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Abstract: In 2015, De Koninck, Kátai and Phong introduced the concept
of sharp normal numbers and proved that almost all real numbers are sharp
normal numbers in the sense of the Lebesgue measure. They also proved that
although the Champernowne number is normal in base 2, it is not sharp in
that base. Here, we prove that various real numbers are sharp normal numbers,
while others are not.

1. Introduction and notation

Given an integer q ≥ 2, in a recent paper, De Koninck, Kátai and
Phong [4] introduced the concept of base q strong normal number, shortly
after called base-q sharp normal number as follows. First recall that the
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discrepancy of a set of N real numbers x1, . . . , xN is the quantity

(1.1) D(x1, . . . , xN) := sup
[a,b)⊆[0,1)

∣∣∣∣∣∣∣
1

N

N∑
ν=1

{xν}∈[a,b)

1− (b− a)

∣∣∣∣∣∣∣ .
Here and in what follows, {y} stands for the fractional part of the real
number y. Recall also that a sequence (xn)n≥1 of real numbers is said to
be uniformly distributed modulo 1 if for each subinterval [a, b) of [0, 1),

lim
N→∞

1

N
#{n ≤ N : {xn} ∈ [a, b)} = b− a.

We then say that a real number α is normal in base q (or q-normal) if
the sequence (αqn)n≥1 is uniformly distributed modulo 1.

This paves the way for the introduction of the notions of “sharp
distribution modulo 1” and of a “sharp normal number”.

For each positive integer N , let
(1.2)
M = MN = bδN

√
Nc, where δN → 0 and δN logN →∞ as N →∞.

We shall say that a sequence of real numbers (xn)n≥1 is sharply uniformly
distributed modulo 1 if

D(xN+1, . . . , xN+M)→ 0 as N →∞

for every choice of δN satisfying (1.2). Given a fixed integer q ≥ 2,
we then say that an irrational number α is a sharp normal number in
base q (or a sharp q-normal number) if the sequence (αqn)n≥1 is sharply
uniformly distributed modulo 1. In [4], it is shown that, given a fixed
base q ≥ 2, the Lebesgue measure of the set of all those real numbers
α ∈ [0, 1] which are not sharp q-normal is equal to 0.

In a more recent paper [5], we proved that, given a fixed integer
q ≥ 2 and letting τq(n) stand for the number of ways of writing n as a
product of q positive integers, then, if α is a sharp normal number in base
q, the sequence (ατq(n))n≥1 is uniformly distributed modulo 1. In that
same paper, other properties of sharp normal numbers were established.

Given an integer q ≥ 2 and a real number γ ∈ (0, 1), we will say
that a real number α is a γ-sharp normal number in base q if, by setting
xn = {αqn} for n = 1, 2, . . . and
(1.3)
M = MN = bδNNγc, where δN → 0 and δN logN →∞ as N →∞,
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we have that

D(xN+1, . . . , xN+M)→ 0 as N →∞

for every choice of δN satisfying (1.3).
Observe that in [4], it was shown that the binary Champernowne

number

θ := 0.1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 . . .

is not a sharp normal number. Similarly, one can prove that θ is not a
γ-sharp normal number for any γ ∈ (0, 1).

Here, we further explore the topic of γ-sharp normal numbers.

2. Main results

From here on, we let q stand for a fixed integer ≥ 2. Let
℘ = {p1, p2, . . .} stand for the set of all primes. Given a positive
integer n, we let n stand for the concatenation of the base q digits of
the number n.

In 1946, Copeland and Erdős [2] showed that the now called Copeland-
Erdős number

θ := 0.p1 p2 p3 . . .

is q-normal. Here, we will prove the following.

Theorem 2.1. Given any γ ∈ (0, 1), the number θ is not a binary
γ-sharp normal number.

In the same 1946 paper, Copeland and Erdős conjectured that if
f ∈ Z[x] is a polynomial of positive degree such that f(x) > 0 for x > 0,
then the number β = 0.f(1) f(2) f(3) . . . is a normal number in base 10.
This was proved to be true in 1952 by Davenport and Erdős [3]. Here we
prove the following.

Theorem 2.2. Given a positive integer r, the real number

β = 0.1r 2r 3r . . .

is not a binary sharp normal number.
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Fix an integer q ≥ 2. Given an integer n ≥ 2, let p(n) stand
for its smallest prime factor and write p(n) for the concatenation of
the digits of p(n) in base q. In 2014, we showed [6] that the number
η = 0.p(2) p(3) p(4) . . . is a q-normal number. Here, we prove the
following.

Theorem 2.3. Given an arbitrary real number γ ∈ (0, 1), the real
number

η = 0.p(2) p(3) p(4) . . .

is a γ-sharp normal number in base q.

Fix an integer q ≥ 2. Let ℘0, ℘1, . . . , ℘q−1,R be disjoint sets of
primes such that

℘ = ℘0 ∪ ℘1 ∪ · · · ∪ ℘q−1 ∪R

and such that #R <∞. Assume also that

max
0≤i<j≤q−1

max
x

log5 x
≤y≤x

∣∣∣∣π([x, x+ y] ∩ ℘i)
π([x, x+ y] ∩ ℘j)

− 1

∣∣∣∣→ 0 as x→∞.

More over let Λ stand for the empty word and for each p ∈ ℘, let

H(p) :=

{
` if p ∈ ℘`,
Λ if p ∈ R.

Given an integer n ≥ 2 written as n = qa1
1 · · · qarr , where q1 < · · · < qr are

primes and each ai ∈ N, let

S(n) := H(q1) . . . H(qr).

Further set S(1) = 1. In 2011, we showed [7] that the number
0.Concat(S(n) : n ∈ N) is a q-normal number. Here, we prove the
following.

Theorem 2.4. Given an arbitrary real number γ ∈ (0, 1), the real
number

0.S(1)S(2)S(3) . . .

is a γ-sharp normal number in base q.

We also have the following.
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Theorem 2.5. Fix an integer q ≥ 2. Given any pair of prime numbers
u < v, let ε(u, v) stand for the unique integer ` ∈ {0, 1, . . . , q − 1} such
that

`

q
≤ log u

log v
<
`+ 1

q
.

For each positive integer n = qa1
1 · · · qarr , let

ξ(n) =

{
ε(q1, q2) ε(q2, q3) . . . ε(qr−1, qr) if ω(n) ≥ 2,
Λ if ω(n) ≤ 1.

Then, given any real number γ ∈ (0, 1), the number

0.Concat(ξ(n) : n ∈ N)

is a γ-sharp normal number in base q.

Let P be a set of primes and set πP(x) := #{p ≤ x : p ∈ P}.
Moreover, let N = {n1, n2, . . .} be the semi-group generated by P . Let
F (x) ∈ Z[x] be a monic polynomial of positive degree t. Assume that
there exists a positive constant τ such that

lim
x→∞

πP(x)

li(x)
= τ,

where li(x) :=

∫ x

2

dt

log t
. Fix an integer q ≥ 2. Given a positive integer n,

let n stand for the concatenation of the digits of n in base q and consider
the real number

η0 = 0.F (n1)F (n2)F (n3) . . .

It was proved by German and Kátai [8] that η0 is a q-normal number.
Their proof uses essentially the same method as the one used in the
paper of Bassily and Kátai [1], along with other ideas of E. Wirsing,
H. Davenport and L.K. Hua. Using these ideas, one could prove the
following.

Theorem 2.6. The q-normal number η0 is not sharp.
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3. Proof of Theorem 2.1

First observe that it has been proved by Montgomery [9] that, given
any small ε > 0,

(3.1) π(x+y)−π(x) = (1 +o(1))
y

log x
uniformly for x

7
12

+ε ≤ y ≤ x.

Let t ≥ 2 be an integer sufficiently large so that γ ≤ 1− 1

2t
. Moreover,

for each integer k ≥ 1, let xk = 22k and yk = x
1−1/2t

k = 22k−2k−t . Then, let
q1 < q2 < · · · < qR be all the primes located in the interval (xk, xk + yk],
where clearly R = R(k). For each j ∈ {1, . . . , R}, let aj be defined
implicitly by qj = xk + aj. Then, aj ≤ yk and in light of (3.1), we have

R = π(xk + yk)− π(xk) = (1 + o(1))yk/ log xk (k →∞).

Given an integer n ≥ 1, let α(n) stand for the sum of its binary
digits. Adopting the argument of Erdős and Copeland used in [2], we
can say that for every arbitrarily small δ > 0, there exists a constant
κ = κ(δ) > 0 such that

#

{
m ≤ yk : α(m) > (1 + δ)2k−1

(
1− t

2

)}
< y1−κ

k ,

provided k is sufficiently large. It follows from this observation that

T :=
R∑
j=1

α(qj) = R +
R∑
j=1

α(aj)

≤ R + (1 + δ)2k−1

(
1− t

2

)
R + 2ky1−κ

k

≤ (1 + 2δ)2k−1

(
1− t

2

)
R,(3.2)

provided k is large enough.
Letting λ(n) stand for the number of binary digits of n and

observing that λ(qj) = 2k + 1 for j = 1, . . . , R, it follows from (3.2)
that

(3.3) T <

(
1

2
− ε
) R∑

j=1

λ(qj).
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However, if θ were to be a binary γ-sharp normal number, we would need
to have

T∑R
j=1 λ(qj)

→ 1

2
(k →∞),

which clearly contradicts (3.3). We may therefore conclude that θ is not
a binary γ-sharp normal number.

4. Proof of Theorem 2.2

Given an integer n ∈ [2k, 2k+1), write its binary expansion as
n =

∑k
ν=0 εν(n)2ν . In [1], the following result was proved.

Lemma 4.1. Let N =

⌊
log x

log 2

⌋
and let F (x) ∈ Z[x] be a polynomial of

positive degree r such that F (n) > 0 for n ≥ 1. If

N1/3 ≤ ` ≤ rN −N1/3,

then,
1

x
#{n ≤ x : ε`(F (n)) = 1} =

1

2
+O

(
1

logA x

)
,

where A is some positive constant which may depend on the particular
polynomial F .

In order to prove Theorem 2.2, we use Lemma 4.1 with F (n) = nr.
Let M = Mk := 2k and let

(4.1) f(m) = (4M2 +m)r = (2M)2r + g(m),

where

g(m) =
r−1∑
j=0

(
r

j

)
(2M)2jmr−j.

Recalling that α(n) stands for the sum of the binary digits of n, whereas
λ(n) stands for the number of binary digits of n, our goal will be to

estimate AM :=
M∑
m=1

α(f(m)) and to compare it with LM :=
M∑
m=1

λ(f(m)).

Now, let

I0 = [0, 2k], I1 = [2k + 1, 4k], . . . , Ir−1 = [2(r − 1)k + 1, 2rk].
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Given any I ⊆ N∪{0}, we shall be using the function αI(n) :=
∑

ν∈I εν(n).
It follows from (4.1) that

α(f(m)) = 1 + α(g(m)) = 1 +
r−1∑
j=0

αIj(g(m)).

With M fixed, consider the expression

Kj :=
M∑
m=1

αIj(g(m)) (j = 0, 1, . . . , r − 1).

Observing that αI0(g(m)) = αI0(mr) and choosing A = 2/3 in Lemma
4.1, we get that

K0 = kM +O(k1/3M).

Similarly, we obtain that

(4.2) K1 =
M∑
m=1

αI1

(
mr +

(
r

1

)
(2M)2mr−1

)
= kM +O(k1/3M)

and more generally that

(4.3) Kj = KM +O(k1/3M) (j = 2, . . . , r − 2).

We also get that

(4.4) αIr−1(g(m)) = αIr−1

((
r

r − 1

)
2(k+1)2(r−1)m

)
= α[0,k](m),

implying that

(4.5) Kr−1 =
k

2
M +O(k1/3M).

Therefore, gathering (4.2), (4.3), (4.4) and (4.5), we obtain that

AM = M + (r − 1)kM +
k

2
M +O(k1/3M) =

(
r − 1

2

)
kM +O(k1/3M).

Since λ(f(m)) = 2(k + 1)r + 1 for m = 1, . . . ,M , it follows that

LM =
M∑
m=1

λ(f(m)) = (2(k + 1)r + 1)M.
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Combining these last two relations, we find that

(4.6) lim sup
M→∞

AM
LM

=
1

2
− 1

2r
.

However, if β were to be a binary sharp normal number, we would need
to have

lim sup
M→∞

AM
LM

=
1

2
,

which is clearly in contradiction with (4.6). We may therefore conclude
that β is not a binary sharp binary normal number.

5. Proof of Theorem 2.3

Given large numbers x and y = y(x), we set

ηx := p(2) p(3) p(4) . . . p(bxc),
µ = µx,y := p(bxc+ 1) p(bxc+ 2) . . . p(bxc+ byc).

In [6], we proved that there exists an absolute constant c > 0 such that

(5.1) λ(ηx) = (1 + o(1))cx log log x (x→∞).

Pick an arbitrary positive number δ < 1, let y = y(x) = xδ and
consider the interval Jx = [x, x+y]. Using standard sieve methods, given
a fixed small number ε > 0, one can prove that, for any prime Q ≤ xε,
for some absolute constants C1 > 0 and C2 > 0,

(5.2)
∑
n∈Jx
p(n)=Q

1 ≤ C1
y

Q

∏
π<Q

(
1− 1

π

)
≤ C2

y

Q logQ

and that, for some absolute constant C3 > 0,

(5.3) #{n ∈ Jx : p(n) > xε} ≤ C3
y

log x
.

In light of (5.1), it is easily seen that, for some absolute constant
c1 > 0,

(5.4) λ(µx,y) = (1 + o(1))c1y log log x (x→∞).
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Let Aq := {0, 1, . . . , q−1}. Moreover, letK be an arbitrary positive
integer and let ΥK be the set of the q-ary words of length K. Here, by a
q-ary word of length K, we mean a block of K base q digits. Choose an
arbitrary β ∈ ΥK . Given a word ξ whose digits belong to Aq, let σ(ξ, β)
be the number of times that β appears as a subword of the word ξ. It is
clear that

σ(µ, β) =

bxc+byc∑
n=bxc+1

σ(p(n), β) +O(y K)

and therefore that, if β1, β2 ∈ ΥK with β1 6= β2, then

(5.5) |σ(µ, β1)−σ(µ, β2)| ≤
bxc+byc∑
n=bxc+1

∣∣∣σ(p(n), β1)− σ(p(n), β2)
∣∣∣+O(y K).

Clearly, the theorem will be proved if we can show that

(5.6) max
β1,β2∈ΥK
β1 6=β2

|σ(µ, β1)− σ(µ, β2)|
λ(µ)

→ 0 (x→∞).

Indeed, if (5.6) holds, then, given any β ∈ ΥK ,

max
β∈ΥK

1

λ(µ)

∣∣∣∣σ(µ, β)− λ(µ)

qK

∣∣∣∣→ 0 (x→∞),

thereby implying that µ is a q-normal sequence, as requested.

Arguing as Copeland and Erdős did in their paper [2], we have that,
given a fixed ε1 > 0,
(5.7)

#

{
Q ∈ ℘ ∩ [U, 2U ] : max

β1,β2∈ΥK
β1 6=β2

|σ(Q, β1)− σ(Q, β2)|
λ(Q)

> ε1

}
≤ c2U

1−κ,

where κ and c2 are positive constants depending on ε1 and K.
Let us now say that Q is a bad prime if

max
β1,β2∈ΥK
β1 6=β2

|σ(Q, β1)− σ(Q, β2)|
λ(Q)

> ε1.
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Now, observe that, for each β ∈ ΥK ,
bxc+byc∑
n=bxc+1

σ(p(n), β) =
∑
Q<xε

σ(Q, β) ·#{n ∈ Jx : p(n) = Q}

+O (#{n ∈ Jx : p(n) > xε} · log x) ,

which in light of (5.3) can be written as
bxc+byc∑
n=bxc+1

σ(p(n), β) =
∑
Q<xε

σ(Q, β) ·#{n ∈ Jx : p(n) = Q}+O(y).

It follows from this last estimate that

S :=

bxc+byc∑
n=bxc+1

∣∣∣σ(p(n), β1)− σ(p(n), β2)
∣∣∣

≤ O(y) + ε1

∑
Q<xε

λ(Q) ·#{n ∈ Jx : p(n) = Q}+B(x),(5.8)

where B(x) stands for the contribution of the bad primes.
Now, since, in light of (5.7), the number of bad primesQ ∈ [2u, 2u+1]

is no larger than c2 · (2u)1−κ, it follows, using (5.2), that there exists a
positive constant c3 such that

B(x) ≤ c3

∑
Q<xε

Q bad primes

λ(Q)
y

Q logQ
≤ c3y

∑
Q<xε

Q bad primes

1

Q

≤ c3y
∑

2u≤xε

1

2u
#{Q ∈ [2u, 2u+1] : Q is a bad prime}

≤ c3c2y
∑

2u≤xε

1

2u
2u(1−κ) = c3c2y

∑
2u≤xε

1

2uκ
≤ c3c2y

∞∑
u=1

1

2uκ
< c4y(5.9)

for some positive constant c4.
Substituting (5.9) in (5.8) and recalling (5.4), it follows from (5.5)

that

max
β1,β2∈ΥK
β1 6=β2

|σ(µ, β1)− σ(µ, β2)|
λ(µ)

≤ O(y) + ε1λ(µ) +O(y)

λ(µ)

≤ ε1 + o(1) (x→∞),

which implies (5.6), thereby completing the proof of the theorem.
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6. Proofs of Theorems 2.4, 2.5 and 2.6

The proofs of Theorems 2.4, 2.5 and 2.6 are similar to that of
Theorem 2.3 and we will therefore omit them.
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