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1. Introduction

For a continuum X and for a positive integer n we denote by Cn(X)
the hyperspace of all nonempty closed subsets ofX with at most n compo-
nents, and by F1(X) the hyperspace of singletons. Denote by PHSn(X)
the quotient space Cn(X)/F1(X) [6]. Given a map f : X → Y be-
tween continua X and Y , we let Cn(f) : Cn(X)→ Cn(Y ) and PHSn(f) :
PHSn(X)→ PHSn(Y ) denote the corresponding induced maps.

Our purpose here is to study the induced maps PHSn(f) for certain
classes of maps f .

The paper consists of eight sections. After the Introduction and
Definitions, the third section is devoted to general properties of induced
maps the main result of this section (Theorem 3.6) establishes that given
a map f , the induced maps Cn(f) and PHSn(f) are surjective if f is
weakly confluent. In the fourth, we work with atomic maps and homeo-
morphisms. The fifth section is devoted to monotone maps. In the sixth
section we work with refinable and monotonically refinable maps. The
seventh section is devoted to light maps. In the eighth section we present
an example of an open map f such that neither Cn(f) nor PHSn(f) is
open. We pose some questions.

Some of our arguments are similar to some that appear in the lit-
erature, we include them here for the convenience of the reader.

2. Definitions

If (Z, d) is a metric space, then given A ⊂ Z and ε > 0, the open
ball about A of radius ε is denoted by Vd

ε (A).
A continuum is a nonempty compact, connected metric space. A

subcontinuum is a continuum contained in a space Z. A subcontinuum
K of a continuum X is terminal provided that for each subcontinuum L
of X such that L ∩K 6= ∅, we have that either L ⊂ K or K ⊂ L.

A map means a continuous function. A surjective map f : X →→ Y
between continua is said to be:

• atomic if for each subcontinuum K of Y such that f(K) is non-
degenerate, then K = f−1(f(K)).

• confluent provided that for each subcontinuum Q of Y and each
component K of f−1(Q), we have that f(K) = Q;
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• an ε-map if ε > 0 and diam(f−1(y)) < ε for each y ∈ Y .
• k-to-1 provided that f−1(y) has exactly k points for each y ∈ Y ;
• light if f−1(y) is totally disconnected for every y ∈ Y ;
• monotone provided that f−1(y) is connected for each y ∈ Y ;
• monotonically refinable if for each ε > 0, there exists a monotone

ε-map g : X →→ Y such that d(f(x), g(x)) < ε for all x ∈ X.
• open provided that for each open subset U of X, f(U) is an open

subset of Y .
• refinable if for every ε > 0, there exists an ε-map g : X →→ Y such

that d(f(x), g(x)) < ε for all x ∈ X.
• weakly confluent provided that for each subcontinuum Q of Y ,

there exists a subcontinuum K of X such that f(K) = Q.

An arc is any space homeomorphic to [0, 1].

Given a continuum X and a positive integer n, Cn(X) denotes the
n-fold hyperspace of X; that is:

Cn(X) = {A ⊂ X |A is nonempty, closed and has at most n components},

topologized with the Hausdorff metric defined as follows:

HX(A,B) = inf{ε > 0 | A ⊂ Vd
ε (B) and B ⊂ Vd

ε (A)}.

The symbol Fn(X) denotes the n-fold symmetric product of X; that
is:

Fn(X) = {A ⊂ X | A is nonempty and has at most n points}.

Note that Fn(X) ⊂ Cn(X). It is known that Cn(X) is an arcwise con-
nected continuum (for n = 1 see [12, (1.12)], for n ≥ 2 see [7, 3.1]) and
Fn(X) is a continuum [1, p. 877]. Observe that F1(X) is an isometric
copy of X.

An order arc in Cn(X) is an arc α : [0, 1] → Cn(X) such that if
0 ≤ s < t ≤ 1 then α(s) ( α(t).

By the n-fold pseudo-hyperspace suspension of a continuum X, de-
noted by PHSn(X), we mean the quotient space:

PHSn(X) = Cn(X)/F1(X)
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with the quotient topology [6]. The fact that PHSn(X) is a continuum
follows from [9, 1.7.3]. Notice that PHS1(X) corresponds to the hyper-
space suspension HS(X) defined by Professor Sam B. Nadler, Jr. in [13].

Notation 2.1. Given a continuum X and a positive integer n,
qn
X : Cn(X)→ PHSn(X) denotes the quotient map. Let T n

X = Cn(f)(X).
Also, let F n

X denote the point qn
X(F1(X)).

Remark 2.2. Let X be a continuum and let n be a positive integer.
Note that PHSn(X) \ {F n

X} is homeomorphic to Cn(X) \ F1(X) using
the restriction of qn

X to Cn(X) \ F1(X).

Given a map f : X → Y between continua and a positive integer
n, the function Cn(f) : Cn(X) → Cn(Y ) given by Cn(f)(A) = f(A) is
the induced map by f between the n-fold hyperspaces of X and Y . Note
that Cn(f) is continuous ([9, 1.8.23]). Also, we have an induced map
PHSn(f) : PHSn(X)→ PHSn(Y ), given by

PHSn(f)(χ) =

{
qn
Y (Cn(f)((qn

X)−1(χ))), if χ 6= F n
X ;

F n
Y , if χ = F n

X ;
called the induced map by f between the n-fold pseudo-hyperspace suspen-
sions of X and Y . Note that, by [4, 4.3, p. 126], PHSn(f) is continuous.
In addition, the following diagram

Cn(X)
Cn(f)−→ Cn(Y )yqn

X

yqn
Y (∗)

PHSn(X) −→
PHSn(f)

PHSn(Y )

is commutative.

3. Induced Maps

We begin with the following observation:

Remark 3.1. Let X and Y be continua, let n be a positive integer
and let f : X → Y be a map. If α : [0, 1] → Cn(X) is an order arc
and Cn(f)(α(0)) = Cn(f)(α(1)), then for each t ∈ [0, 1] Cn(f)(α(0)) =
Cn(f)(α(t)) = Cn(f)(α(1)).
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Lemma 3.2. Let X and Y be continua, let n be a positive integer and
let f : X → Y be a map. Then Cn(f)−1(Cn(f)(X)) is pathwise connected.

Proof. If Cn(f)−1(Cn(f)(X)) = {X}, there is nothing to prove. Sup-
pose Cn(f)−1(Cn(f)(X)) 6= {X}, and let A ∈ Cn(f)−1(Cn(f)(X)) \ {X}.
Let α : [0, 1] → Cn(X) be an order arc such that α(0) = A and α(1) =
X [12, (1.8)]. Since Cn(f)(A) = Cn(f)(X), by Remark 3.1, we have
that for each t ∈ [0, 1], Cn(f)(α(t)) = Cn(f)(X). Hence, α([0, 1]) ⊂
Cn(f)−1(Cn(f)(X)). Therefore, Cn(f)−1(Cn(f)(X)) is pathwise connected.

♦

Lemma 3.3. Let X and Y be continua, let n be a positive integer and
let f : X → Y be a map. If ξ = PHSn(f)(T n

X), then PHSn(f)−1(ξ) =
qn
X(Cn(f)−1(Cn(f)(X))). In particular, PHSn(f)−1(ξ) is pathwise con-
nected.

Proof. We consider two cases. Suppose ξ = F n
Y . Since (∗) commutes,

we have that
F n

Y = PHSn(T n
X) = qn

Y (Cn(f)(X)).

Hence, Cn(f)(X) ∈ F1(Y ). Thus, f(X) is a singleton. This implies that f
is a constant map. In particular both Cn(f) and PHSn(f) are constant
maps too. As a consequence of this, we obtain that PHSn(f)−1(ξ) =
PSHn(X) and qn

X(Cn(f)−1(Cn(f)(X))) = qn
X(Cn(X)) = PHSn(X). There-

fore, PHSn(f)−1(ξ) = qn
X(Cn(f)−1(Cn(f)(X))).

Assume that ξ 6= F n
Y . Let χ ∈ PHSn(f)−1(ξ), we prove that ξ ∈

qn
X(Cn(f)−1(Cn(f)(X))). Note that, since ξ 6= F n

Y ,

ξ = PHSn(f)(χ) = qn
Y (Cn(f)((qn

X)−1(χ)))

and

ξ = PHSn(f)(T n
X) = qn

Y (Cn(f)((qn
X)−1(T n

X))) = qn
Y (Cn(f)(X)).

Hence, PHSn(f)(χ) = qn
Y (Cn(f)(X)). Since ξ 6= F n

X , this implies that
Cn(f)((qn

X)−1(χ)) = Cn(f)(X). Thus, (qn
X)−1(χ) ∈ Cn(f)−1(Cn(f)(X)),

and χ ∈ qn
X(Cn(f)−1(Cn(f)(X))). Therefore,

PHSn(f)−1(ξ) ⊂ qn
X(Cn(f)−1(Cn(f)(X))).
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Now, let χ ∈ qn
X(Cn(f)−1(Cn(f)(X))), we show that χ ∈ PHSn(f)−1(ξ).

Note that χ 6= F n
X , otherwise, Cn(f)−1(Cn(f)(X)) ⊂ F1(X) and Cn(f)(X) ∈

F1(Y ). Hence,

ξ = PHSn(f)(T n
X) = qn

Y (Cn(f)((qn
X)−1(T n

X))) = qn
Y (Cn(f)(X)) = F n

Y ,

a contradiction to our assumption.
Since χ ∈ qn

X(Cn(f)−1(Cn(f)(X))), Cn(f)((qn
X)−1(χ)) = Cn(f)(X).

Thus, qn
Y (Cn(f)((qn

X)−1(χ))) = qn
Y (Cn(f)(X)). Hence,

PHSn(f)(χ) = qn
Y (Cn(f)((qn

X)−1(χ))) = qn
Y (Cn(f)(X)) =

qn
Y (Cn(f)((qn

X)−1(T n
X))) = PHSn(f)(T n

X) = ξ.

Therefore, qn
X(Cn(f)−1(Cn(f)(X))) ⊂ PHSn(f)−1(ξ), and PHSn(f)−1(ξ) =

qn
X(Cn(f)−1(Cn(f)(X))).

The fact that PHSn(f)−1(ξ) is pathwise connected now follows
from Lemma 3.2. ♦

Corollary 3.4. Let X and Y be continua and let n be a positive integer.
If f : X →→ Y is a surjective map, then PHSn(f)−1(T n

Y ) is a pathwise
connected subcontinuum of PHSn(X).

Proof. Since f is surjective, we have that f(X) = Y ; i.e., Cn(f)(X) =
Y . Since (∗) commutes, this implies that PHSn(f)(T n

X) = T n
Y . Hence,

PHSn(f)−1(T n
Y ) is nonempty.

Since PHSn(f) is continuous, PHSn(f)−1(T n
Y ) is a compact subset

of PHSn(X). By Lemma 3.3, PHSn(f)−1(T n
Y ) is pathwise connected. ♦

Lemma 3.5. Let X and Y be continua, let n be a positive integer and
let f : X → Y be a map. If PHSn(f) is surjective, then f is surjective.

Proof. Since PHSn(f) is surjective, there exists χ ∈ PHSn(X) \
{F n

X} such that PHSn(f)(χ) = T n
Y . Since (∗) commutes and χ 6=

F n
X , we have that Cn(f)((qn

X)−1(χ)) = Y . Since (qn
X)−1(χ) ⊂ X, Y =

Cn(f)((qn
X)−1(χ)) ⊂ Cn(f)(X). Hence, Cn(f)(X) = Y ; i.e., f(X) = Y .

Therefore, f is surjective. ♦

Theorem 3.6. Let X and Y be continua and let n be a positive integer.
If f : X → Y is a map, then the following are equivalent:

(1) f is weakly confluent;
(2) Cn(f) is surjective;
(3) PHSn(f) is surjective.
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Proof. By [3, Proposition 1], we have that f is weakly confluent if and
only if Cn(f) is surjective. Since (∗) commutes and qn

Y is surjective, if
Cn(f) is surjective, then PHSn(f) is surjective.

Suppose PHSn(f) is surjective, we see that Cn(f) is surjective. By
Lemma 3.5, f is surjective. Thus, if B is in F1(Y ), then there exists
A ∈ F1(X) such that Cn(f)(A) = B. Assume B ∈ Cn(Y ) \ F1(Y ). Then
qn
Y (B) ∈ PHSn(Y )\{F n

Y }. Since PHSn(f) is surjective, there exists χ ∈
PHSn(X) \ {F n

X} such that PHSn(f)(χ) = qn
Y (B). Hence, (qn

X)−1(χ) ∈
Cn(X)\F1(X). Since (∗) commutes, we have that Cn(f)((qn

X)−1(χ)) = B.
Therefore, Cn(f) is surjective. ♦

4. Homeomorphisms

Theorem 4.1. Let X and Y be continua and let n be a positive integer.
If f : X → Y is a map, then the following are equivalent:

(1) f is a homeomorphism;
(2) Cn(f) is a homeomorphism;
(3) Cn(f) is atomic;
(4) PHSn(f) is a homeomorphism;
(5) PHSn(f) is atomic.

Proof. By [3, Theorem 46], we have that (1), (2) and (3) are equivalent.
Suppose Cn(f) is a homeomorphism, we prove that PHSn(f) is a

homeomorphism. Note that, by Theorem 3.6, PHSn(f) is surjective.
To show that PHSn(f) is one-to-one, let χ ∈ PHSn(Y ). Suppose that
χ 6= F n

Y . Since (∗) commutes, by Remark 2.2, we have that there exists
a unique element A ∈ Cn(X) such that PHSn(f) ◦ qn

X(A) = χ. Assume
that χ = F n

Y and that there exists χ′ ∈ PHSn(X) \ {F n
X} such that

PHSn(f)(χ′) = χ. Note that (qn
X)−1(χ′) ∈ Cn(X) \ F1(X). Since Cn(f)

is a homeomorphism, we have that Cn(f)((qn
X)−1(χ′)) ∈ Cn(Y ) \ F1(Y ).

Thus, by Remark 2.2, qn
Y (Cn(f)((qn

X)−1(χ′))) ∈ PHSn(Y ) \ {F n
Y }. Since

(∗) commutes, we obtain that PHSn(f)(χ′) ∈ PHSn(Y ) \ {F n
Y }, a con-

tradiction to our election of χ′. Therefore, PHSn(f) is one-to-one and a
homeomorphism.

Suppose PHSn(f) is a homeomorphism, we show that Cn(f) is
a homeomorphism. By [8, Theorem 3.4], this is true for n = 1. As-
sume n ≥ 2. Observe that, by Theorem 3.6, Cn(f) is surjective. To
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prove Cn(f) is one-to-one, note that, by Remark 2.2, the commutativ-
ity of (∗) and the fact that PHSn(f) is a homeomorphism, we have
that Cn(f)|Cn(X)\F1(X) : Cn(X) \ F1(X) →→ Cn(Y ) \ F1(Y ) is a homeo-
morphism. We only need to prove that Cn(f)|F1(X) is one-to-one. Sup-
pose there exist {x1}, {x2} ∈ F1(X), with {x1} 6= {x2}, such that
Cn(f)({x1}) = Cn(f)({x2}). This implies that Cn(f)({x1, x2}) ∈ F1(Y ),
a contradiction to the fact that Cn(f)|Cn(X)\F1(X) is a homeomorphism.
Therefore, Cn(f) is a homeomorphism.

Assume that PHSn(f) is atomic, we see that f is a homeomor-
phism. Since PHSn(f) is an atomic map, for each χ ∈ PHSn(Y ),
we have that PHSn(f)−1(χ) is a terminal subcontinuum of PHSn(X)
[11, (2.1)]. Since Cn(X) is arcwise connected [9, 1.8.12], PHSn(X) is
arcwise connected. It is easy to see that the only terminal subcon-
tinua of an arcwise connected continuum are the continuum itself and
singletons. Hence, if χ ∈ PHSn(Y ), then either PHSn(f)−1(χ) =
PHSn(X) or PHSn(f)−1(χ) is a singleton of PHSn(X). Note that
PHSn(f)−1(χ) = PHSn(X) is impossible, otherwise PHSn(f) would
be a constant map, in particular, PHSn(f) would not be surjective.
Thus, for each χ ∈ PHSn(Y ), PHSn(f)−1(χ) is a singleton. This im-
plies that PHSn(f) is a homeomorphism, and, by the above argument,
f is a homeomorphism. ♦

5. Monotone maps

Theorem 5.1. Let X and Y be continua and let n be a positive integer.
If f : X → Y is a map, then the following are equivalent:

(1) f is monotone;
(2) Cn(f) is monotone;
(3) PHSn(f) is monotone.

Proof. By [3, Theorem 4], we have that f is monotone if and only if
Cn(f) is monotone.

Suppose Cn(f) is monotone. Since (∗) commutes and qn
Y is mono-

tone, qn
Y ◦Cn(f) is monotone [10, (5.1)]. Hence, by [10, (5.15)], we obtain

that PHSn(f) is monotone.
Assume PHSn(f) is monotone, we show that f is monotone. Let

B ∈ C1(Y )\F1(Y ). By definition, PHSn(f) is surjective. Thus, by The-
orem 3.6, f is weakly confluent. Hence, there exists A ∈ C1(X) such that
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f(A) = B. Since (∗) commutes and qn
X |Cn(X)\F1(X) is a homeomorphism,

we have that

Cn(f)−1(B) = (qn
X)−1(PHSn(f)−1(qn

Y (B))).

Since PHSn(f) and qn
X are monotone, by [9, 2.1.12], Cn(f)−1(B) is con-

nected. Since A ∈ C1(X) ∩ Cn(f)−1(B), by [12, (1.49)],
⋃
Cn(f)−1(B) ∈

C1(X). Note that
⋃
Cn(f)−1(B) ⊂ f−1(B). To prove the other inclu-

sion, let x ∈ f−1(B). Then A ∪ {x} ∈ Cn(X) and Cn(f)(A ∪ {x}) = B.
Thus, A ∪ {x} ∈ Cn(f)−1(B). In particular, x ∈

⋃
Cn(f)−1(B). Hence,⋃

Cn(f)−1(B) = f−1(B). In particular, f−1(B) is connected.
Now, let y ∈ Y and let {Km}∞m=1 be a decreasing sequence of sub-

continua of Y such that
⋂∞

m=1Km = {y}.
This implies that

⋂∞
m=1 f

−1(Km) = f−1(y). Hence, by the previous
paragraph, we obtain that {f−1(Km)}∞m=1 is a decreasing sequence of
subcontinua. Therefore, f−1(y) is connected [9, 1.7.2], and f is monotone.

♦

6. Refinable Maps

Let X be a continuum and let n be a positive integer. We follow
Professor Sam B. Nadler, Jr. [13] (compare with [8, p. 149]) to define a
metric on PHSn(X). Let

=n(X) = {F1(X) ∪ {A} | A ∈ Cn(X)}.

Note that =n(X) ⊂ C2(Cn(X)). Let Gn : PHSn(X) →→ =n(X) be given
by

Gn(χ) = F1(X) ∪ (qn
X)−1(χ).

Then Gn is a homeomorphism. Next, define

ρn
X : PHSn(X)× PHSn(X)→ [0,∞)

by
ρn

X(χ1, χ2) = H2
X(Gn(χ1), Gn(χ2)),

whereH2
X is the Hausdorff metric on C2(Cn(X)) induced by the Hausdorff

metric HX on Cn(X). Then ρn
X is a metric. We rewrite [13, (2.3)], with

our terminology, to obtain:
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Theorem 6.1. Let X and Y be continua, let n be a positive integer, let
f : X → Y be a map, and let ε > 0. If Cn(f) is an ε-map, then PHSn(f)
is an ε-map.

Lemma 6.2. Let X and Y be continua, let n be a positive integer, let
g, f : X → Y be two maps, and let ε > 0. If d(f(x), g(x)) < ε for all
x ∈ X, then ρn

X(PHSn(f)(χ), PHSn(g)(χ)) < ε for each χ ∈ PHSn(X).

Proof. Let χ ∈ PHSn(X). If χ = F n
X , then

ρn
Y (PHSn(f)(χ), PHSn(g)(χ)) = ρn

Y (PHSn(f)(F n
X), PHSn(g)(F n

X)) =

ρn
Y (F n

Y , F
n
Y ) = 0 < ε.

Suppose that χ 6= F n
X . Then (qn

X)−1(χ) ∈ Cn(X) \ F1(X), and

ρn
Y (PHSn(f)(χ), PHSn(g)(χ)) =

H2
Y (F1(Y ) ∪ Cn(f)((qn

X)−1(χ)),F1(Y ) ∪ Cn(g)((qn
X)−1(χ))) =

HY (Cn(f)((qn
X)−1(χ)), Cn(g)((qn

X)−1(χ))) < ε.

The last inequality follows from [3, Lemma 37]. ♦
A continuum Y is in Class(W ) provided that for each continuum

X, each surjective map f : X →→ Y is weakly confluent.

Theorem 6.3. Let X and Y be continua, where Y is in Class(W ),
and let n be a positive integer. If f : X →→ Y is a refinable map, then
PHSn(f) is a refinable map.

Proof. Let ε > 0. Since f is refinable, there exists an ε-map g : X →→ Y
such that d(f(x), g(x)) < ε for all x ∈ X. Since g is surjective and
Y is in Class(W ), we have that g is weakly confluent. Hence, Cn(g)
and PHSn(g) are both surjective (Theorem 3.6). By [3, Lemma 36] and
Theorem 6.1, PHSn(g) is an ε-map.

By Lemma 6.2, ρn
Y (PHSn(f)(χ), PHSn(g)(χ)) < ε, for each χ ∈

PHSn(X). Therefore, PHSn(f) is a refinable map. ♦

Theorem 6.4. Let X and Y be continua and let n be a positive integer.
If f : X →→ Y is a monotonically refinable map, then PHSn(f) is a
monotonely refinable map.
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Proof. Let ε > 0. Since f is monotonely refinable, there exists a mono-
tone ε-map g : X →→ Y such that d(f(x), g(x)) < ε for every x ∈ X. By
Theorem 5.1 and the argument given in the proof of Theorem 6.3, we
obtain that PHSn(g) is a monotone ε-map such that

ρn
Y (PHSn(f)(χ), PHSn(g)(χ)) < ε

for each χ ∈ PHSn(X). Therefore, PHSn(f) is a monotonely refinable
map. ♦

In [3, Theorems 38 and 40] it is shown that if f is a (monotonically)
refinable map, then Cn(f) is a (monotonically) refinable map.

Questions 6.5. Let X and Y be continua, let n be a positive integer
and let f : X → Y .
(i) If Cn(f) is (monotonically) refinable, then is f (monotonically) refin-
able?
(ii) If Cn(f) is (monotonically) refinable, then is PHSn(f) (monotoni-
cally) refinable?
(iii) If PHSn(f) is (monotonically) refinable, then f is (monotonically)
refinable?
(iv) If PHSn(f) is (monotonically) refinable, then Cn(f) is (monotoni-
cally) refinable?

7. Light Maps

We begin with the following easy lemma.

Lemma 7.1. Let X and Y be continua, let f : X → Y be a map, and
let A be a nonempty subset of X. If f is light, then f |A : A →→ f(A) is
light.

Theorem 7.2. Let X and Y be continua, let n be a positive integer and
let f : X →→ Y be a surjective map. Consider the following statements:

(1) f is light;
(2) Cn(f) is light;
(3) PHSn(f) is light.

Then (3) implies (2) and (2) implies (1). Hence, (3) implies (1).



36 J. C. Macías and S. Macías

Proof. Assume PHSn(f) is light, we show that Cn(f) is light. Let
B ∈ Cn(Y ). Suppose first that B 6∈ F1(Y ). Since (∗) commutes,

PHSn(f)−1(qn
Y (B)) = qn

X(Cn(f)−1(B)).

Since PHSn(f) is light and qn
X |Cn(X)\F1(X) is a homeomorphism, we have

that Cn(f)−1(B) is totally disconnected.
Assume that B ∈ F1(Y ). Then there exists y ∈ Y such that

B = {y}. Suppose that Cn(f)−1({y}) is not totally disconnected. Let
A be a nondegenerate component of Cn(f)−1({y}). Then

⋃
A ∈ Cn(X)

[9, 6.1.2]. Since A is nondegenerate, at least one component, say A, of⋃
A is nondegenerate. Let a ∈ A and let α : [0, 1]→ Cn(X) be an order

arc such that α(0) = {a} and α(1) = A. Note that for each t ∈ [0, 1],
Cn(f)(α(t)) = {y}. Then qn

X(α([0, 1])) is an arc in PHSn(X) such that
qn
X(α(0)) = F n

X . Since (∗) commutes, we have that

PHSn(f)(qn
X(α([0, 1]))) = qn

Y (Cn(f)(α([0, 1]))) = qn
Y ({{y}}) = {F n

Y }.

A contradiction to the fact that PHSn(f) is light. Therefore, Cn(f)−1({y})
is totally disconnected, and Cn(f) is light.

The fact that Cn(f) implies f is light follows easily from Lemma 7.1.
♦

The following example shows a light map f such that neither Cn(f)
nor PHSn(f) are light for any positive integer n.

Example 7.3. Let f : [−1, 1] →→ [0, 1] be given by f(t) = |t|. Clearly,
f is a light map. Note that if A = {A ∈ C([−1, 1]) | [0, 1] ⊂ A}, then
A ⊂ C1(f)−1([0, 1]). Hence, C1(f) is not light. Thus, by Lemma 7.1,
Cn(f) is not light for any positive integer n. Also, by Theorem 7.2, it
follows that PHSn(f) is not light for any positive integer n.

Theorem 7.4. Let X and Y be continua, let n be a positive integer, and
let f : X → Y be a map. If k is a positive integer such that PHSn(f) is
a k-to-1 map, then k = 1 and all f , Cn(f) and PHSn(f) are homeomor-
phisms.

Proof. Suppose k ≥ 2. Let χ ∈ PHSn(f)−1(T n
Y ) \ {T n

X}. Then
(qn

X)−1(χ) ∈ Cn(X) \ {X}. Since (∗) commutes, Cn(f)((qn
X)−1(χ)) = Y .

Let α : [0, 1] → Cn(X) be an order arc such that α(0) = (qn
X)−1(χ) and

α(1) = X. Note that, for each t ∈ [0, 1], Cn(f)(α(t)) = Y . Thus,
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Cn(f)(α([0, 1])) = {Y }. Then qn
X ◦ α : [0, 1] → PHSn(X) is an arc such

that qn
X ◦α(0) = χ, qn

X ◦α(1) = T n
X , and PHSn(f)(qn

X ◦α([0, 1])) = {T n
Y }.

Hence, qn
X ◦ α([0, 1]) ⊂ PHSn(f)−1(T n

Y ), a contradiction to the fact that
PHSn(f) is k-to-1. Therefore, k = 1. Since PHSn(f) is 1-to-1, PHSn(f)
is a homeomorphism. Thus, by Theorem 4.1, f and Cn(f) are both
homeomorphism. ♦

Questions 7.5. Let X and Y be continua, let n be a positive integer
and let f : X → Y . If Cn(f) is light, then is PHSn(f) light?

8. Open maps

In contrast to equivalences in previous sections, we give an exam-
ple that shows that f being open does not imply that either Cn(f) or
PHSn(f) is open.

Example 8.1. Let n be a positive integer. For each j ∈ {1, . . . , n+ 1},
let Lj = {(x1, . . . , xn+1) ∈ IRn+1 | xj ∈ [0, 1] and xk = 0 if k ∈ {1, . . . , n+
1} \ {j}}. Let X =

⋃n+1
j=1 Lj, and let f : X →→ [0, 1] be given by

f((x1, . . . , xn+1)) =


0, if (x1, . . . , xn+1) = (0, . . . , 0);

xj, if (x1, . . . , xn+1) ∈ Lj \ {(0, . . . , 0)},
for some j ∈ {1, . . . , n+ 1}.

Then f is an open map. We see that Cn(f) is not an open map. To this
end, for each j ∈ {1, . . . , n + 1}, let Kj = {(x1, . . . , xn+1) ∈ IRn+1 | xj ∈
[0, 1

2
] and xk = 0 if k ∈ {1, . . . , n + 1} \ {j}}. Let K =

⋃n+1
j=1 Kj. Also,

for every j ∈ {1, . . . , n + 1}, let Uj = {(x1, . . . , xn+1) ∈ IRn+1 | xj ∈
(0, 3

4
) and xk = 0 if k ∈ {1, . . . , n+1}\{j}}. Let U = {A ∈ Cn(X) | A ⊂⋃n+1

j=1 (Uj ∪ {(0, . . . , 0)}) and A ∩ Uj 6= ∅ for all j ∈ {1, . . . , n + 1}}. It
is easy to see that U is an open subset of Cn(X) and K ∈ U . We prove
that Cn(f) is not open. Suppose Cn(f) is open and consider the sequence
{[ 1

m
, 1

2
]}∞m=3, which converges to [0, 1

2
]. Since Cn(f)(K) = [0, 1

2
], we obtain

that [0, 1
2
] ∈ Cn(f)(U). Since we are assuming that Cn(f)(U) is open,

there exists a positive integer M such that for every m ≥ M , [ 1
m
, 1

2
] ∈

Cn(f)(U). Letm ≥M . Then there exists Bm ∈ U such that Cn(f)(Bm) =
[ 1
m
, 1

2
]. This implies that f(Bm) = [ 1

m
, 1

2
]. Observe that f−1([ 1

m
, 1

2
]) =⋃n+1

j=1 [ 1
m
, 1

2
]j, where [ 1

m
, 1

2
]j = {(x1, . . . , xn+1) ∈ Lj | xj ∈ [ 1

m
, 1

2
]}. Since

Bm ∈ Cn(X) and Bm ⊂ f−1([ 1
m
, 1

2
]), without loss of generality, we assume
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that Bm ⊂
⋃n

j=1[
1
m
, 1

2
]j. Hence, Bm ∩ Um+1 = ∅, a contradiction to the

fact that Bm ∈ U . Therefore, Cn(f) is not open. To show that PHSn(f)
is not open, note that U ∩ F1(X) = ∅ and Cn(f)(U) ∩ F1(Y ) = ∅. This
implies that qn

X(U) is an open subset of PHSn(X) and qn
Y (Cn(f)(U)) is

not an open subset of PHSn(Y ) (Remark 2.2). Since (∗) commutes, we
obtain that PHSn(f)(qn

X(U)) = qn
Y (Cn(f)(U)). Therefore, PHSn(f) is

not open.

Questions 8.2. Let X and Y be continua, let n be a positive integer
and let f : X → Y be a map. Is it true that Cn(f) is open if and only if
PHSn(f) is open?
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