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Abstract: Let A ≤ Aut(G) where G is a finite group and let MA(G) be the
near-ring of maps from G to itself that fix 0 and commute with A. We investi-
gate the multiplicative structure of the centre Z(MA(G)) and the consequences
if Z(MA(G)) is a subnear-ring of MA(G).

1. Introduction

In line with the terminology of groups and rings, the set of elements
of a near-ring N that commute (multiplicatively) with all elements of N
is called the centre ofN , denoted here by Z(N). However, in a right near-
ring (as the near-rings considered here are), the lack of a left distributive
law means that the centre fails, in general, to be additively closed. Thus,
in addition to identifying the elements and multiplicative structure of the
centre, the problem arises of characterizing those situations in which the
centre is, in fact, a subnear-ring.
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These questions have been studied for several important classes of
near-rings (including function near-rings) in [1], [3] and [5] but relatively
few of the results apply specifically to centralizer near-rings. Here, our
focus is exclusively on the centralizer near-ringMA(G), where G is a non-
trivial finite group (written additively but not necessarily abelian) and
A is a group of automorphisms of G. Thus, MA(G) consists of all maps
f : G→ G such that f(0) = 0 and αf = fα for all α ∈ A, with addition
defined by the group operation in G and multiplication by composition.

We describe the multiplicative structure of Z(MA(G)) in the con-
text of a general direct sum decomposition ofMA(G) into indecomposable
ideals (Theorem 2.4). (It seems unlikely that this decomposition has not
been described elsewhere but the author is unaware of an explicit ref-
erence.) From this decomposition, we conclude that the non-zero ele-
ments in each corresponding summand of Z(MA(G)) form a multiplica-
tive group, isomorphic to a subdirect product of certain abelian sections
of A.

A consequence is that the obvious containment Z(A) ∪ {0} ⊆
Z(MA(G)) is an equality if A has a regular orbit in G (Theorem 3.1). In
particular, by a result of B. B. Hargraves, this applies if A is nilpotent of
order relatively prime to |G| and Zp o Zp-free for p = 2 and all Mersenne
primes (Theorem 3.3).

For arbitrary A but with the added assumption that Z(MA(G)) is
a subnear-ring, we show that Z(MA(G)) is a direct sum of fields and G is
a union of corresponding vector spaces (Theorem 4.2). A full characteri-
zation of this phenomenon is obtained in the case that A is nilpotent and
Zp o Zp-free as above but not necessarily of order prime to G (Theorem
5.2).

We conclude by examining some known examples of coprime nilpo-
tent actions without regular orbits, in some of which Z(MA(G)) is strictly
larger than Z(A) ∪ {0}.

It is assumed throughout that |G| > 1 (so 0 and 1 are distinct
elements of MA(G)).

Notational remark. Let G# = G\{0} and if x ∈ G, let CA(x) =
{α ∈ A : α(x) = x}, the centralizer of x in A. More generally, if S ⊆ G,
CA(S) = {α ∈ A : α(s) = s ∀x ∈ S}. (This group theoretic terminology
derives from the fact that within the semidirect product GoA, the action
of A on G is conjugation and so CA(x) is the set of elements of A that
commute with or centralize x. CA(x) is also often called the stabilizer of
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x in A.) Similarly, if B ⊆ A, we define CG(B) = {x ∈ G : β(x) = x ∀β ∈
B}.

Because it arises so frequently, the double stabilizer CG(CA(x)) is
denoted here by Gx. Also, Ax will denote the automizerNA(Gx)/CA(Gx),
a section of A identified with a subgroup of Aut(Gx). If x ∈ G, A(x)
denotes the orbit of A containing x, namely {α(x) : α ∈ A}. More
generally, if X ⊆ G, A(X) = {α(x) : α ∈ A, x ∈ X}.

The author thanks G. Alan Cannon for a correspondence that drew
these problems to his attention.

2. A decomposition of MA(G)

Lemma 2.1. If A ≤ Aut(G) and x ∈ G#, then
(a) Gx = {f(x) : f ∈MA(G)} (Betsch’s Lemma).
(b) CA(x) = CA(Gx).

Proof. If f ∈MA(G) then CA(x) ≤ CA(f(x)) so f(x) ∈ Gf(x) ≤ Gx. But
if y ∈ Gx, then CA(x) ≤ CA(y) and so there exists a function f : G→ G
such that f(α(x)) = α(y) if α ∈ A and f(u) = 0 if u /∈ A(x). Moreover,
f commutes with A and so f ∈MA(G). This proves (a).

For (b), CA(Gx) ≤ CA(x) since x ∈ Gx. But suppose α ∈ CA(x).
If y ∈ Gx then by (a), f(x) = y for some f ∈ MA(G) and so, since A
commutes with f , α ∈ CA(y). Therefore, CA(x) ≤ CA(Gx), as required.

♦

We first consider the action of Z(MA(G)) on double stabilizers.
Clearly, Z(A) ⊆ Z(MA(G))#. The gist of the next result is that actually,
the whole of Z(MA(G))# is, in a sense, patched together from sections
of A.

Proposition 2.2. Let x ∈ G#. If z ∈ Z(MA(G)) and z
∣∣
Gx
6= 0
∣∣
Gx

then
z
∣∣
Gx

= αz
∣∣
Gx

for some αz ∈ NA(Gx). Moreover, [β, α−1
z ] ∈ CA(Gx∩Gβ(x))

for all β ∈ A and in particular, ᾱz = αzCA(Gz) ∈
⋂
y∈Gx

NZ(Ax)(Gy).

Proof. Let x ∈ G# and z ∈ Z(MA(G)). We claim that if z(x) 6= 0 then
z(x) ∈ A(x). For if x and z(x) lie in distinct A-orbits, there exists an
f ∈MA(G) such that f(x) = x and f(z(x)) = 0 and so z(x) = z(f(x)) =
f(z(x)) = 0.
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If z(x) = 0, set αz = 0 and otherwise, let αz ∈ A such that z(x) =
αz(x). We claim that z(u) = αz(u) for all u ∈ Gx. For if u ∈ Gx, u = f(x)
for some f ∈ MA(G) and so z(u) = z(f(x)) = f(z(x)) = f(αz(x)) =
αz(f(x)) = αz(u). In particular, either z

∣∣
Gx

= 0 or z
∣∣
Gx

= αz
∣∣
Gx

for
αz ∈ NA(Gx).

Assume that 0 6= z
∣∣
Gx

= αz
∣∣
Gx

and β ∈ A. If y ∈ Gx ∩ Gβ(x) then
β−1(y) ∈ Gx and so αz(β−1(y)) = z(β−1(y)) = β−1(z(y)) = β−1(αz(y)).
Therefore, [β, α−1

z ](y) = βα−1
z β−1αz(y) = y so [β, α−1

z ] ∈ CA(y). Thus,
[β, α−1

z ] ∈ CA(Gx ∩ Gβ(x)). In particular, if β ∈ NA(Gx), [β, α−1
z ] ∈

CA(Gx) so ᾱz = αzCA(Gx) ∈ Z(NA(Gx)/CA(Gx)) = Z(Ax). For all
y ∈ Gx, z(Gy) ⊆ Gy and so αz ∈ NA(Gy) and ᾱz ∈ NZ(Ax)(Gy). Thus,
ᾱz ∈

⋂
y∈Gx

NZ(Ax)(Gy). ♦

To set up the statement of the main result of this section, we in-
troduce some ad hoc definitions and notation:

If x, y ∈ G#, we write x a y if A(G#
x ) ∩ A(G#

y ) 6= ∅.
Let ∼ be the transitive closure of the symmetric relation a.
Let Ω = G#/ ∼, using [x] to denote the ∼ equivalence class con-

taining x.

Proposition 2.3. Let z ∈ Z(MA(G)). If x ∈ G# and z(x) 6= 0, then
z(y) 6= 0 for all y ∈ [x] and z induces a permutation on [x].

Proof. Proposition 2.2 implies that, for any double stabilizer Gu, if the
restriction z

∣∣
G#

u
is not the zero map then z induces an automorphism on

Gu (and thus, it maps Gu to itself with no non-trivial zeros). It follows
that either z

∣∣
A(G#

u )
is the zero map or it has no zeros and moreover,

the same is true for z
∣∣
A(G#

x )∪A(G#
y )

provided that x a y. By an obvious
induction, we see that if z(x) 6= 0 then z has no zeros in [x].

Note that for any y ∈ [x], G#
y ⊆ [x]. For if u ∈ G#

y , Gu ≤ Gy so
certainly y a u. Since x ∼ y, x ∼ u and so u ∈ [x] as claimed. Thus, if
y ∈ [x], z(y) ∈ z(Gy)

# ⊆ G#
y ⊆ [x] so z([x]) ⊆ [x].

To show that z induces a permutation on [x], it suffices to show
that z

∣∣
[x]

is injective. Suppose u, v ∈ [x] with z(u) = z(v) = w. By
Proposition 2.2, z induces an automorphism on each of Gu, Gv and Gw.
In particular, z(w′) = w for some w′ ∈ Gw ≤ Gu ∩Gv. Thus, u = w′ = v
by the injectivity of z on Gu and Gv. ♦
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Recall that a near-ring is said to be indecomposable if it has no
non-trivial near-ring direct summands (or equivalently, if it is not the
direct sum of non-trivial ideals). By a minimal stabilizer, we shall mean
a one-element stabilizer CA(x) that is minimal (with respect to inclusion)
in the set of all such stabilizers.

Let X be a set of elements of G whose stabilizers are a complete
set of representatives of the orbits of A on the collection of minimal
stabilizers.

Theorem 2.4. Suppose that G is a finite group with A ≤ Aut(G) and
let X , ∼ and Ω be as described above. For any [x] ∈ Ω, let MA[x] =
{f ∈MA(G) : f(y) = 0 for all y /∈ [x]}. Then

(a) Each MA[x] is an indecomposable near-ring and an ideal of
MA(G).

(b) MA(G) =
⊕

[x]∈Ω MA[x].
(c) Z(MA(G)) =

⊕
[x]∈Ω Z(MA[x]) (as a multiplicative monoid).

(d) For each x ∈ G#, Z(MA[x])# is a multiplicative abelian group,
isomorphic to a subdirect product of the groups

⋂
y∈Gu

NZ(Au)(Gy), u ∈
X ∩ [x].

Proof. It is routine to check that theMA[x]’s are ideals and thatMA[x]∩
(Σ[y] 6=[x]MA[y]) = {0} for all [x] ∈ Ω. If f ∈ MA(G) and [x] ∈ Ω then
f([x]) ⊆ [x] by Lemma 2.1 (a). Because each [x] is also A-invariant,
there exist functions f[x] ∈ MA[x] with f[x](u) = f(u) for all u ∈ [x].
Since f = Σ[x]∈Ωf[x], MA(G) =

⊕
[x]∈Ω MA[x]. This proves (b) and (c)

follows.
If z ∈MA[x]#, by Proposition 2.3, z

∣∣
[x]

is a permutation and hence,

for some n > 0, z
∣∣−1

[x]
= z

∣∣n
[x]
∈ Z(MA[x])#. Therefore, Z(MA[x])# is

a multiplicative group. If MA[x] had a non-trivial direct summand, the
projection of the multiplicative identity ofMA[x] on that summand would
yield a non-trivial idempotent in Z(MA[x]), contradicting the fact that
Z(MA[x])# is a multiplicative group. Thus, MA[x] is an indecomposable
near-ring.

If x ∈ G# then [x] =
⋃
u∈[x] G

#
u and because every stabilizer con-

tains a minimal stabilizer, [x] =
⋃
u∈X∩[x]

⋃
α∈AG

#
α(u) Let Z = Z(MA[x])#.

Because elements of A commute with Z(MA(G)), CZ(Gu) = CZ(Gα(u))
for all α ∈ A and so

⋂
u∈X∩[x] CZ(Gu) = CZ([x]) = 1Z . Therefore,

Z ∼= Z/
⋂
u∈X∩[x] CZ(Gu) is a subdirect product of the groups Z/CZ(Gu)
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where u ranges over X∩[x]. But by Proposition 2.2, if u ∈ X∩[x] the map
z 7→ z

∣∣
Gu

defines a group homomorphism Z →
⋂
y∈Gu

NZ(Au)(Gy) and
so Z/CZ(Gu) is isomorphic to a subgroup of

⋂
y∈Gu

NZ(Au)(Gy), proving
(d). ♦

Corollary 2.5. If A ≤ Aut(G) then the following conditions are equiv-
alent:

(a) MA(G) is indecomposable.
(b) [x] = G# for some (and hence, any) x ∈ G#.
(c) Z(MA(G))# is a multiplicative group.

Corollary 2.6. If A ≤ Aut(G) and CG(A) 6= {0} then Z(MA(G))# is a
multiplicative group.

Proof. {0} < CG(A) ≤ CG(CA(x)) = Gx for all x ∈ G and so x a y for
all x, y ∈ G#. Therefore, G# = [x]. ♦

For example, the previous corollary applies if A is a nilpotent group
of inner automorphisms of a non-trivial group G. For since G is non-
trivial, we may assume that A 6= 1. Identifying Inn(G) with the quotient
G/Z(G), A then corresponds to a non-trivial nilpotent subgroup H/Z(G)
acting on G by conjugation. But then H is itself nilpotent (since Z(G) ≤
Z(H)) and so 1 6= Z(H) ≤ CG(A).

Corollary 2.6 also applies if A is a p-group for some prime divisor
p of |G|. For in this case, let R be a Sylow p-subgroup of the natural
semidirect product G o A such that A ≤ R. If P = R ∩ G then {0} 6=
P ER and so by [8, Theorem 1.19], {0} 6= P ∩Z(R) ≤ CP (A) ≤ CG(A).
We note also that by statement (d) of Theorem 2.4, Z(MA(G))# is a
p-group in this case.

The following alternate description of [x] will be useful when we
consider the case that Z(MA(G)) is a subnear-ring of MA(G).

Proposition 2.7. For any x ∈ G#, let IZ(x) = {z ∈ Z(MA(G)) : z(x) =
0}. Then [x] = {y ∈ G# : IZ(y) = IZ(x)}.

Proof. Suppose y ∈ [x] so [x] = [y]. As in Proposition 2.3, z(x) = 0
if and only if z(y) = 0 and so IZ(x) = IZ(y). Suppose y ∈ G#\[x] so
[x] ∩ [y] = ∅. Define z ∈ Z(MA(G)) by setting z(u) = u if u ∈ [x] and
z(u) = 0 if u ∈ G\[x]. Then z ∈ IZ(y)\IZ(x) and so IZ(x) 6= IZ(y). ♦
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3. Regular orbits

By Proposition 2.2, elements of Z(MA(G)) induce Ax-endomor-
phisms (and in fact, Ax-automorphisms) on Gx for any x ∈ G. Before
stating the next result, we mention an abstract characterization of all
such elements.

An element f of a right near-ring N is said to be distributive if, for
all g, h ∈ N , f(g + h) = fg + fh. Such elements form a multiplicative
monoid containing Z(N), denoted by Nd. Clearly, MA(G)d contains the
set EndA(G) of A-endomorphisms of G. In fact, it is an easy consequence
of Lemma 2.1 (a) that MA(G)d consists precisely of those elements f ∈
MA(G) such that f

∣∣
Gx
∈ EndAx(Gx) for all x ∈ G.

An orbit A(x) is said to be regular if CA(x) = 1. By Lemma 2.1
(a), such an element x has the property that for every y ∈ G, there is an
f ∈MA(G) such that f(x) = y.

Theorem 3.1. Let G be a non-trivial finite group and let A be a sub-
group of Aut(G). If A has a regular orbit in G then MA(G) is indecom-
posable, Z(MA(G)) = Z(A) ∪ {0} and MA(G)d = EndA(G).

Proof. If CA(x) = 1, then Gx = G and Ax = A. By Proposition 2.2, if
z ∈ Z(MA(G))#, z = αz ∈ A where [α, α−1

z ] ∈ CA(G) = 1 for all α ∈ A.
Thus, z = αz ∈ Z(A). Since Z(A) ⊆ Z(MA(G))#, Z(MA(G))# = Z(A).
The indecomposability of MA(G) follows from Theorem 2.4 or Corollary
2.5. That MA(G)d = EndA(G) follows from the remarks above. ♦

Examples. (a) Of course, if A = 1, all orbits are regular. In
this case, Theorem 3.1 generalizes two simple observations concerning
M{1}(G) (usually denoted M0(G)), namely that its centre is {0, 1} [1,
Proposition 1.1] and the set of distributive elements is End(G) [10, Lemma
9.6].

(b) If MA(G) is semisimple then as described in [9], MA(G) is
a direct sum of centralizer near-rings of the form Nx = MAx(Gx) so
Z(MA(G)) is correspondingly, a direct sum of the Z(Nx)’s. For each x,
Ax is identified as a subgroup of Aut(Gx) with all non-trivial orbits of
Ax in Gx being regular (so the natural semidirect product Gx o Ax is
a Frobenius group). By Theorem 3.1, Z(Nx)

# = Z(Ax) and, because
the Sylow subgroups of a Frobenius complement are cyclic or generalized
quaternion (see e.g. [8, Corollary 6.17]), this group is cyclic.
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(c) If G is a vector space over a finite field F and A is the mul-
tiplicative group F# of non-zero elements of F acting on G via scalar
multiplication, all non-zero orbits are regular and so by Theorem 3.1,
Z(MA(G)) = A ∪ {0} = F . In particular, in this situation Z(MA(G))
is a subnear-ring of MA(G). As we shall see in Theorem 4.2, in a sense,
this represents the simplest instance of this phenomenon.

Of course, the question immediately raised by Theorem 3.1 is: For
which pairs (G,A) do regular orbits necessarily exist? For abelian co-
prime automorphism groups, they always exist, a fact that can be estab-
lished by a relatively elementary argument. (See [8, 3.4] for the case that
A is a p-group.) But for coprime actions of solvable or even nilpotent
groups, regular orbits need not exist and identifying conditions under
which they do can involve long and delicate represention theoretic argu-
ments.

Example. S. Dolfi has shown [4] that if A ≤ Aut(G) is solvable
with |A| and |G| coprime then, while a regular orbit for A need not exist
in G, the stabilizers of some pair of elements of G intersect trivially and
so a regular orbit does exist for the standard action of A on G⊕G. Thus,
for any finite group G and any solvable, coprime group A of automor-
phisms of G, MA(G ⊕ G) is indecomposable, Z(MA(G ⊕ G))# = Z(A)
and MA(G⊕G)d = EndA(G⊕G).

Extending an earlier result of T. R. Berger, the following orbit
theorem for nilpotent coprime automorphism groups was established by
B. B. Hargraves [7]. (A shorter proof appears in [6].) Recall that a group
X is said to be involved in a group Y ifX is isomorphic to a homomorphic
image of a subgroup of Y .

Theorem 3.2. Let G be a non-trivial finite group and let A be a sub-
group of Aut(G). If A ≤ Aut(G) is nilpotent and gcd(|A|, |G|) = 1 then
A has a regular orbit except possibly if the wreath product Zp o Zp is
involved in A for p = 2 or a Mersenne prime.

(This result is stated in [7] for the case that G is a faithful, irre-
ducible kA-module, where k is a field of characteristic not dividing |A|.
However, by the Hartley-Turull theorem [8, 3.31], forG an arbitrary finite
group, there is an abelian group G∗ admitting A such that the groups G
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and G∗ are isomorphic as A-sets. The existence of a regular orbit in G∗
(and hence, in G) follows from the module case by a standard argument.)

As an immediate consequence of Theorems 3.1 and 3.2, we have

Theorem 3.3. Let G be a non-trivial finite group and let A be a sub-
group of Aut(G).

Suppose that A ≤ Aut(G) is nilpotent with gcd(|A|, |G|) = 1 and
that the wreath product Zp o Zp is not involved in A for p = 2 or a
Mersenne prime. Then MA(G) is indecomposable, Z(MA(G)) = Z(A) ∪
{0} and MA(G)d = EndA(G).

The wreath product hypothesis may not be easy to verify directly
but because Zp oZp has nilpotence class p, it certainly holds if the Sylow
p-subgroup of A has class less than p for p = 2 and all Mersenne primes
dividing |A|.

4. Near-rings whose centres are subnear-rings

Not surprisingly, much more can be said about MA(G) if, to the
hypotheses of Theorem 2.4 is added the assumption that Z(MA(G)) is
additively closed. Most of the following lemma was noted in [3].

Lemma 4.1. Suppose that Z(MA(G)) is a subnear-ring ofMA(G). Then
(a) For any x ∈ G#, Gx is an elementary abelian p-group for some prime
p (so addition in MA(G) is commutative).
(b) One of the following three alternatives applies:

(i) G is a p-group of exponent p for some prime p
(ii) G is a Frobenius group with the Frobenius kernel a p-group of

exponent p and complement of order q for distinct primes p and q, or
(iii) G ∼= A5

Proof. Since the identity map 1 is in Z(MA(G)), the map k1 : g 7→ kg
is in Z(MA(G)) for any positive integer k. By Proposition 2.2, this
map induces on each double stabilizer Gx either the zero map or an
automorphism. Choosing k = 2 yields (in either case) that Gx is abelian.
The additive commutativity ofMA(G) follows since, if f, g ∈MA(G) and
x ∈ G, then f(x), g(x) ∈ Gx so (f + g)(x) = (g + f)(x). Choosing k = p
where p is a prime divisor of the exponent exp(Gx) of Gx yields that
p1
∣∣
Gx

= 0 so Gx has exponent p. Since G is the union of the double
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stabilizers, all non-zero elements of G have prime order and (b) follows,
as in [9, Theorem 3]. ♦

Remark. As observed in [3, Corollary 2.3], the commutativity of
addition follows, in fact, for any near-ring N with identity in which Z(N)
is a subnear-ring. Moreover, the set Nd of distributive elements is then
a subring.

The following may be regarded as a generalization of [9, Corollary
3].

Theorem 4.2. Let G be a non-trivial finite group with A ≤ Aut(G).
Assume that Z(MA(G)) is a subnear-ring of MA(G) and let MA(G) =⊕

[x]∈ΩMA[x] as described in Theorem 2.4. Then
(a) Each Z(MA[x]) is a field and for each y ∈ [x], Gy is a vector

space over Z(MA[x]).
(b) If x ∈ G#, the action of Z(MA[x])# on Gx is induced by a cyclic

subgroup of Z(Ax).
(c) Corresponding to the three possibilities for G listed in Lemma

4.1 (b), (i) all Z(MA[x])’s have the same characteristic p, (ii) all Z(MA[x])’s
are of characteristic p or of order q (with at least one of the latter oc-
curring) or (iii) G ∼= A5, A ∼= Aut(G) ∼= S5 and MA(G) = Z(MA(G)) ∼=
F2 ⊕ F3 ⊕ F5.

Proof. By Lemma 4.1 (a), addition in MA(G) is commutative and so, if
Z(MA(G)) is a subnear-ring, it is a commutative ring, as is each sum-
mand Z(MA[x]). But by Theorem 2.4 (d), Z(MA[x])# is a multiplicative
abelian group and so Z(MA[x]) is a field. If x ∈ G#, let y ∈ [x]. Then
IZ(y) = IZ(x) by Proposition 2.7 and so Z(MA[x]) acts faithfully on Gy.
Hence, Gy is a vector space over Z(MA[x]) and (a) is proved.

Let x ∈ G# and Z = Z(MA[x])#, a cyclic multiplicative group.
Because Z(MA[x]) is a subnear-ring of MA(G), z ∈ CZ(x) if and only if
z − 1 ∈ IZ(x). By Proposition 2.7, CZ(Gx) = CZ(x) = CZ([x]) = 1MA[x]

and so the map z 7→ z
∣∣
Gx

, Z → Z(Ax) is a monomorphism, proving (b).
In view of (a), (i) and (ii) of statement (c) are consequences of

the corresponding statements of Lemma 4.1 (b). In the remaining case
(iii), by [9, Corollary 3] it remains only to prove that A ∼= S5. The
following argument was communicated to the author by G. A. Cannon
[2]: If G = A5, Aut(G) ∼= S5 and G is a non-abelian simple group. In
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particular, G may be identified with its inner automorphism group. By
Lemma 4.1 (a), A has no regular orbit in G and so if x is any 5-cycle in
G then 1 6= CA(x) = A∩CS5(x) = A∩〈x〉, whence x ∈ A. Therefore, the
simplicity of G implies that G ≤ A. But by (b) of this theorem, Z(Ax)
also contains an element of order 4. Since the Sylow 2-subgroups of G
are isomorphic to Z2 × Z2, G 6= A and so A = S5. ♦

Corollary 4.3. ([3, Theorem 5.2]) Let G be a non-trivial finite group
and let A be a subgroup of Aut(G). If Z(MA(G)) is a subnear-ring of
MA(G), then for any x ∈ G#, 〈x〉\{0} ⊆ A(x). In particular, Z(Ax)
contains a cyclic subgroup of order |x| − 1.

Proof. Let K = Z(MA[x]) and p = char(K) = exp(Gx). K# is transitive
on Kx\{0} and if K0 is the prime subfield of K, Zp−1

∼= K#
0 ≤ K# and

K#
0 is transitive on K0x\{0} = 〈x〉\{0}. Theorem 4.2 (b) completes the

proof. ♦

Theorem 4.2 (or Corollary 4.3) yields a generalization of one di-
rection of [1, Proposition 1.1] (although, unfortunately, here without a
converse).

Corollary 4.4. Let G be a non-trivial finite group and let A be a sub-
group of Aut(G). Assume that |A| is odd. If Z(MA(G)) is a subnear-ring
of MA(G) then G is an elementary abelian 2-group.

5. Two characterizations

Next, we note two cases in which the conditions under which Z(MA(G))
is a subnear-ring of MA(G) are readily characterized. In each case, by
Theorem 4.2 (c), we need only consider groups satisfying (i) or (ii) of
Lemma 4.1 (b).

Theorem 5.1. Assume that A ≤ Inn(G), the group of inner auto-
morphisms. Then Z(MA(G)) is a subnear-ring of MA(G) if and only
if A = Inn(G) and

(i) G is an elementary abelian 2-group (of arbitrary rank) or
(ii) G is the semidirect product of an elementary abelian 3-group

P (of arbitrary rank) and a group Q of order 2 acting on P by inversion.
In case (i), Z(MA(G)) ∼= F2 and in case (ii), Z(MA(G)) ∼= F3 ⊕ F2.
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Proof. If G (and hence, A) has prime exponent p, Corollary 4.3 implies
that p = 2 and so G is an elementary abelian 2-group and A = 1.
By Theorem 3.1, Z(MA(G))# = 1 so Z(MA(G)) ∼= F2. (See also [1,
Proposition 1.1].)

Suppose that G = PQ is Frobenius with a Frobenius kernel P of
exponent p and complement Q = 〈y〉 ∼= Zq (so A may be regarded as a
subgroup of G). Since NG(Q) = CG(Q) = Q, Ay = 1 so by Corollary 4.3,
q = 2. By [8, Theorem 6.3], P is abelian and the element y conjugates
each element of P to its inverse. Thus, if x ∈ P#, Gx = P and since
CG(P ) = P , |Ax| = |A/A ∩ P | ≤ |G/P | = 2. Again by Corollary 4.3,
p = 3. By Lemma 4.1, each double stabilizer is abelian and so A has
no regular orbit in G. Therefore, since CG(Q) = Q, each conjugate of
Q is contained in A and because G is generated by all such conjugates,
A = G. In the notation of Theorem 2.4, [x] = P# and because all
elements of G\P are conjugate in G = A, [y] = G\P . By Theorem 4.2,
Z(MA[y])# ↪→ Z(Ay) = 1 so Z(MA[y]) ∼= F2. Similarly, Z(MA[x])# ↪→
Z(Ax) ∼= Z2 so Z(MA[x]) ∼= F3. Therefore, Z(MA(G)) = Z(MA[x]) ⊕
Z(MA[y]) ∼= F3 ⊕ F2. ♦

The second characterization concerns the case that A is nilpotent.
In view of Theorem 3.3, it would seem redundant to explicitly state it but
for the fact that, unlike the former theorem, this result does not require
the a priori assumption that |A| and |G| be relatively prime.

Theorem 5.2. Let A ≤ Aut(G) be nilpotent and assume A is Zp oZp-free
for p = 2 and all Mersenne primes. Then Z(MA(G)) is a subnear-ring of
MA(G) if and only if G is elementary abelian and 1 − α ∈ Z(A) for all
α ∈ Z(A)\{1}.

Proof. If G is elementary abelian and 1−α ∈ Z(A) for all α ∈ Z(A)\{1},
then K = Z(A)∪{0} is additively closed (and so is a field) and G is a K-
module. If p = exp(G) = char(K), gcd(|Z(A)|, p) = gcd(|K| − 1, p) = 1
and so, since A is nilpotent, gcd(|A|, p) = 1. By Theorems 3.2 and 3.1,
Z(MA(G)) = K, a subnear-ring of MA(G) as claimed.

Assume now that Z(MA(G)) is a subnear-ring of MA(G). Let P
be the Fitting subgroup of G. Thus, according to whether (i) or (ii) of
Lemma 4.1 (b) applies, P has exponent p for some prime p and either
P = G or |G : P | = q for some prime q 6= p. We shall prove that A acts
faithfully on P and p does not divide |A|, so Theorem 3.2 applies to the
action of A on P .
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We claim first that CA(P ) = 1. For this, we may assume that
Lemma 4.1 (b)(ii) applies so let Q = 〈y〉 be a Frobenius complement in
G. By Theorem 4.2 (a), all double stabilizers are abelian and so Gx ≤ P
for all x ∈ P# and Gy = Q. Then Z(A) ≤ NA(CA(y)) ≤ NA(Gy) =
NA(Q) so [G,CZ(A)(P )] = [QP,CZ(A)(P )] = [Q,CZ(A)(P )] ≤ Q. But
Q contains no non-trivial normal subgroup of G so [G,CZ(A)(P )] = 1,
whence CZ(A)(P ) = 1. But A is nilpotent so any non-trivial normal
subgroup of A has non-trivial intersection with Z(A). Because CA(P )E
A, it follows by [8, Theorem 1.19] that CA(P ) = 1 as claimed.

If x ∈ P#, (Z(A)+IZ(x))/IZ(x) ≤ (Z(MA(G))/IZ(x))# ∼= Z(M [x])#.
But the map αCZ(A)(x) 7→ α + IZ(x) from Z(A)/CZ(A)(x) to (Z(A) +
IZ(x))/IZ(x) is well-defined and a multiplicative isomorphism. There-
fore, Z(A)/CZ(A)(x) is isomorphic to a subgroup of Z(MA[x])#.

By Theorem 4.2 (a), Z(MA[x]) is a field of characteristic p and so
gcd(|Z(A)/CZ(A)(x)|, p) = 1.

Because, as proved above,
⋂
x∈P# CZ(A)(x) = CA(P ) = 1, Z(A) is

isomorphic to a subgroup of the direct product
∏

x∈P#(Z(A)/CZ(A)(x)).
In particular, gcd(|Z(A)|, p) = 1 and so, sinceA is nilpotent, gcd(|A|, p) =
1.

We can now apply Theorem 3.2 to conclude that A has a regular
orbit in P (and hence, in G). By Theorem 3.1, Z(A)∪ {0} is a subnear-
ring and so, if 1 6= α ∈ Z(A) then 1− α ∈ Z(MA(G))# = Z(A). ♦

6. An example

One may reasonably ask if more direct proofs of Theorems 3.3 and
5.2 exist that sidestep the issue of regular orbits (and perhaps allow the
wreath product hypotheses to be dropped or weakened). A natural first
response to this question is to look at the examples that have been used
(in [6] and elsewhere) to illustrate the necessity of these hypotheses in
Theorem 3.2.

(Note: In what follows, G is a vector space over Fqr and if S ⊆ G#,
〈S〉 denotes the Fqr -subspace of G spanned by S, not simply the additive
subgroup that it generates.)

Example. Suppose p and q are primes with qr − ps = 1 (so the
multiplicative group F#

qr
∼= Zps). The solutions of this equation are well-

known (e.g. [11, Lemma 19.3]) and in all cases, p is either 2 or a Mersenne
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prime.
Let G = F p

qr with standard Fqr -basis B = {e1, e2, . . . , ep}. Let D
be the multiplicative group of invertible diagonal (with respect to B)
Fqr -linear transformations of G so D ∼= Z p

ps . Define σ ∈ Aut(G) by
σ(ei) = ei+1 for 1 ≤ i < p and σ(ep) = e1 and let A = Do 〈σ〉 ∼= Zps oZp
(so Z(A) ∼= Zps).

Let X be the set of vectors in G# that have at least one zero
component and let u = (0, 1, 1, . . . , 1) ∈ X. X is A-invariant since the
action of A preserves the number of zero components of a vector. Also,
CA(u) = {diag(a, 1, 1, . . . , 1) : a ∈ F#

qr} and so Gu = 〈e2, e3, . . . , ep〉. In
particular, G#

u ⊆ X. If x is any element of G whose first component
is zero, then CA(u) ≤ CA(x) and so G#

x ≤ G#
u ⊆ X. Since any vector

with a zero component is 〈σ〉-conjugate to a vector with first component
zero, it follows that G#

x ⊆ X (and hence, A(G#
x ) ⊆ X) for every x ∈ X,

that A has no regular orbit in X and also, (recalling the notation used
to formulate Theorem 2.4) that X ⊆ [u].

Let v = (1, 1, 1, . . . , 1) Note that G#\X = D(v) = A(v). Also,
CA(v) = 〈σ〉 and so Gv = CG(σ) = 〈v〉. (Thus, A also has no regular
orbit outside X and so, no regular orbit anywhere in G.)

Since G#\X = A(v) = A(Gv), A(y) = G#\X for all y ∈ G#\X.
Since A(x) ⊆ X for all x ∈ X, it follows that if x ∈ X and y ∈ G#\X
then A(G#

x ) ∩ A(G#
y ) = ∅ so x 6a y. From the definition of ∼, it

follows that [u] ∩ [v] = ∅. Therefore, X = [u] and G#\[u] = [v]
and so Theorem 2.4 now yields that MA(G) = MA[u] ⊕ MA[v] and
Z(MA(G)) = Z(MA[u])⊕ Z(MA[v]).

Suppose that f ∈ MA(G). CA(e1) = {diag(1, d2, d3, . . . , dp) : dj ∈
F#
q } and so Ge1 = 〈e1〉 and similarly, Gei

= 〈ei〉 for all i. Therefore, for
all i, f(ei) ∈ 〈ei〉 and so f(ei) = λiei for some λi ∈ Fqr . But λi+1ei+1 =
f(ei+1) = f(σ(ei)) = σ(f(ei)) = σ(λiei) = λiσ(ei) = λiei+1 and so
λi+1 = λi for 1 ≤ i ≤ p − 1. Thus, there is a λ ∈ Fqr such that
f(ei) = λei for all i.

Let z ∈ Z(MA(G)). By Proposition 2.2, z
∣∣
Gu

is an endomorphism
of Gu. Since Gu = 〈e2, e3, . . . , ep〉, the previous paragraph implies that
there is a λ ∈ Fqr such that z(x) = λx for all x ∈ Gu. Since every element
of [u] is 〈σ〉-conjugate to an element of Gu, z(x) = λx for all x ∈ [u] and
so Z(MA[u]) ∼= Fqr . Similarly, since Gv = 〈v〉, if f ∈ MA[v], there is a
µ ∈ Fqr such that f(v) = µv and since [v] = A(v), f(x) = µx for all
x ∈ [v]. Thus, MA[v] = Z(MA[v]) ∼= Fqr .
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Therefore, Z(MA(G)) ∼= Fqr ⊕ Fqr and so, as with Theorem 3.2,
the wreath product constraint (or something effectively similar) cannot
be omitted from Theorem 3.3. However, this example is consistent with
Theorem 5.2 since Z(A)∪ {0} ∼= Fqr so both Z(A)∪ {0} and Z(MA(G))
are subnear-rings.

We mention without details one further example from [6]. Let q be
a Mersenne prime, G be the natural GL2(q)-module and A be a Sylow
2-subgroup of GL2(q). A is semidihedral (so it involves Z2 o Z2) and
indeed, there is no regular orbit. However,MA(G) is indecomposable and
Z(MA(G)) = Z(A)∪{0} = {0, I,−I}. Thus, while it serves to show that
the converse of Theorem 3.1 is false (even if A is nilpotent), this example
too fails to clarify whether or not the wreath product hypothesis is really
necessary in Theorem 5.2.
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