing constant c1 and the function f is given by

f = |δ|1/2
(
c1
2

∫
|δ|1/2λ du+ c2

)
, c2 ∈ R.

but
(b) it cannot be orthogonal to the curved asymptotic lines of Φ.

From (3.8) and (3.4), resp. (3.5), we infer: T is tangential or
orthogonal to the K̃-curves if‌f

(3.13) 2κgv3 + 2δg′v2 +
[
2δ2g(κ− λ)− δ′f + 2δf ′

]
v + δ2δ′g = 0

or
2κδ′gv4 +

[
4δ2g(κλ+ 1) + δ′(δ′g + 2δg′)

]
v3

+
(
2δ2δ′λg − δ′2f + 2δδ′f ′ + 4δ3λg′

)
v2

+ δ2
[
4δ2g(κλ+ 1)− 2δ′λf − δ′2g + 4δλf ′ − 2δδ′g′

]
v

− δ2δ′
(
2δ2κg − δ′f + 2δf ′

)
= 0,

(3.14)

respectively. From (3.13) we find that T is tangential to the K̃-curves if‌f

κ = g′ = 2δ2g(κ− λ)− δ′f + 2δf ′ = δ′ = 0,

i.e., if‌f κ = 0, δ = c1 ∈ R∗, g = c2 ∈ R∗ and f = c1c2
∫
λ du+ c3, c3 ∈ R.

From (3.14) we deduce that T is orthogonal to the K̃-curves if‌f

κδ′ = 4δ2g(κλ+ 1) + δ′(δ′g + 2δg′) =

= 2δ2δ′λg − δ′2f + 2δδ′f ′ + 4δ3λg′ = 0,

4δ2g(κλ+ 1)− 2δ′λf − δ′2g + 4δλf ′ − 2δδ′g′ =

= δ′
(
2δ2κg − δ′f + 2δf ′

)
= 0,

that is, if‌f δ = c ∈ R∗ or κ = 0. If δ = c ∈ R∗, we deduce that κλ+1 = 0,
i.e., Φ is an Edlinger surface1, g = c1 ∈ R∗ and f = c2 ∈ R∗. If κ = 0 and

1i.e., a ruled surface whose osculating quadrics are rotational hyperboloids. The
Edlinger surfaces are characterized by the conditions δ′ = κλ+ 1 = 0 (see [1, p. 36],
[4]).
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δ 6= c ∈ R∗ we arrive at a contradiction. Thus, the following has been
shown

Proposition 3.4. The Tchebychev vector field T of a right normalized
skew ruled surface Φ ⊂ E3 is
(a) tangential to the K̃-curves of Φ if‌f Φ is conoidal of constant distribu-
tion parameter c1, the function g is a nonvanishing constant c2 and the
function f is given by

f = c1c2

∫
λ du+ c3, c3 ∈ R.

(b) orthogonal to the K̃-curves of Φ if‌f Φ is an Edlinger surface and the
functions g and f are nonvanishing constants c1 and c2, respectively.

The following table summarizes the results:

T is . . . Type of the
ruled surface Φ g f

orthogonal to the
generators conoidal g = c1|δ|−1/2,

c1 ∈ R∗ f = c2|δ|1/2, c2 ∈ R∗

tangential to the
u-curves conoidal g = c1|δ|−1/2,

c1 ∈ R∗
f =

|δ|1/2
(
c1
∫
λ du+ c2

)
,

c2 ∈ R

orthogonal to the
u-curves

the striction
curve is an
Euclidean line
of curvature

g = c1|δ|−1/2,
c1 ∈ R∗ f = c2|δ|1/2, c2 ∈ R∗

tangential to the
curved asympt.
lines

conoidal g=c1∈R∗
f =

|δ|1/2
(
c1
2

∫
|δ|1/2λ du+ c2

)
,

c2∈R
orthogonal to the
curved asympt.
lines

- - -

tangential to the
K̃-curves

conoidal,
δ = c1∈R∗

g=c2∈R∗ f=c1c2
∫
λ du+ c3, c3∈R

orthogonal to the
K̃-curves

Edlinger sur-
face g=c1∈R∗ f=c2∈R∗

The divergence divI T of T with respect to the first fundamental
form I of Φ, which initially reads (see [9])

divI T =
(wT i)/i
w
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becomes, on account of (3.1) and (2.1),

divI T =

=
6κgv3 + 6δg′v2 + (6δ2κg − 2δ2λg − δ′f + 2δ f ′) v + δ2 (δ′g + 4δ g′)

2δ2w2
,

from which we have that the Tchebychev vector field T is incompressible
with respect to the first fundamental form of Φ (divI T = 0) if‌f

κ = g′ = 6δ2κg − 2δ2λg − δ′f + 2δf ′ = δ′g + 4δg′ = 0,

or if‌f κ = 0, g = c1 ∈ R∗, δ = c2 ∈ R∗ and f = c1c2
∫
λ du + c3, c3 ∈ R.

Therefore, we arrive at
Proposition 3.5. The Tchebychev vector field T of a right normalized
skew ruled surface Φ ⊂ E3 is incompressible with respect to the first
fundamental form of Φ if‌f Φ is conoidal of constant distribution parameter
c2, the function g is a nonvanishing constant c1 and the function f is given
by

f = c1c2

∫
λ du+ c3, c3 ∈ R.

Let, now, divG T be the divergence of T with respect to the relative
metric of (Φ, y). Analogously to the above computation, by using (1.6),
we get

divG T =
κg2v2 + 2κfgv − δ2g2 (κ− λ) + δ′fg − 2δgf ′ + 2δfg′

δ2 (gv + f)
.

The Tchebychev vector field T is incompressible with respect to the rel-
ative metric, that is, divG T = 0 if‌f

κ = −δ2g2 (κ− λ) + δ′fg − 2δgf ′ + 2δfg′ = 0,

i.e., if‌f κ = 0 and f = 1
2
|δ|1/2g

(∫
|δ|1/2λ du+ c

)
, c ∈ R. So, by taking

into consideration Proposition 2.2, we deduce:
Proposition 3.6. Let Φ ⊂ E3 be a right normalized skew ruled surface.
The following properties are equivalent:
(a) The Tchebychev vector field T is incompressible with respect to the
relative metric.
(b) The scalar curvature S of the relative metric vanishes identically.
(c) Φ is conoidal and the function f is given by

f =
1

2
|δ|1/2g

(∫
|δ|1/2λ du+ c

)
, c ∈ R.
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4. The support vector field of a right normalization

Let
Q :=

1

4
5G
(1

q
, x
)

be the support vector Q(u, v) of (Φ, y), which is introduced in [6]. On
account of (1.5), (1.6) and (2.1) we express the support vector in terms
of the moving frame D as follows:
(4.1)

Q = −w (δ g′ − κ f) v + δ2κ g − δ′f + δf ′

4δ2(g v + f)
e+

f v − δ2g
4δ w(g v + f)

(v n+ δ z) .

The vectors Q are orthogonal to the generators if‌f 〈e,Q〉 = 0. Taking
(4.1) into consideration we have

(δg′ − κf) v + δ2κg − δ′f + δf ′ = 0,

that is, if‌f
δg′ − κf = δ2κg − δ′f + δf ′ = 0,

from which we find that Φ is relative minimal and f = ±δ |c− g2|1/2,
c ∈ R, g2 6= c. Thus, we arrive at:

Proposition 4.1. The support vector field Q of a right normalized skew
ruled surface Φ ⊂ E3 is orthogonal to the generators of Φ if‌f Φ is relative
minimal and the function f is given by

f = ±δ
∣∣c− g2∣∣1/2 , c ∈ R, g2 6= c.

We will investigate, now, the right normalized ruled surfaces Φ,
whose support vectors are tangent or orthogonal to the above mentioned
geometrically distinguished families of curves of Φ. From (3.3) and (4.1)
we have: x′ and Q are parallel or orthogonal if‌f

(4.2) w2
[
(δg′ − κf) v + δ2κg − δ′f + δf ′

]
+ δ

(
fv − δ2g

)
(δλ+ v′) = 0

or

(4.3) − (δλ+ v′)
[
(δg′ − κf) v + δ2κg − δ′f + δf ′

]
+ δ

(
fv − δ2g

)
= 0.
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From (3.7) and (4.2), resp. (4.3), we find: Q is tangential or orthogonal
to the u-curves if‌f

(κf − δg′) v3 +
(
−δ2κg + δ′f − δf ′

)
v2 + δ2 [f (κ− λ)− δg′] v

− δ2
[
δ2g (κ− λ)− δ′f + δf ′

]
= 0

(4.4)

or

(4.5) [f (κλ+ 1)− δλg′] v − δ2g (κλ+ 1) + λ (δ′f − δf ′) = 0,

respectively. From (4.4) we infer that Q is tangential to the u-curves if‌f

κf−δg′ = −δ2κg+δ′f−δf ′ = f (κ− λ)−δg′ = δ2g (κ− λ)−δ′f+δf ′ = 0,

that is, if‌f Φ is relative minimal, λ = 0, i.e., Φ is orthoid2 and
f = ±δ |c− g2|1/2, c ∈ R, g2 6= c. From (4.5) we take that Q is
orthogonal to the u-curves if‌f

f (κλ+ 1)− δλg′ = −δ2g (κλ+ 1) + λ (δ′f − δf ′) = 0,

i.e., if‌f κλ + 1 = δλg′

f
and f = ±δ |c− g2|1/2, c ∈ R, g2 6= c, hence

κ = ±g′ |c− g2|−1/2 − λ−1, λ 6= 0. Therefore, we obtain

Proposition 4.2. The support vector field Q of a right normalized skew
ruled surface Φ ⊂ E3 is
(a) tangential to the u-curves of Φ if‌f Φ is an orthoid, relative minimal
surface and the function f is given by

f = ±δ
∣∣c− g2∣∣1/2 , c ∈ R, g2 6= c.

(b) orthogonal to the u-curves of Φ if‌f the conical curvature and the
function f are given by

κ = ±g′
∣∣c− g2∣∣−1/2 − λ−1, c ∈ R, λ 6= 0, g2 6= c and f = ±δ

∣∣c− g2∣∣1/2 .
From (3.6) and (4.2) we have, that Q is tangential or orthogonal to

the curved asymptotic lines if‌f

(κf − 2δg′) v3 +
(
−δ2κg + δ′f − 2δf ′

)
v2 + δ2 [f (κ− λ) + δ′g − 2δg′] v

− δ2
[
δ2g (κ− λ)− 2δ′f + 2δf ′

]
= 0,

(4.6)

2that is, a ruled surface whose striction curve is an orthogonal trajectory of the
generators. The ortoid ruled surfaces are characterized by the condition λ = 0.
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or

κ (κf − δg′) v3 +
(
−δ2κ2g + 2δ′κf − δκf ′ − δδ′g′

)
v2

+
[
δ2f

(
κ2 + 2

)
+ δ2κ (λf − δ′g) + δ′ (δ′f − δf ′)− δ3g′ (κ+ λ)

]
v

− δ2
[
δ2g
(
κ2 + 2

)
+ δ2κλg + (κ+ λ) (δf ′ − δ′f)

]
= 0,

(4.7)

respectively. From (4.6) we infer that Q is tangential to the curved
asymptotic lines if‌f

κf − 2δg′ = −δ2κg + δ′f − 2δf ′ = f (κ− λ) + δ′g − 2δg′ =

= δ2g (κ− λ)− 2δ′f + 2δf ′ = 0.

Treating the above system in the standard way we find that λ = δ′ = 0.
If κ = 0, Φ is right helicoid3, f = c1 ∈ R∗ and g = c2 ∈ R∗. If κ 6= 0, Φ
is orthoid of constant distribution parameter c3, κ = ±2g′ |c4 − g2|−1/2,
c4 ∈ R∗, g′ 6= 0, g2 6= c4 and f = ±c3 |c4 − g2|1/2. From (4.7) we deduce
that Q is orthogonal to the curved asymptotic lines if‌f

κ (κf − δg′) =
(
−δ2κ2g + 2δ′κf − δκf ′ − δδ′g′

)
= 0[

δ2f
(
κ2 + 2

)
+ δ2κ (λf − δ′g) + δ′ (δ′f − δf ′)− δ3g′ (κ+ λ)

]
= 0

δ2g
(
κ2 + 2

)
+ δ2κλg + (κ+ λ) (δf ′ − δ′f) = 0.

From the system we have, initially, that κ = 0 or Φ is a relative minimal
surface. If κ = 0 we have δ′ = 0 or g′ = 0. In both cases the arising
systems of differential equations lead to a contradiction. If Φ is a relative
minimal surface and κ 6= 0 we arrive again to a contradiction.

So, we can state

Proposition 4.3. The support vector field Q of a right normalized skew
ruled surface Φ ⊂ E3 is
(a) tangential to the curved asymptotic lines of Φ if‌f

(i) Φ is right helicoid, the function f is a nonvanishing constant c1 and
the function g is a nonvanishing constant c2, or

(ii) Φ is orthoid of constant distribution parameter c3 and the conical
curvature and the function f are given by

κ = ±2g′ |c4 − g2|−1/2 , c4 ∈ R∗, g′ 6= 0, g2 6= c4
and f = ±c3 |c4 − g2|1/2

3The right helicoids are characterized by the conditions δ = c∈R∗ and κ = λ = 0.
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but
(b) it cannot be orthogonal to the curved asymptotic lines of Φ.

From (3.8) and (4.2), resp. (4.3), we deduce: Q is tangential or
orthogonal to the K̃-curves if‌f

2 (κf − δg′) v4 −
(
2δ2κg − δ′f + 2δf ′

)
v3 + δ2 [2f (κ− λ) + δ′g − 2δg′] v2

− δ2
[
2δ2g (κ− λ)− 3δ′f + 2δf ′

]
v − δ4δ′g = 0

(4.8)

or

δ′ (κf − δg′) v3 +
[
2δ2f (κλ+ 1)− δ2δ′κg + δ′2f − δδ′f ′ − 2δ3λg′

]
v2

− δ2
[
2δ2g (κλ+ 1) + δ′κf + 2λ (δf ′ − δ′f)− δδ′g′

]
v

+ δ2δ′
(
δ2κg − δ′f + δf ′

)
= 0,

(4.9)

respectively. From (4.8) we have that Q is tangential to the K̃-curves if‌f

κf − δg′ = 2δ2κg − δ′f + 2δf ′ = 2f (κ− λ) + δ′g − 2δg′ = 0,

2δ2g (κ− λ)− 3δ′f + 2δf ′ = δ′ = 0,

from which we take that Φ is relative minimal, δ = c1 ∈ R∗, λ = 0 and
f = ± |c2 − c21g2|

1/2, c2 ∈ R, c21g2 6= c2. From (4.9) we infer that Q is
orthogonal to the K̃-curves if‌f

δ′ (κf − δg′) = 2δ2f (κλ+ 1)− δ2δ′κg + δ′2f − δδ′f ′ − 2δ3λg′ = 0,

2δ2g (κλ+ 1) + δ′κf + 2λ (δf ′ − δ′f)− δδ′g′ = δ′
(
δ2κg − δ′f + δf ′

)
= 0,

that is, if‌f Φ is relative minimal or δ = c1 ∈ R∗. If Φ is relative minimal
we arrive at a contradiction.

If δ = c1 ∈ R∗, we obtain κλ + 1 = c1λg′

f
and f = ± |c2 − c21g2|

1/2,

c2 ∈ R, c21g2 6= c2, hence κ = ±c1g′ |c2 − c21g2|
−1/2 − λ−1, λ 6= 0. Thus,

we deduce

Proposition 4.4. The support vector field Q of a right normalized skew
ruled surface Φ ⊂ E3 is
(a) tangential to the K̃-curves of Φ if‌f Φ is an orthoid, relative minimal
surface of constant distribution parameter c1 and the function f is given
by

f = ±
∣∣c2 − c21g2∣∣1/2 , c2 ∈ R, c21g2 6= c2.
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(b) orthogonal to the K̃-curves of Φ if‌f Φ has constant distribution
parameter c1 and the conical curvature and the function f are given
by

κ = ±c1g′ |c2 − c21g2|
−1/2 − λ−1, c2 ∈ R, λ 6= 0, c21g

2 6= c2
and f = ± |c2 − c21g2|

1/2
.

The following table summarizes the results:

Q is . . . Type of the ruled surface Φ f, g

orthogonal to
the generators relative minimal f=±δ

∣∣c−g2∣∣1/2, c∈R, g2 6=c
tangential to
the u-curves orthoid, relative minimal f=±δ

∣∣c−g2∣∣1/2, c∈R, g2 6=c
orthogonal to
the u-curves

κ=±g′
∣∣c−g2∣∣−1/2−λ−1,

c∈R, λ 6=0, g2 6=c f=±δ
∣∣c−g2∣∣1/2

tangential to
the curved
asympt.
lines

right helicoid f=c1∈R∗, g=c2∈R∗
orthoid, δ=c3 ∈ R∗,
κ=±2g′

∣∣c4−g2∣∣−1/2,
c4∈R∗, g′ 6=0, g2 6=c4

f=±c3
∣∣c4−g2∣∣1/2

orthogonal to
the curved
asympt. lines

- -

tangential to
the K̃-curves

orthoid, relative minimal,
δ=c1 ∈ R∗

f=±
∣∣c2−c21g2∣∣1/2,

c2∈R, c21g2 6=c2

orthogonal to
the K̃-curves

δ=c1∈R∗,
κ=±c1g′

∣∣c2−c21g2∣∣−1/2−λ−1,
c2∈R, λ 6=0, c21g2 6=c2

f=±
∣∣c2−c21g2∣∣1/2
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