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1. Introduction

Given a right near-ring (N, +,-), its multiplicative center C'(N) =
{r e N |forally € N, z-y =y-z} is, when nonempty, a sub-semigroup
of (N, -) that need not be a subnear-ring of N. The first systematic study
of when multiplicative centers are subnear-rings is found in [2| where all
near-rings with identity of order p?, p a prime, having additively closed
multiplicative center are determined, and the multiplicative centers of
matrix near-rings (in the sense of Meldrum and van der Walt [9]) are
described. In [6], the notion of multiplicative center of a near-ring is
generalized as follows. Let Ny = {d € N |d- (v +y) =d-z+d-
y for all x,y € N} be the set of left distributive elements of N. Then the
generalized center of N is defined as GC(N) = {g € N | for all d € Ny,
g-d=d-g}; when nonempty, GC(N) is always a subnear-ring of N that
contains C(N). Furthermore, GC(N) = C(N) when N is a ring. The
generalized center of polynomial near-rings (in the sense of Bagley [3])
is studied in [6], and the generalized centers of distributively generated
near-rings with identity, centralizer near-rings determined by groups of
automorphisms on nontrivial finite groups, matrix near-rings, and near-
rings of polynomials with zero constant term over commutative rings with
identity are studied and compared with their associated multiplicative
centers in [4]. We observe that the majority of the existing work on
centers and generalized centers focuses on near-rings with identity.

In this paper, we continue the study of centers and generalized cen-
ters in near-rings defined via special multiplications on groups. The first
construction is given by Malone in [7]. Next, we define and study three
similarly-structured multiplications and completely characterize the cen-
ters and generalized centers of all four classes of near-rings. In almost
all cases, the near-rings we treat herein do not contain a two-sided iden-
tity and yield multiplicative centers that are subnear-rings. These new
constructions might also be useful in studying other near-ring properties.

Along with our characterization results, we present a host of exam-
ples to illustrate the cases described in the paper. Many of these examples
were discovered using the SONATA software [1]. We refer the reader to
[5], [8], and [10] for basic definitions and references regarding near-rings.
All groups used in examples have their usual addition. Hereafter, we
shall denote z - y by xy.
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2. Malone Trivial Near-Rings

We begin with a well-known construction of a near-ring N with
an elementary multiplication in which C'(N) is always a subnear-ring of
N. Let (G,+) be a group, not necessarily abelian, with |G| > 2. Let
S C G* := G\{0} and define a multiplication on G by

b a ifbe s
VTV 0 ifbgs

Then N = (G,+,-) is a right, zero-symmetric near-ring [7], now
called a Malone trivial near-ring. The next lemma demonstrates that
Malone trivial near-rings rarely have a two-sided multiplicative identity.

Lemma 2.1. Let N be a Malone trivial near-ring. Then N has a two-
sided multiplicative identity, 1, if and only if N = {0,1} and S = {1},
i.e., N = Zg.

Proof. Assume N has a two-sided multiplicative identity, 1. If S = 0,
then ab = 0 for all a,b € N and N does not have an identity. Thus, S is
nonempty. Let b€ S. Thenb=1-b=1and S = {1}. Let b ¢ S. Then
b=1-b=0and N\ S = {0}. By constructing the multiplication table
for the Malone trivial near-ring using N = {0,1} and S = {1}, one can
see the resulting near-ring is Zy. The converse is immediate. O

We now prove a sequence of lemmas which will be helpful in our
characterization theorem and its ensuing examples.

Lemma 2.2. Let N be a Malone trivial near-ring. If N; # {0} and
x,y €S, thenz+y & S.

Proof. Let 0 # a € Nyand z,y € S. Assume x4y € S. Then a(x+y) =
ar+ay implies a = a+a. Hence a = 0, a contradiction. Sox+y ¢ S. O

Lemma 2.3. Let N be a Malone trivial near-ring with S # (. Then
ng{CZEN‘ZCL:O}.

Proof. If Ny = {0}, the result is clear. So assume Ny # {0}. Let a € N,.
Since S # 0, there exists b € S. Since Ny # {0}, by the previous
lemma, b +b ¢ S. So a(b+ b) = ab+ ab implies 0 = a + a. Hence
NsC{ae N |2a=0}. O
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Lemma 2.4. Let N be a Malone trivial near-ring with S # ). Then
C(N) # {0} if and only if C(N) = GC(N) = N = {0, a} for some a # 0.

Proof. Assume 0 # a € C(N). If a € S, then for b € S, ab = ba implies
a = 0, a contradiction. Soa € S. For b € S, ab = ba implies a = b. Thus
S ={a}. Forb ¢ S, ba = ab implies b = 0. So N = S U{0}. Hence,
N ={0,a} = C(N) = GC(N). The converse is clear. O

We now state the main characterization theorem for this section.

Theorem 2.5. Let N be a Malone trivial near-ring.

1. If S =0, then C(N) = GC(N) = N.

[\]

If S #0 and |N| = 2, then {0} # C(N) = GC(N) = N.
3. IfS #0,|N| > 2, and N, = {0}, then {0} = C(N) C GC(N) = N.

4. If 540, [N >2 NynS =0, and Ny # {0}, then {0} = C(N) C
N\ S =GC(N)C N.

5. 1S40, |[N| >2 Ny S %0, and | Ny| = 2, then {0} = C(N) C
Ny = GC(N) C N.

6. f S#0,|N|>2, NyNS #0, and [Ny > 2, then {0} = C(N) =
GC(N) C N.

In all cases, C'(NV) is a subnear-ring of N.

Proof. The first two cases are straightforward to verify. Since |[N| > 2 in
cases (3) through (6), by the previous lemma, C(N) = {0}. To complete
case (3), note that if Ny = {0}, then GC(N) = N.

For case (4), let n € Ngj. Thenn ¢ S. Forallt € N\ S, nt =
0 = tn. Thus, N\ S C GC(N). Now let s € S and 0 # n € Ny. Then
ns =n # 0 = sn. Hence, s ¢ GC(N) and GC(N) = N\ S # N. Since
Ny # {0} and Ny NS = 0, we conclude {0} # N\ S. Case (4) now
follows.

For cases (5) and (6), fix y € NyNS. Let a € GC(N). If a € S,
then ay = ya implies a = y. If a ¢ S, then ay = ya implies a = 0. Thus
a=yora=0,and GC(N) C {0,y}.

If |[Nyg| = 2, then Ny = {0,y}. Thus y € GC(N), and GC(N) =
{0,y}. This finishes case (5). For case (6), assume |N4| > 3. Let z € Ny
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such that z ¢ {0,y}. Then zy = z and yz € {0,y}. Thus zy # yz and
y & GC(N). It follows that GC(N) = {0}, completing case (6).

Since C(N) = {0} or C(N) = N in all cases, C'(N) is a subnear-ring
of N. O

We end the section by providing examples of each of the six cases
in the characterization theorem.

Example 2.6. Examples of Malone trivial near-rings

Case (1). Let G be any group and S = (). Then ab = 0 for all
a,b€ G and C(N)=GC(N)= N.

Case (2). Let G = Zy and S = {1}. Then {0} # {0,1} = C(N) =
GC(N)=N.

Case (3). Let G = Zz and S = {1}. Since Ny C {a € N | 2a = 0}
by Lemma 2.3 and G has no elements of additive order two, N; = {0}.
Hence {0} = C(N) C GC(N) = N.

Case (4). Let G = Zg and S = {1,3,5,7}. By Lemma 2.3,
Ny € {0,4}. We now show containment in the other direction. Note
that for x,y € N, x +y ¢ S if and only if z,y € S or z,y & S.
Thus, for z,y € S, 4(r+y) =0 =444 = 4x +4y. For z,y & S,
4z+y)=0=04+0=4r+4y. Forx € Sandy € S, 4(z +y) =
4 =440 = 4x + 4y. By symmetry, 4(x + y) = 4x + 4y also follows
when = ¢ S and y € S. Thus, 4 € Ny and Ny = {0,4}. It follows that
{0} = C(N) € {0,2,4,6} = N\ S = GC(N) C N.

Case (5). Let G =Zg and S = {1, 3,5}. Using a similar technique
as in case (4), one obtains Ny = {0,3}. Thus, {0} = C(N) € {0,3} =
Ny= GC(N) C N.

Case (6). Let G = Ssand S = {(12),(13),(23)}. Again, using the
technique as in case (4), one obtains Ny = {0, (12), (13), (2 3)}. It follows
from the characterization theorem that {0} = C(N) = GC(N) C N.
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3. Complemented Malone Near-Rings

Let (G, +) be an abelian group and suppose ) # S C G* such that
forall z € S, —x ¢ S. Define a multiplication on G by

aifbe S
a-b=< —aif —bes
OifbgSand—0¢& S

Here S is taken to be nonempty to avoid having the zero multiplica-
tion on GG. In this section, we first show that (G, +, -) is always a near-ring
and that there is only one such near-ring with identity. Next, we char-
acterize the center and generalized center of the resulting near-ring. In
particular, we find that the center of a near-ring with this multiplication
is always a subnear-ring. We end this section with examples to illustrate
the theory.

Theorem 3.1. Given an abelian group (G, +) and a nonempty subset
S C G* satisfying x € S implies —z ¢€ S and using the multiplication
defined above, N = (G,+,-) is a zero-symmetric right near-ring with
IN| > 3.

Proof. 1t is straightforward to show Oa = a0 = 0 for all « € N, making N
zero-symmetric. Next we establish that for all a,b,c € N, a(bc) = (ab)c.
If any of a,b, ¢ equals 0, then a(bc) = 0 = (ab)c. So suppose a, b, c # 0.

1. If c¢Z S and —c € S, then (ab)c =0 = a(0) = a(bc).

2. If c€ S, then (ab)c = ab = a(bc).

3. If —c € S, then (ab)c = —(ab), and a(bc) = a(—b).
(a) If b € S, then —(ab) = —a = a(-b).
(b) If —b € S, then —(ab) = —(—a) = a = a(-D).
(c) Ifb,—b ¢ S, then —(ab) = a(—b).

Then, in all cases, (ab)c = a(bc), and hence the multiplication is associa-
tive. Now we show that for all a,b,c € N, (a + b)c = ac + be.
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1. If ce S, then (a+b)c=a+b=ac+ be.

2. If —c € S, then (a + b)c = —(a +b) = —a + (—b) = ac + be since
(N, +) is abelian.

3. If c¢ S and —c ¢ S, then (a + b)c =0 = ac + be.

Thus, right distributivity holds in all cases and N is a right near-ring.
Since S is nonempty, there exists 0 # = € S. It follows that

0# —x & S. So{zx,—z,0} € N, and |[N| > 3. The proof is now

complete. O

We refer to (N, +, ) as a complemented Malone near-ring since its
multiplication is similar to that of ordinary Malone trivial near-rings,
but with the additional condition that negatives of elements of S must
be in the complement of S. This results in corresponding extra cases for
multiplication.

Lemma 3.2. Let N be a complemented Malone near-ring. The following
are equivalent:

1 C(N) # {0}
2. N has a multiplicative left identity;
3. |N| =3;
4. N = Zs.

Proof. It is obvious that condition (4) implies conditions (1), (2), and
(3). Assume condition (1). So there exists 0 # a € C'(N). Either a ¢ S
oracbS.

Assume a € S. If —a ¢ S, then for b € S, a = ab = ba = 0, a
contradiction. Thus, —a € S and a # —a. For c € S, a = ac = ca = —c,
or equivalently, ¢ = —a. Since ¢ € § is arbitrary, it follows that S =
{—a}.

Consider d ¢ S. If —d € S, then —a = ad = da = —d. Thus
d=a. If —d ¢ S, then 0 = ad = da = —d. Thus d = 0. It follows that
N\SC{0,a} and N =SU(N\S)={0,a,—a}.

Now assume a € S. By definition of S, —a ¢ S and a # —a. For
be S, a=ab=0ba =0 Since b € § is arbitrary, S = {a}. Now
consider d € S. Using the cases —d € S and —d ¢ S with ad = da
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as above, we conclude d = —a or d = 0. Hence, N \ S C {0, —a} and
N = SU(N\S) ={0,a,—a}. In both cases, N = {0,a,—a} and |N| = 3,
giving condition (3). So (1) implies (3).

For condition (2), let 1 € N be a multiplicative left identity. Then
for x € S, lx = x implies 1 = x. So 1 € S, and since x € S is arbitrary,
S ={1}and =S = {—1}. Now let y € N\ {—1,1}. Then ly = y implies
0 =vy. Thus, N ={0,—1,1} and |N| = 3. Hence (2) implies (3).

Lastly, assume condition (3) holds. For 0 # a € N, either a ¢ S and
—a€ S,ora€ Sand —a¢ S. So N ={0,a,—a}. Using the definition
of complemented Malone near-rings, one can construct the multiplication
table for N in each case and see that N = Zs. This gives (3) implies (4),
completing the proof. O

The lemma shows that the only complemented Malone near-ring
with identity is the ring Zs. Furthermore, the only complemented Malone
near-ring with nontrivial center is also the ring Zs.

We now state our main characterization theorem on complemented
Malone near-rings.

Theorem 3.3. Let N be a complemented Malone near-ring.
1. If [N| = 3, then N = Z;.
2. If [IN| > 3 and N; = {0}, then {0} = C(N) C GC(N) = N.

3. If [N| > 3, Ny # {0}, and N;n S = 0, then {0} = C(N) C
N\ (SU(=8)) = GC(N) C N.

4. If IN| > 3, |Ng| = 3, and Ny NS # (), then {0} = C(N) C Ny =
GC(N) ={0,y,—y} C N for some y # —y.

5. If|N| > 3, |Ng4| > 3, and NyNS # 0, then {0} = C(N) = GC(N) <
N.

In all cases, C'(NV) is a subnear-ring of V.

Proof. First note that |[Ng| = 2 and Ny;N S # () is an impossibility since
y € NgN S implies N; = {0,y}. Since N is abelian, —y € Ny, giving
y=—y &S, a contradiction. So the five cases presented in the theorem
are exhaustive.
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Case (1) is immediate from the previous lemma. Since |[N| > 3 in
(2) through (5), by the previous lemma, C'(N) = {0}. To complete (2),
note that if Ny = {0}, then GC(N) = N.

For (3),let 0 # y € Ny. Then 0 # —y € Ny. Thus y,—y € S. Let
te N\ (SU(=95)). Thent,—t ¢ S. Soyt =0 =ty and t € GC(N).
Hence, N \ (S U (=5)) € GC(N). Now let t € GC(N). If t € S,
then ty = 0 # y = yt, and t ¢ GC(N), a contradiction. So ¢t ¢ S.
Ift € =5, then —t € S and ty = 0 # —y = yt. Hence t ¢ GC(N),
a contradiction. So t ¢ —S. It follows that t € N \ (S U (—S5)) and
GCO(N) € N\ (SU(=9)).

To prove (4), let y € NyN S. Note that —y ¢ S since y € S,
making y # —y. Given N is abelian, we know that —y € Ny, thus
Ny; = {0,y,—y} since [Ny = 3. Let a € GC(N). The three cases
(i) a € S, (ii) —a € S, and (ili) a ¢ S, —a € S used in conjunction
with ay = ya yield a € {0,y,—y}. Thus, GC(N) C {0,y,—y}. As
y(—y) = —y = (—y)y, all elements of {0,y, —y} commute with one
another. Hence, GC(N) = {0,y, —y} = Nu.

For the last case, let y € Ny;NS. Using similar arguments to those
in case (4), we get GC(N) C {0,y,—y} € N4 Since |Ny| > 3, there
exists z € Ny \ {0,y,—y}. If z € S, then GC(N) C {0, z,—=z}, so that
GC(N) C {0,y,—y} N{0,z,—z} = {0}. For z ¢ S, we consider two
subcases. If —z € 5, then zy = 2z # —y = yz and 2(—y) = —z £ y =
(—y)z. If —2 & S, then zy = 2 420 =yz and 2(—y) = —2 # 0 = (—y)=.
In both subcases, zy # yz and 2(—y) # (—y)z. Since z € Ny, it follows
that y, —y € GC(N). This leaves GC(N) = {0}.

In all cases, C(N) = {0} or C(N) = N, making C(N) a subnear-
ring of N. O

We now illustrate the characterization theorem through several ex-
amples.

Example 3.4. Examples of complemented Malone near-rings

Case (1). Let G = Z3 and S = {1}. Then N is the ring Z3 with
the usual multiplication. So {0} # C(N) = GC(N) = N.

Case (2). Let G = Zg and S = {1}. Let x € N;. Then 0 =
r-3=2(1+2)=2-142-2=2+0= 2 Thus, Ny = {0} and
{0} = C(N) C GC(N) = N follows.

Case (3). Let G = Z4 and S = {1}. So 3 € —S. It follows that
2(1) =2 = —2=2(3). First we show that 2 € N,. Let a,b € N. If a and



12 G. A. Cannon, M. Farag, L. Kabza, K. Neuerburg

b are odd, then a +b € {0,2} and 2(a+b) =0=2+2=2a+2b. If a
and b are even, then a+b € {0,2} and 2(a+b) =0=04+0 = 2a + 2b. If
a and b have opposite parity, since G is abelian, we can assume without
a loss of generality that a is odd and b is even. Then a + b € {1,3} and
2(a+b) =2=2+0=2a+2b. Thus, 2 € Ny and N; # {0}. Note that
1-(142)=1-3=3#1=14+0=1-1+1-2and 1 ¢ N,. So NynS = 0.
The conclusion of case (3) yields {0} = C(N) € N\ (SU(=95)) =
GC(N) C N.

Case (4). Let G = Zg and S = {2,5}. Let a,b € N. We leave it to
the reader to verify 2(a + b) = 2a 4+ 2b with the following combinations
of choices for a and b: either a or b is zero; a,b € S; a,b € —S; a € S,
be =S;a=3,be S;a=3,be —5;a=0b=3. Thus 2 € Ny. Since
G is abelian, N, is a subgroup of G and —2 = 4 € N, as well. Note
that 1-(242)=1-4=5#2=141=1-2+1-2and 1 ¢& Ny So
|Ng| = 3. It follows that Ny = {0,2,4} and N, NS = {2} # 0. Hence,
{0} =C(N) C Ng=GC(N)={0,y,—y} € N for some y # —y.

Case (5). Let G = Z3 x Z3 and S = {(2,0),(2,1),(2,2)}. We leave
it to the reader to verify (1,0)(a+0b) = (1,0)a+(1,0)b and (0,1)(a+b) =
(0,1)a + (0,1)b with the following combinations of choices for a and b:
a,b € S;a,be =S;ae S,be -S;ae S, be S+ (-S5);ae -85,
be S+ (=95); a,be S+ (=5). Thus (1,0),(0,1) € N4 Since G is
abelian, N, is a subgroup of G. So Ny = N and NgyN S # (). It follows
that N is a ring. Therefore, {0} = C(N) = GC(N) C N.

4. TS Near-Rings

In this section, we construct a near-ring /N from a given finite group
of even order. As with Malone trivial near-rings, a product a - b in N
is defined in terms of the membership of b in a certain set S. Unlike
multiplication in Malone trivial near-rings, however, the product a - b
requires consideration of the membership of b in different subsets of .S,
and also depends on the set membership of a in a superset T" of S. We
show that for the near-ring NV constructed in this section, C'(N) is always
a subnear-ring of N.

Theorem 4.1. Let (G, +) be a finite group of even order, not necessarily
abelian. Suppose there exists () # T' C G* such that G\T is a (normal)
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subgroup of G of index 2. Further suppose there is ) # S C T with
S = S1US,U---US,, a partition of S, and that there are distinct elements
Q,---,qy of order 2 in G\ (T U {0}).

Define a multiplication on G by

( q ifaeT be s
g ifaeT,be s,

¢, faeT,bes,
0 otherwise

(
Then N = (G,+,-) is a right, zero-symmetric near-ring without
multiplicative identity.

Proof. Since (G,+) is a group, we only need to show associativity of
multiplication and right distributivity of multiplication over addition.
To show associativity, let a,b,c € N. If a ¢ T, b € T or ¢ ¢ T, then
(ab)e = 0 = a(bc). So assume a,b,c € T. We consider four cases. (Note
that if one assumes x € S, then x € S; for some i = 1,2,...,n. For ease
of notation, throughout this section we will immediately assume z € S;.)

1. If b e Sj and c € S, then (ab)c = gjc = 0 = ag; = a(bc).

2. If b,ce T'\ S, then (ab)ce=0-c=0=a-0=a(be).

3. IfbeT\ S and c € S, then (ab)c =0-c=0 = ag; = a(bc).
4. Ifbe Sjand c € T\ S, then (ab)c = gjc =0=a-0 = a(bc).

So all cases are exhausted and multiplication is associative.

Now we verify the right distributive law. We note that G\T is
a normal subgroup of index 2 in G, making T the other coset of G
determined by G\T. It follows that:

1. Ifa,be T, thena+b¢ T.

2. IfaeTandb¢ T, thena+beT andb+aeT.

3. Ifa,b¢ T, thena+b¢T.

Let a,b,c € N. If ¢ ¢ S, then (a+b)c=0=0+0 = ac+ bc. So
assume ¢ € S;. We consider four cases.

1. ifa,b € T, then a+b ¢ T and (a + b)c =0 = ¢; + ¢; = ac + be.
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2. Ifa, b T, thena+b¢ T and (a+b)c=0=0+0= ac+ be.
3. lfaeTandb ¢ T, thena+b € T and (a+b)c = ¢; = ¢;+0 = ac+be.
4. fa ¢ Tand b € T, then a+b € T and (a+b)c = ¢; = 0+¢; = ac+bc.

So all cases are exhausted and multiplication distributes over addi-
tion on the right. We conclude that NV is a right near-ring.

Suppose N has a multiplicative identity 1. If 1 € T, then for
be S, b=1-b=q &5, a contradiction. So 1 ¢ T'. Thus, for b € 57,
b=1-b=0¢ 95;, a contradiction. It follows that N does not have a
multiplicative identity. This completes the proof. O

We call the near-ring N above a T'S near-ring. Our characterization
theorem for this section is given by the following.

Theorem 4.2. Let N be a TS near-ring with S = S;US,U---US,, as
described above.

I.Ifn=1and S =T, then C(N) = N; = GC(N) = N, making N

a commutative near-ring.
2. Ifn=1and S C T, then N\T =C(N)=N; C GC(N)= N.
3. If n > 2, then N\ T = C(N) = N; C GC(N) = N.

In all cases, C'(N) is a subnear-ring of N.

Proof. Note that in all cases if x € N\ T and a € N, then xa = 0 = az.
Thus N\ T C C(N).

(1) Assume n = 1l and S =7T. Let x € T. Fora € T = 5,
ra=0=azx. Fora g T, xa=0=uza. Sox € C(N)and T C C(N).
From the remark above, N \ T" C C(N) as well, giving C(N) = N.
Since C'(N) C Ny in any near-ring N, it follows that N; = N. Thus
C(N)=Ny=GC(N)=N.

(2) Assume n =1 and S C T. Let x € C(N) and assume x € T.
Then for a € S, xa = ax implies ¢ = ax. We conclude that x € S. Now
let y € T\ S. Then zy = 0 # ¢, = yx, which contradicts = € C(N).
It follows that x ¢ T and C(N) C N \ T. Using the comment at the
beginning of the proof, we get N\ T = C(N).

As above, since C(N) C N, for any near-ring, it follows that N\T" C
Ng4. To show containment in the other direction, let x € N; and assume
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re€T. Letae Sandbe T\ S. Then a+b ¢ T as noted above when
proving the right distributive law. Hence, x(a +b) =0# ¢ = ¢ +0 =
xa + b, contradicting x € N;. Thus z ¢ T and N \ T = Ny. Since
C(N) = Ny, GC(N) = N. Proper containment in the chain follows since
N\T C N.

(3) Assume n > 2. Suppose first that S = T. Let x € C(N)
and assume x € T' = S. Suppose x € S; and choose any a € S; # 5.
Then za = ¢; # q¢; = ax, contradicting x € C(N). Hence, x ¢ T and
C(N) C N\T. It follows that N\T = C(N) C Ny. For containment the
other way, let x € Ny and assume x € T. Then for a € S; and b € S5,
a+bgT=Sand z(a+0b) =0# q + ¢ = xa+2xb. Thus, z € Ng, a
contradiction. So z € T and Ny = N\T = C(N). Since Ny = C(N), we
conclude GC(N) = N.

Now suppose S C T. Let x € C(N) and assume x € T'. If x € S,
then using the same proof in the S = T' case above, we contradict x €
C(N). If x ¢ S, then for a € S, za = ¢ # 0 =azr and x ¢ C(N), a
contradiction as well. Thus, x ¢ T and N\ T = C(N) C Ny. A similar
argument as above shows containment in the other direction.

Lastly, we show that C'(NN) is always a subnear-ring of N by con-
sidering the three cases given in the theorem. In case (1), since C'(N) =
GC(N), C(N) is a subnear-ring of N. For cases (2) and (3), we have
C(N) = N\T. Since N\T is a subgroup of N, C'(N) is closed under ad-
dition. As C'(N) is closed under multiplication,and N is finite, it follows
that C'(IV) is a subnear-ring of V. O

Examples of each case of Theorem 4.2 may be easily constructed
following the definition.

5. TSI Near-Rings

Theorem 5.1. Let (G,+) be a group of even order, not necessarily
abelian. Suppose there exists ) # 7' C G* such that G\T is a (normal)
subgroup of G of index 2. Let ) # 1 C T and ) # S C G*\I such that
T =1U(SNT). Partition S into S = S;US,U - - - US,, such that for each
1<i<n,S;CSNT orS; CS\T. Furthermore, choose distinct ¢; € S;
such that 2¢; = 0 for each 1 <i < n.

Define a multiplication on G by
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([« ifbel
q ifaeT,bes;
ab = : .
¢, faeT,bes,
0 otherwise

\

Then N = (G,+,-) is a right zero-symmetric near-ring. Fur-
thermore, N has a two-sided identity, 1, if and only if I = {1}, S =
{Q17 qz, - - - 7Qn}7 and N\ (S U T) = {O}

Proof. Since (N,+) is a group, we only need to show that the given
multiplication is associative and that multiplication distributes from the
right over the addition of V. First we need a lemma.

Lemma 5.2. The product ab € T if and only if a € T'and b € T.

Proof. Assume a € T and b € T. Since b € T, either b € [ or b € S.
Ifbel thenab =a € T. If b € 5, then b € S; NT for some j
and ab = ¢; € §; C T. Thus, ab € T. For the converse, first assume
a g T. Eitherbe T orb¢g I. Ifbel thenab=a¢&T. Ifb ¢,
then ab = 0 ¢ T. Now assume b ¢ T. If b € S; \ T and a € T, then
ab = ¢q; € S; and ab € T. Otherwise, ab = 0 € T. Hence, if a € T or
b¢ T, then ab ¢ T, and the proof of the lemma is complete. O

To show associativity of multiplication, let a,b,c € N. We consider
five cases.

1. If ¢ € I, then (ab)c = ab = a(be).
2. If c¢ I and c ¢ S, then (ab)e = 0 = a(be).

3. Ifcgl, ceS;, and a,b € T, then by the previous lemma, ab € T
Thus (ab)c = ¢; = aq; = a(bc).

4. Ifcg I, ce S;, and a ¢ T, then by the previous lemma, ab ¢ T.
Since ¢ € 5, it follows that be ¢ I. Therefore (ab)c = 0 = a(bc).

5. Ifc¢ I, ceS;, and b ¢ T, then by the previous lemma, ab &€ T
So (ab)ce =0=a-0 = a(bc).
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Associativity of multiplication now follows.

Since G\T is a normal subgroup of index 2 in GG, we have the same
conditions as in T'S near-rings:
1. Ifa,be T, thena+b&¢ T.
2. faeTandb¢ T,thena+beT andb+aeT.
3. Ifa,b¢ T, thena+0b¢ T.

To show distributivity, again let a,b,c € N. If ¢ € I, then (a+b)c =
a+b=ac+bc. If c& I, but c € S;, then:

1. ifa,b € T, then a+b ¢ T and (a + b)c =0 = ¢; + ¢; = ac + be.
2. Ifa,b¢ T, thena+b¢ T and (a+b)c=0=0+ 0= ac+ be.
3. MfaeT,b¢ T, thena+be T and (a+b)c=q = q+0=ac+be.
4. fagT,beT,thena+be T and (a+b)c=¢q =0+¢q = ac+bc.

Finally,if c¢ I and ¢ € S, (a+b)c =0 =0+ 0 = ac + be. The
right distributive law now follows and N is a right near-ring.

Assume 1 is a two-sided multiplicative identity for N. Let b € I.
Then b=1-b=1. Sol ={1}. Nowlet b€ S;. Thenb=1-b = g
since 1 € T. Thus S; = {¢} for every i. Finally, let b € N\ (SUT).
Then b = 1-b=0. So N\ (SUT) = {0}. Now assume [ = {1},
S={q,q,...,q.},and N\ (SUT) = {0}. Since 1 -¢; = ¢; = ¢; - 1 for
all 7, it follows that 1 is a two-sided identity for N. O

We call the near-ring N above a T'SI near-ring. Note that [
is the set of right identities in N. Throughout this section, let @) =
{q1,42, -, qn}. We consider three cases for S and T: SNT =0, S C T,
and SNT # () with S € T.

Theorem 5.3. Let N be a T'ST near-ring such that SNT = ). Then:

1. C(N) = QuU{0}, which is a subnear-ring of N if and only if QU{0}
is a subgroup of G\ T}

2. Ny ={d e N\T | order of d < 2};

3. If Ny = QU {0}, then GC(N) = N. If N; # Q U {0}, then
GC(N) = N\T.
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Proof. Note that if SNT =0, then T' = 1.

(1) Let ¢ € C(N). Assume ¢ ¢ S. Let t € T. Then ct = tc implies
¢ = 0. Hence C(N) C SU{0}. Now assume ¢ € S. Thus, ¢ € §; for
some i. Then for t € T, ¢t = tc implies ¢ = ¢;. Hence C'(N) C Q U {0}.
For containment in the other direction, let ¢ € Q@ and n € N. If n € T,
then gn = ¢ = nq. If n ¢ T, then gn = 0 = ng. Thus ¢ € C(N) and
C(N) = QU {0}. The last part of (1) is a restatement of the additive
closure of C'(N).

(2) First we show that Ny C N\T. Assume d € NyNT. Leta €T
and b € S;. Thena+b€T. So d(a+b) =d and da+ db = d + ¢; imply
¢; = 0, a contradiction. Hence, d ¢ T. Thus, by contradiction, N; C
N\T. Now let d € Ny and a,b € T. Sod,a+b ¢ T. Thus, d(a+b) =0
and da + db = d + d imply d + d = 0, and every element of N, has order
at most two. We conclude that Ny C {d € N\T | order of d < 2}.

Now we show containment in the other direction. We know 0 € Ny,
solet 0 £de{de G\T |orderof d <2}. Ifa,be T, thena+b¢g T
and d(a+b) =0=d+d=da+db. If a,b ¢ T, then a + b ¢ T and
dla+b)=0=0+0=da+db. faeTand b g T, thena+beT
and d(a+b) =d=d+0=da+ db. The case a ¢ T and b € T follows
by symmetry. Thus d € N, and {d € N\T | order of d < 2} C Ny. The
result now follows.

(3) If Ny = QU {0} = C(N), then GC(N) = N is clear. Assume
Ny #QUA{0}. Let d € Ng. Then d € T. Let « ¢ T. Then dz = 0 = zd,
and z € GC(N). Thus, N\T' C GC(N). Now let z € GC(N). Since
Ny # Q U {0}, there exists 0 # d € Nyj\Q. Assume z € T. Then
xd =dr =d. It d € S, then xd = ¢; for some ¢; € ). So d = ¢; € Q,
a contradiction. If d ¢ S, then zd = 0. So d = 0, a contradiction. We
conclude ¢ T. Thus GC(N) C N\T, hence, equality. O

Example 5.4. Examples of T'ST near-rings with SNT = ()

Example 1. Let G =Z4, T =1 = {1,3}, and S = 51 = Q = {2}. Then
SNT = () and by the previous theorem, the resulting TSI near-ring has
C(N) = Qu{0} = {0,2} = Ny and GC(N) = N. Here, C(N) is a
subnear-ring of N.

Example 2. Let G = Zy x Zy, T = I = {(1,0),(3,0),(1,1),(3,1)},
S =5 ={(20),(2,1),(0,1)}, and Q@ = {(0,1)}. Then SNT =
and by the previous theorem, the resulting TSI near-ring has C(N) =
QU {(0,0)} = {(0,1),(0,0)} and Ny = SU{(0,0)}. So Ng # Q U {0}
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and GC(N)=N\T = N; ={(2,0),(2,1),(0,1),(0,0)}. Here, C(N) is
a subnear-ring of N.

Theorem 5.5. Let N be a T'SI near-ring such that S C T

1. If Ng # {0}, then S =51, Q = {q1}, Na = {q1,0} = C(N), and
GC(N) = N.

2. If Ny = {0}, then C(N) = {0} and GC(N) = N.
In both cases, C(N) is a subnear-ring of N with C'(IN) C GC(N).

Proof. To show the first assertion, assume there exists 0 # d € Njy.
Suppose d ¢ T. Then for arbitrary a € [ and b € S, a+b ¢ T. Thus
d(a+b) = 0 and da + db = d + 0 imply d = 0, a contradiction. So
d € T. Now choose arbitrary a € I and b € S. Then a +b ¢ T. Thus
d(a+0) =0 and da + db = d+ ¢q; imply d + ¢; = 0 and d = ¢;. Since
b € S is arbitrary, S = S and @ = {¢1}. Thus, N; C {¢,0}.

Now we show ¢; € C(N). Leta € N. If a € S, then ¢ya = ¢1 = aq.
If a € I, then g1a = ¢1 = aq;. If a € T, then ¢ya = 0 = aq;. So q; €
C(N). This gives {0,¢1} € C(N). Since C(N) C Ngy € {0,¢1} C C(N),
we obtain equality of all three sets. It follows that GC(N) = N.

If Ny = {0}, then C'(N) C Ny implies C(N) = {0}. The rest of the
proof follows immediately. O

Example 5.6. Examples of T'SI near-rings with S C T’

Example 3. Let G = Z¢, T = {1,3,5}, I = {5}, S = 51 = {1,3}, and
@ = {3}. Then the T'SI near-ring N satisfies S C 7. One can verify
that C'(N) = {0, 3} so that {0} # C(N) C Ny. By the previous theorem,
N;={0,3} = C(N), and GC(N) = N.

Example 4. Let G = S3, the symmetric group on 3 elements, T
{(23),(12),(13)}, I ={(13)} and S = {(23),(12)} with S; = {(23)
and Sy = {(12)}. By the previous theorem, S = S} U .Sy implies C'(V)
Ny ={(1)} and GC(N) = N.

Lemma 5.7. Let N be a T'ST near-ring such that SNT # () with S € T..
Then N, C T'U{0}.

Proof. Assume 0 # x € N4 such that x ¢ T. Consider g, € SN T and
1 € 1. Since qx,7 € T, we know that q, + 14 & T'; hence qx + 1 & I. Since
x € Ny, we have z(qx, + (qx + 1)) = zq + x(qx +1). Simplifying both sides
of this equation yields z = 0, a contradiction. It follows that x € T and
N, CTUA{0}. O

—
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Note that if Ny = {0}, then GC(N) = N and C(N) = {0}. So we
turn our attention to the case where Ny # {0}.

Lemma 5.8. Let N be a T'ST near-ring such that SNT # () with S € T
If Ny # {0}, then Ny = {0,t}, for some t € T

Proof. Since SNT # (), there exists ¢; € S; C SNT. Fix i € I. Since
i€Tand g €T, wehavei+q; €T. Soi+q ¢ SUT ori+gq; € S\T.

Let ¢ € N\{0}. It follows that ¢t = ti = t((i + ¢;) + ¢;) = t(i +
q;) + tg;. By the previous lemma, t € T. If i + ¢; ¢ S UT, then the
preceding equation simplifies to t = ¢;. Since t € N;\{0} is arbitrary,
we conclude that Ny = {0,¢;}. If i + ¢; € S\T, the equation simplifies
to t = qi + g, for some g, € S\T which is independent of the choice of ¢.
Since t € Ng\{0} is arbitrary, we conclude that Ny = {0, g + ¢;}. The
result now follows. O

Theorem 5.9. Let N be a T'SI near-ring such that S NT # @ with
S ¢ T and N, # {0}.

1. If Ny ={0,i} for some i € I, then GC(N) = Q U{0,i}. Further-
more, if I = {i}, S = Q, and N\(SUT) = {0}, then C(N) = {0,i};
otherwise C'(N) = {0}.

2. If Ny = {0, s} for some s € (S;NT)\Q, then GC(N) = S;U(N\(SU
T)) and C'(N) = {0}.

3. If Ng={0,¢;} for some g; € S,NTNQ, then GC(N) =1US;U
(N\(SUT)) and C(N) = {0}.

The center C'(N) is a subnear-ring of N if and only if N does not
have a two-sided multiplicative identity or N has a two-sided multiplica-
tive identity of additive order two.

Proof. (1) Let x € GC(N). If z € I, then xi = iz implies z = i. If
x € S, then xi = ix implies x = ¢ for some g € S. If & SUT,
then zi = iz implies = 0. Hence, GC(N) C Q U {0,:}. Now assume
x € QU{0,i}. If x € {0,4}, then = clearly commutes with 0 and 4. If
xr=¢q € Q, then 20 =0 = 0z and zi = v = ¢ = ixz. Thus, x € GC(N)
and GC(N) = QU {0,i}. Since C(N) C N4, we only need to determine
if i € C(N) to complete the proof of the second statement. But if
I={i},S=@Q,and N\(SUT) = {0}, by Theorem 5.1, i is a two-sided
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multiplicative identity for N. Thusi € C'(N) and C(N) = {0,4}. For the
last part of the theorem, assume I # {i}, S # @, or N\(SUT) # {0}.
If I # {i}, thenlet i #j € I. Thenij=1i+# j=jiandi & C(N). If
S # @, then let s € Sp\Q. Then is = ¢ # s = si. Thus i ¢ C(N).
If N\(SUT) # {0}, then for 0 # x ¢ SUT, iz = 0 # x = xi, and
i ¢ C(N). In all three cases, i € C'(N); hence, C(N) = {0}.

(2) Let 2 € GC(N). If x ¢ SUT, then s = 0 = sz. Therefore,
assuming x ¢ S UT imposes no restriction on z. If x € I, then xs = sz
implies ¢; = s, a contradiction. So z ¢ I. If x € S, NT, then zs = sx
implies ¢; = q. Thus x € S;. If x € Si\T, then xs = sz implies 0 = gy,
a contradiction. So x ¢ S\T. Hence, GC(N) C S; U (N\(SUT)). For
the reverse inclusion, assume z € S;U(N\(SUT)). Clearly, 20 = 0 = 0z.
If v € S, then s = ¢; = sxz. If v ¢ SUT, then s = 0 = sz. Thus,
r € GC(N) and GC(N) = S; U(N\(SUT)). Since C(N) C Ny = {0, s}
and for ¢ € I, si = s # ¢; = is, it follows that C'(IV) = {0}.

(3) Let x € GC(N). If z € I, then zq; = ¢; = qjo. fx ¢ SUT,
then zq; = 0 = gjx. Therefore, assuming x € [ or x ¢ S UT imposes
no restriction on z. If x € Sy NT, then zq; = ¢z implies ¢; = ¢, and
x € S;. If v € Sp\T, then zq; = gz implies 0 = ¢, a contradiction.
So z ¢ S\T. Hence, GC(N) C IUS; U(N\(SUT)). Now assume
r e lUS;U(N\(SUT)). Clearly, 20 = 0 = 0x. If z € T U S, then
xq; = q; = qjx. If o  SUT, then 2g; = 0 = g;z. In all cases x commutes
with ¢; and € GC(N). Thus GC(N) = 1US; U(N\(SUT)). Since
C(N) € Ny = {0,¢;} and for g, € S\T, g;qr = g1 # 0 = qrq;, it follows
that C(N) = {0}.

If N does not have a multiplicative identity, then C'(N) = {0}. If N
has a multiplicative identity ¢, then C(N) = {0,:}. The latter is closed
under addition when ¢ has additive order two. O

Example 5.10. Examples of T'ST near-rings with SNT # () and S € T

Example 5. Let G = Zy x Zo, T = {(1,0),(1,1)}, I = {(1,1)}, and
S =@ ={(0,1),(1,0)} with S; = {(0,1)} and S, = {(1,0)}. Since I
consists of a single element, S = @, and N\(SUT) = {0}, by part (1)
of the previous theorem one sees that C(N) = {(0,0),(1,1)} = Ny and
GC(N) = N. Note that C'(N) is a subnear-ring of N.

Example 6. Let G = ZyxZyxZs, T = {(1,0,0),(1,0,1),(1,1,0),(1,1,1)},
= {(1,1,0), (1,1, )}, S = {(0,1,0), (0,1, )}, S = 1(1,0,0), (1,0, 1)},
and @ = {(0,1,0),(1,0,0)}. We claim that (1,1,0) € N4. To show this,
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we use various combinations of the following subsets of the TSI near-ring
N: 1,5y, Sy, N\ (SUT). First note that if A € {I,51,S52, N\ (SUT)}
and z,y € A, then (1,1,0)x = (1,1,0)y. We consider four cases:

1. Let Ae{l,5,5,N\(SUT)}. Consideraec Aandbe N\ (SU
T). Then a + b € A. From the remark above, (1,1,0)(a + b) =
(1,1,0)a = (1,1,0)a+(0,0,0) = (1,1,0)a+(1,1,0)b. Since G is an
abelian group, the case a € N\ (SUT) and b € A follows. Through-
out the remainder of the proof, we will employ this symmetry as
well.

2. Let A € {I,S), 5, N\(SUT)}. Consider a,b € A. Then a+b € N\
(SUT). Since a,b € A, it follows that (1,1,0)a = (1,1,0)b, which
has order 2in N. So (1,1,0)(a+b) = (0,0,0) = (1,1,0)a+(1, 1,0)b.

3. Let a € I and b € S;, where ¢ € {1,2}. Then a + b € S; where
j € {LQ}_{Z} So (L 1,0)((l+b) =4q; = (17 170)+qz - (]-a ]_,0)@—'—
(1,1,0)b.

4. Let a € Sy and b € S;. Then a+b € I. So (1,1,0)(a +b) =
(1,1,0) = (0,1,0) + (1,0,0) = (1,1,0)a + (1, 1,0)b.

It follows that (1,1,0) € Ny. Since (1,1,0) € I and I # {(1,1,0)},
by (1) in the previous theorem, C'(N) = {0} and

GCO(N) = {(0,0,0),(1,1,0), (0,1,0), (1,0,0)}.

Example 7. Let G = ZoxZoxZo, T = {(1,0,0), (1,0,1), (1,1,0), (1,1, 1)},
I = {(17171)}7 Sy = {(07170)7(07171)}7 Sy = {(17070)7(17071)}7 S =
{(1,1,0)}, and @ = {(0,1,0),(1,0,0),(1,1,0)}. As in the previous ex-
ample, using the subsets I, Sy, Sy, S3, and N \ (S UT) of the TSI
near-ring N in various combinations, one can show that (1,1,0) € N,.
Since (1,1,0) € SsNT NQ, by (3) in the previous theorem, C(N) = {0}
and GC(N) = {(0,0,0), (0,0,1),(1,1,0),(1,1,1)}.
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