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1. Introduction

Given a right near-ring (N, +, ·), its multiplicative center C(N) =
{x ∈ N | for all y ∈ N , x · y = y ·x} is, when nonempty, a sub-semigroup
of (N, ·) that need not be a subnear-ring of N . The first systematic study
of when multiplicative centers are subnear-rings is found in [2] where all
near-rings with identity of order p2, p a prime, having additively closed
multiplicative center are determined, and the multiplicative centers of
matrix near-rings (in the sense of Meldrum and van der Walt [9]) are
described. In [6], the notion of multiplicative center of a near-ring is
generalized as follows. Let Nd = {d ∈ N | d · (x + y) = d · x + d ·
y for all x, y ∈ N} be the set of left distributive elements of N . Then the
generalized center of N is defined as GC(N) = {g ∈ N | for all d ∈ Nd,
g ·d = d · g}; when nonempty, GC(N) is always a subnear-ring of N that
contains C(N). Furthermore, GC(N) = C(N) when N is a ring. The
generalized center of polynomial near-rings (in the sense of Bagley [3])
is studied in [6], and the generalized centers of distributively generated
near-rings with identity, centralizer near-rings determined by groups of
automorphisms on nontrivial finite groups, matrix near-rings, and near-
rings of polynomials with zero constant term over commutative rings with
identity are studied and compared with their associated multiplicative
centers in [4]. We observe that the majority of the existing work on
centers and generalized centers focuses on near-rings with identity.

In this paper, we continue the study of centers and generalized cen-
ters in near-rings defined via special multiplications on groups. The first
construction is given by Malone in [7]. Next, we define and study three
similarly-structured multiplications and completely characterize the cen-
ters and generalized centers of all four classes of near-rings. In almost
all cases, the near-rings we treat herein do not contain a two-sided iden-
tity and yield multiplicative centers that are subnear-rings. These new
constructions might also be useful in studying other near-ring properties.

Along with our characterization results, we present a host of exam-
ples to illustrate the cases described in the paper. Many of these examples
were discovered using the SONATA software [1]. We refer the reader to
[5], [8], and [10] for basic definitions and references regarding near-rings.
All groups used in examples have their usual addition. Hereafter, we
shall denote x · y by xy.
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2. Malone Trivial Near-Rings

We begin with a well-known construction of a near-ring N with
an elementary multiplication in which C(N) is always a subnear-ring of
N . Let (G, +) be a group, not necessarily abelian, with |G| ≥ 2. Let
S ⊆ G∗ := G\{0} and define a multiplication on G by

a · b =

{
a if b ∈ S
0 if b 6∈ S

.

Then N = (G, +, ·) is a right, zero-symmetric near-ring [7], now
called a Malone trivial near-ring. The next lemma demonstrates that
Malone trivial near-rings rarely have a two-sided multiplicative identity.

Lemma 2.1. Let N be a Malone trivial near-ring. Then N has a two-
sided multiplicative identity, 1, if and only if N = {0, 1} and S = {1},
i.e., N ∼= Z2.

Proof. Assume N has a two-sided multiplicative identity, 1. If S = ∅,
then ab = 0 for all a, b ∈ N and N does not have an identity. Thus, S is
nonempty. Let b ∈ S. Then b = 1 · b = 1 and S = {1}. Let b 6∈ S. Then
b = 1 · b = 0 and N \ S = {0}. By constructing the multiplication table
for the Malone trivial near-ring using N = {0, 1} and S = {1}, one can
see the resulting near-ring is Z2. The converse is immediate. ♦

We now prove a sequence of lemmas which will be helpful in our
characterization theorem and its ensuing examples.

Lemma 2.2. Let N be a Malone trivial near-ring. If Nd 6= {0} and
x, y ∈ S, then x + y 6∈ S.

Proof. Let 0 6= a ∈ Nd and x, y ∈ S. Assume x+y ∈ S. Then a(x+y) =
ax+ay implies a = a+a. Hence a = 0, a contradiction. So x+y 6∈ S. ♦

Lemma 2.3. Let N be a Malone trivial near-ring with S 6= ∅. Then
Nd ⊆ {a ∈ N | 2a = 0}.

Proof. If Nd = {0}, the result is clear. So assume Nd 6= {0}. Let a ∈ Nd.
Since S 6= ∅, there exists b ∈ S. Since Nd 6= {0}, by the previous
lemma, b + b 6∈ S. So a(b + b) = ab + ab implies 0 = a + a. Hence
Nd ⊆ {a ∈ N | 2a = 0}. ♦
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Lemma 2.4. Let N be a Malone trivial near-ring with S 6= ∅. Then
C(N) 6= {0} if and only if C(N) = GC(N) = N = {0, a} for some a 6= 0.

Proof. Assume 0 6= a ∈ C(N). If a 6∈ S, then for b ∈ S, ab = ba implies
a = 0, a contradiction. So a ∈ S. For b ∈ S, ab = ba implies a = b. Thus
S = {a}. For b 6∈ S, ba = ab implies b = 0. So N = S ∪ {0}. Hence,
N = {0, a} = C(N) = GC(N). The converse is clear. ♦

We now state the main characterization theorem for this section.

Theorem 2.5. Let N be a Malone trivial near-ring.

1. If S = ∅, then C(N) = GC(N) = N .

2. If S 6= ∅ and |N | = 2, then {0} 6= C(N) = GC(N) = N .

3. If S 6= ∅, |N | > 2, and Nd = {0}, then {0} = C(N) ( GC(N) = N .

4. If S 6= ∅, |N | > 2, Nd ∩ S = ∅, and Nd 6= {0}, then {0} = C(N) (
N \ S = GC(N) ( N .

5. If S 6= ∅, |N | > 2, Nd ∩ S 6= ∅, and |Nd| = 2, then {0} = C(N) (
Nd = GC(N) ( N .

6. If S 6= ∅, |N | > 2, Nd ∩ S 6= ∅, and |Nd| > 2, then {0} = C(N) =
GC(N) ( N .

In all cases, C(N) is a subnear-ring of N .

Proof. The first two cases are straightforward to verify. Since |N | > 2 in
cases (3) through (6), by the previous lemma, C(N) = {0}. To complete
case (3), note that if Nd = {0}, then GC(N) = N .

For case (4), let n ∈ Nd. Then n 6∈ S. For all t ∈ N \ S, nt =
0 = tn. Thus, N \ S ⊆ GC(N). Now let s ∈ S and 0 6= n ∈ Nd. Then
ns = n 6= 0 = sn. Hence, s 6∈ GC(N) and GC(N) = N \ S 6= N . Since
Nd 6= {0} and Nd ∩ S = ∅, we conclude {0} 6= N \ S. Case (4) now
follows.

For cases (5) and (6), fix y ∈ Nd ∩ S. Let a ∈ GC(N). If a ∈ S,
then ay = ya implies a = y. If a 6∈ S, then ay = ya implies a = 0. Thus
a = y or a = 0, and GC(N) ⊆ {0, y}.

If |Nd| = 2, then Nd = {0, y}. Thus y ∈ GC(N), and GC(N) =
{0, y}. This finishes case (5). For case (6), assume |Nd| ≥ 3. Let z ∈ Nd
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such that z 6∈ {0, y}. Then zy = z and yz ∈ {0, y}. Thus zy 6= yz and
y 6∈ GC(N). It follows that GC(N) = {0}, completing case (6).

Since C(N) = {0} or C(N) = N in all cases, C(N) is a subnear-ring
of N . ♦

We end the section by providing examples of each of the six cases
in the characterization theorem.

Example 2.6. Examples of Malone trivial near-rings

Case (1). Let G be any group and S = ∅. Then ab = 0 for all
a, b ∈ G and C(N) = GC(N) = N .

Case (2). Let G = Z2 and S = {1}. Then {0} 6= {0, 1} = C(N) =
GC(N) = N .

Case (3). Let G = Z3 and S = {1}. Since Nd ⊆ {a ∈ N | 2a = 0}
by Lemma 2.3 and G has no elements of additive order two, Nd = {0}.
Hence {0} = C(N) ( GC(N) = N .

Case (4). Let G = Z8 and S = {1, 3, 5, 7}. By Lemma 2.3,
Nd ⊆ {0, 4}. We now show containment in the other direction. Note
that for x, y ∈ N , x + y 6∈ S if and only if x, y ∈ S or x, y 6∈ S.
Thus, for x, y ∈ S, 4(x + y) = 0 = 4 + 4 = 4x + 4y. For x, y 6∈ S,
4(x + y) = 0 = 0 + 0 = 4x + 4y. For x ∈ S and y 6∈ S, 4(x + y) =
4 = 4 + 0 = 4x + 4y. By symmetry, 4(x + y) = 4x + 4y also follows
when x 6∈ S and y ∈ S. Thus, 4 ∈ Nd and Nd = {0, 4}. It follows that
{0} = C(N) ( {0, 2, 4, 6} = N \ S = GC(N) ( N .

Case (5). Let G = Z6 and S = {1, 3, 5}. Using a similar technique
as in case (4), one obtains Nd = {0, 3}. Thus, {0} = C(N) ( {0, 3} =
Nd = GC(N) ( N .

Case (6). Let G = S3 and S = {(1 2), (1 3), (2 3)}. Again, using the
technique as in case (4), one obtains Nd = {0, (1 2), (1 3), (2 3)}. It follows
from the characterization theorem that {0} = C(N) = GC(N) ( N .
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3. Complemented Malone Near-Rings

Let (G, +) be an abelian group and suppose ∅ 6= S ⊆ G∗ such that
for all x ∈ S, −x 6∈ S. Define a multiplication on G by

a · b =


a if b ∈ S

−a if − b ∈ S

0 if b 6∈ S and− b 6∈ S

.

Here S is taken to be nonempty to avoid having the zero multiplica-
tion on G. In this section, we first show that (G, +, ·) is always a near-ring
and that there is only one such near-ring with identity. Next, we char-
acterize the center and generalized center of the resulting near-ring. In
particular, we find that the center of a near-ring with this multiplication
is always a subnear-ring. We end this section with examples to illustrate
the theory.

Theorem 3.1. Given an abelian group (G, +) and a nonempty subset
S ⊆ G∗ satisfying x ∈ S implies −x 6∈ S and using the multiplication
defined above, N = (G, +, ·) is a zero-symmetric right near-ring with
|N | ≥ 3.

Proof. It is straightforward to show 0a = a0 = 0 for all a ∈ N , making N
zero-symmetric. Next we establish that for all a, b, c ∈ N , a(bc) = (ab)c.
If any of a, b, c equals 0, then a(bc) = 0 = (ab)c. So suppose a, b, c 6= 0.

1. If c 6∈ S and −c 6∈ S, then (ab)c = 0 = a(0) = a(bc).

2. If c ∈ S, then (ab)c = ab = a(bc).

3. If −c ∈ S, then (ab)c = −(ab), and a(bc) = a(−b).

(a) If b ∈ S, then −(ab) = −a = a(−b).

(b) If −b ∈ S, then −(ab) = −(−a) = a = a(−b).

(c) If b,−b 6∈ S, then −(ab) = 0 = a(−b).

Then, in all cases, (ab)c = a(bc), and hence the multiplication is associa-
tive. Now we show that for all a, b, c ∈ N , (a + b)c = ac + bc.
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1. If c ∈ S, then (a + b)c = a + b = ac + bc.

2. If −c ∈ S, then (a + b)c = −(a + b) = −a + (−b) = ac + bc since
(N, +) is abelian.

3. If c 6∈ S and −c 6∈ S, then (a + b)c = 0 = ac + bc.

Thus, right distributivity holds in all cases and N is a right near-ring.
Since S is nonempty, there exists 0 6= x ∈ S. It follows that

0 6= −x 6∈ S. So {x,−x, 0} ⊆ N , and |N | ≥ 3. The proof is now
complete. ♦

We refer to (N, +, ·) as a complemented Malone near-ring since its
multiplication is similar to that of ordinary Malone trivial near-rings,
but with the additional condition that negatives of elements of S must
be in the complement of S. This results in corresponding extra cases for
multiplication.

Lemma 3.2. Let N be a complemented Malone near-ring. The following
are equivalent:

1. C(N) 6= {0};

2. N has a multiplicative left identity;

3. |N | = 3;

4. N ∼= Z3.

Proof. It is obvious that condition (4) implies conditions (1), (2), and
(3). Assume condition (1). So there exists 0 6= a ∈ C(N). Either a 6∈ S
or a ∈ S.

Assume a 6∈ S. If −a 6∈ S, then for b ∈ S, a = ab = ba = 0, a
contradiction. Thus, −a ∈ S and a 6= −a. For c ∈ S, a = ac = ca = −c,
or equivalently, c = −a. Since c ∈ S is arbitrary, it follows that S =
{−a}.

Consider d 6∈ S. If −d ∈ S, then −a = ad = da = −d. Thus
d = a. If −d 6∈ S, then 0 = ad = da = −d. Thus d = 0. It follows that
N \ S ⊆ {0, a} and N = S ∪ (N \ S) = {0, a,−a}.

Now assume a ∈ S. By definition of S, −a 6∈ S and a 6= −a. For
b ∈ S, a = ab = ba = b. Since b ∈ S is arbitrary, S = {a}. Now
consider d 6∈ S. Using the cases −d ∈ S and −d 6∈ S with ad = da
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as above, we conclude d = −a or d = 0. Hence, N \ S ⊆ {0,−a} and
N = S∪(N \S) = {0, a,−a}. In both cases, N = {0, a,−a} and |N | = 3,
giving condition (3). So (1) implies (3).

For condition (2), let 1 ∈ N be a multiplicative left identity. Then
for x ∈ S, 1x = x implies 1 = x. So 1 ∈ S, and since x ∈ S is arbitrary,
S = {1} and −S = {−1}. Now let y ∈ N \{−1, 1}. Then 1y = y implies
0 = y. Thus, N = {0,−1, 1} and |N | = 3. Hence (2) implies (3).

Lastly, assume condition (3) holds. For 0 6= a ∈ N , either a 6∈ S and
−a ∈ S, or a ∈ S and −a 6∈ S. So N = {0, a,−a}. Using the definition
of complemented Malone near-rings, one can construct the multiplication
table for N in each case and see that N ∼= Z3. This gives (3) implies (4),
completing the proof. ♦

The lemma shows that the only complemented Malone near-ring
with identity is the ring Z3. Furthermore, the only complemented Malone
near-ring with nontrivial center is also the ring Z3.

We now state our main characterization theorem on complemented
Malone near-rings.

Theorem 3.3. Let N be a complemented Malone near-ring.

1. If |N | = 3, then N ∼= Z3.

2. If |N | > 3 and Nd = {0}, then {0} = C(N) ( GC(N) = N .

3. If |N | > 3, Nd 6= {0}, and Nd ∩ S = ∅, then {0} = C(N) (
N \ (S ∪ (−S)) = GC(N) ( N .

4. If |N | > 3, |Nd| = 3, and Nd ∩ S 6= ∅, then {0} = C(N) ( Nd =
GC(N) = {0, y,−y} ( N for some y 6= −y.

5. If |N | > 3, |Nd| > 3, and Nd∩S 6= ∅, then {0} = C(N) = GC(N) (
N .

In all cases, C(N) is a subnear-ring of N .

Proof. First note that |Nd| = 2 and Nd ∩ S 6= ∅ is an impossibility since
y ∈ Nd ∩ S implies Nd = {0, y}. Since N is abelian, −y ∈ Nd, giving
y = −y 6∈ S, a contradiction. So the five cases presented in the theorem
are exhaustive.
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Case (1) is immediate from the previous lemma. Since |N | > 3 in
(2) through (5), by the previous lemma, C(N) = {0}. To complete (2),
note that if Nd = {0}, then GC(N) = N .

For (3), let 0 6= y ∈ Nd. Then 0 6= −y ∈ Nd. Thus y,−y 6∈ S. Let
t ∈ N \ (S ∪ (−S)). Then t,−t 6∈ S. So yt = 0 = ty and t ∈ GC(N).
Hence, N \ (S ∪ (−S)) ⊆ GC(N). Now let t ∈ GC(N). If t ∈ S,
then ty = 0 6= y = yt, and t 6∈ GC(N), a contradiction. So t 6∈ S.
If t ∈ −S, then −t ∈ S and ty = 0 6= −y = yt. Hence t 6∈ GC(N),
a contradiction. So t 6∈ −S. It follows that t ∈ N \ (S ∪ (−S)) and
GC(N) ⊆ N \ (S ∪ (−S)).

To prove (4), let y ∈ Nd ∩ S. Note that −y 6∈ S since y ∈ S,
making y 6= −y. Given N is abelian, we know that −y ∈ Nd, thus
Nd = {0, y,−y} since |Nd| = 3. Let a ∈ GC(N). The three cases
(i) a ∈ S, (ii) −a ∈ S, and (iii) a 6∈ S, −a 6∈ S used in conjunction
with ay = ya yield a ∈ {0, y,−y}. Thus, GC(N) ⊆ {0, y,−y}. As
y(−y) = −y = (−y)y, all elements of {0, y,−y} commute with one
another. Hence, GC(N) = {0, y,−y} = Nd.

For the last case, let y ∈ Nd ∩ S. Using similar arguments to those
in case (4), we get GC(N) ⊆ {0, y,−y} ( Nd. Since |Nd| > 3, there
exists z ∈ Nd \ {0, y,−y}. If z ∈ S, then GC(N) ⊆ {0, z,−z}, so that
GC(N) ⊆ {0, y,−y} ∩ {0, z,−z} = {0}. For z 6∈ S, we consider two
subcases. If −z ∈ S, then zy = z 6= −y = yz and z(−y) = −z 6= y =
(−y)z. If −z 6∈ S, then zy = z 6= 0 = yz and z(−y) = −z 6= 0 = (−y)z.
In both subcases, zy 6= yz and z(−y) 6= (−y)z. Since z ∈ Nd, it follows
that y,−y 6∈ GC(N). This leaves GC(N) = {0}.

In all cases, C(N) = {0} or C(N) = N , making C(N) a subnear-
ring of N . ♦

We now illustrate the characterization theorem through several ex-
amples.

Example 3.4. Examples of complemented Malone near-rings

Case (1). Let G = Z3 and S = {1}. Then N is the ring Z3 with
the usual multiplication. So {0} 6= C(N) = GC(N) = N .

Case (2). Let G = Z6 and S = {1}. Let x ∈ Nd. Then 0 =
x · 3 = x(1 + 2) = x · 1 + x · 2 = x + 0 = x. Thus, Nd = {0} and
{0} = C(N) ( GC(N) = N follows.

Case (3). Let G = Z4 and S = {1}. So 3 ∈ −S. It follows that
2(1) = 2 = −2 = 2(3). First we show that 2 ∈ Nd. Let a, b ∈ N . If a and
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b are odd, then a + b ∈ {0, 2} and 2(a + b) = 0 = 2 + 2 = 2a + 2b. If a
and b are even, then a+ b ∈ {0, 2} and 2(a+ b) = 0 = 0+0 = 2a+2b. If
a and b have opposite parity, since G is abelian, we can assume without
a loss of generality that a is odd and b is even. Then a + b ∈ {1, 3} and
2(a + b) = 2 = 2 + 0 = 2a + 2b. Thus, 2 ∈ Nd and Nd 6= {0}. Note that
1 · (1+2) = 1 ·3 = 3 6= 1 = 1+0 = 1 ·1+1 ·2 and 1 6∈ Nd. So Nd∩S = ∅.
The conclusion of case (3) yields {0} = C(N) ( N \ (S ∪ (−S)) =
GC(N) ( N .

Case (4). Let G = Z6 and S = {2, 5}. Let a, b ∈ N . We leave it to
the reader to verify 2(a + b) = 2a + 2b with the following combinations
of choices for a and b: either a or b is zero; a, b ∈ S; a, b ∈ −S; a ∈ S,
b ∈ −S; a = 3, b ∈ S; a = 3, b ∈ −S; a = b = 3. Thus 2 ∈ Nd. Since
G is abelian, Nd is a subgroup of G and −2 = 4 ∈ Nd as well. Note
that 1 · (2 + 2) = 1 · 4 = 5 6= 2 = 1 + 1 = 1 · 2 + 1 · 2 and 1 6∈ Nd. So
|Nd| = 3. It follows that Nd = {0, 2, 4} and Nd ∩ S = {2} 6= ∅. Hence,
{0} = C(N) ( Nd = GC(N) = {0, y,−y} ( N for some y 6= −y.

Case (5). Let G = Z3×Z3 and S = {(2, 0), (2, 1), (2, 2)}. We leave
it to the reader to verify (1, 0)(a+b) = (1, 0)a+(1, 0)b and (0, 1)(a+b) =
(0, 1)a + (0, 1)b with the following combinations of choices for a and b:
a, b ∈ S; a, b ∈ −S; a ∈ S, b ∈ −S; a ∈ S, b ∈ S + (−S); a ∈ −S,
b ∈ S + (−S); a, b ∈ S + (−S). Thus (1, 0), (0, 1) ∈ Nd. Since G is
abelian, Nd is a subgroup of G. So Nd = N and Nd ∩ S 6= ∅. It follows
that N is a ring. Therefore, {0} = C(N) = GC(N) ( N .

4. TS Near-Rings

In this section, we construct a near-ring N from a given finite group
of even order. As with Malone trivial near-rings, a product a · b in N
is defined in terms of the membership of b in a certain set S. Unlike
multiplication in Malone trivial near-rings, however, the product a · b
requires consideration of the membership of b in different subsets of S,
and also depends on the set membership of a in a superset T of S. We
show that for the near-ring N constructed in this section, C(N) is always
a subnear-ring of N .

Theorem 4.1. Let (G, +) be a finite group of even order, not necessarily
abelian. Suppose there exists ∅ 6= T ⊆ G∗ such that G\T is a (normal)
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subgroup of G of index 2. Further suppose there is ∅ 6= S ⊆ T with
S = S1∪̇S2∪̇ · · · ∪̇Sn, a partition of S, and that there are distinct elements
q1, . . . , qn of order 2 in G\(T ∪ {0}).

Define a multiplication on G by

a · b =



q1 if a ∈ T, b ∈ S1

q2 if a ∈ T, b ∈ S2
...

qn if a ∈ T, b ∈ Sn

0 otherwise

.

Then N = (G, +, ·) is a right, zero-symmetric near-ring without
multiplicative identity.

Proof. Since (G, +) is a group, we only need to show associativity of
multiplication and right distributivity of multiplication over addition.
To show associativity, let a, b, c ∈ N . If a 6∈ T , b 6∈ T or c 6∈ T , then
(ab)c = 0 = a(bc). So assume a, b, c ∈ T . We consider four cases. (Note
that if one assumes x ∈ S, then x ∈ Si for some i = 1, 2, . . . , n. For ease
of notation, throughout this section we will immediately assume x ∈ Si.)

1. If b ∈ Sj and c ∈ Si, then (ab)c = qjc = 0 = aqi = a(bc).

2. If b, c ∈ T \ S, then (ab)c = 0 · c = 0 = a · 0 = a(bc).

3. If b ∈ T \ S and c ∈ Si, then (ab)c = 0 · c = 0 = aqi = a(bc).

4. If b ∈ Sj and c ∈ T \ S, then (ab)c = qjc = 0 = a · 0 = a(bc).

So all cases are exhausted and multiplication is associative.
Now we verify the right distributive law. We note that G\T is

a normal subgroup of index 2 in G, making T the other coset of G
determined by G\T . It follows that:

1. If a, b ∈ T , then a + b /∈ T .
2. If a ∈ T and b /∈ T , then a + b ∈ T and b + a ∈ T .
3. If a, b /∈ T , then a + b /∈ T .
Let a, b, c ∈ N . If c 6∈ S, then (a + b)c = 0 = 0 + 0 = ac + bc. So

assume c ∈ Si. We consider four cases.

1. If a, b ∈ T , then a + b 6∈ T and (a + b)c = 0 = qi + qi = ac + bc.
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2. If a, b 6∈ T , then a + b 6∈ T and (a + b)c = 0 = 0 + 0 = ac + bc.

3. If a ∈ T and b 6∈ T , then a+b ∈ T and (a+b)c = qi = qi+0 = ac+bc.

4. If a 6∈ T and b ∈ T , then a+b ∈ T and (a+b)c = qi = 0+qi = ac+bc.

So all cases are exhausted and multiplication distributes over addi-
tion on the right. We conclude that N is a right near-ring.

Suppose N has a multiplicative identity 1. If 1 ∈ T , then for
b ∈ S1, b = 1 · b = q1 6∈ S1, a contradiction. So 1 6∈ T . Thus, for b ∈ S1,
b = 1 · b = 0 6∈ S1, a contradiction. It follows that N does not have a
multiplicative identity. This completes the proof. ♦

We call the near-ring N above a TS near-ring. Our characterization
theorem for this section is given by the following.

Theorem 4.2. Let N be a TS near-ring with S = S1∪̇S2∪̇ · · · ∪̇Sn as
described above.

1. If n = 1 and S = T , then C(N) = Nd = GC(N) = N , making N
a commutative near-ring.

2. If n = 1 and S ( T , then N \ T = C(N) = Nd ( GC(N) = N .

3. If n ≥ 2, then N \ T = C(N) = Nd ( GC(N) = N .

In all cases, C(N) is a subnear-ring of N .

Proof. Note that in all cases if x ∈ N \ T and a ∈ N , then xa = 0 = ax.
Thus N \ T ⊆ C(N).

(1) Assume n = 1 and S = T . Let x ∈ T . For a ∈ T = S1,
xa = 0 = ax. For a 6∈ T , xa = 0 = xa. So x ∈ C(N) and T ⊆ C(N).
From the remark above, N \ T ⊆ C(N) as well, giving C(N) = N .
Since C(N) ⊆ Nd in any near-ring N , it follows that Nd = N . Thus
C(N) = Nd = GC(N) = N .

(2) Assume n = 1 and S ( T . Let x ∈ C(N) and assume x ∈ T .
Then for a ∈ S, xa = ax implies q1 = ax. We conclude that x ∈ S. Now
let y ∈ T \ S. Then xy = 0 6= q1 = yx, which contradicts x ∈ C(N).
It follows that x 6∈ T and C(N) ⊆ N \ T . Using the comment at the
beginning of the proof, we get N \ T = C(N).

As above, since C(N) ⊆ Nd for any near-ring, it follows that N\T ⊆
Nd. To show containment in the other direction, let x ∈ Nd and assume
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x ∈ T . Let a ∈ S and b ∈ T \ S. Then a + b 6∈ T as noted above when
proving the right distributive law. Hence, x(a + b) = 0 6= q1 = q1 + 0 =
xa + xb, contradicting x ∈ Nd. Thus x 6∈ T and N \ T = Nd. Since
C(N) = Nd, GC(N) = N . Proper containment in the chain follows since
N \ T ( N .

(3) Assume n ≥ 2. Suppose first that S = T . Let x ∈ C(N)
and assume x ∈ T = S. Suppose x ∈ Sj and choose any a ∈ Si 6= Sj.
Then xa = qi 6= qj = ax, contradicting x ∈ C(N). Hence, x 6∈ T and
C(N) ⊆ N \T . It follows that N \T = C(N) ⊆ Nd. For containment the
other way, let x ∈ Nd and assume x ∈ T . Then for a ∈ S1 and b ∈ S2,
a + b 6∈ T = S and x(a + b) = 0 6= q1 + q2 = xa + xb. Thus, x 6∈ Nd, a
contradiction. So x 6∈ T and Nd = N \T = C(N). Since Nd = C(N), we
conclude GC(N) = N .

Now suppose S ( T . Let x ∈ C(N) and assume x ∈ T . If x ∈ S,
then using the same proof in the S = T case above, we contradict x ∈
C(N). If x 6∈ S, then for a ∈ S1, xa = q1 6= 0 = ax and x 6∈ C(N), a
contradiction as well. Thus, x 6∈ T and N \ T = C(N) ⊆ Nd. A similar
argument as above shows containment in the other direction.

Lastly, we show that C(N) is always a subnear-ring of N by con-
sidering the three cases given in the theorem. In case (1), since C(N) =
GC(N), C(N) is a subnear-ring of N . For cases (2) and (3), we have
C(N) = N \T . Since N \T is a subgroup of N , C(N) is closed under ad-
dition. As C(N) is closed under multiplication,and N is finite, it follows
that C(N) is a subnear-ring of N . ♦

Examples of each case of Theorem 4.2 may be easily constructed
following the definition.

5. TSI Near-Rings

Theorem 5.1. Let (G, +) be a group of even order, not necessarily
abelian. Suppose there exists ∅ 6= T ⊆ G∗ such that G\T is a (normal)
subgroup of G of index 2. Let ∅ 6= I ⊆ T and ∅ 6= S ⊆ G∗\I such that
T = I ∪ (S ∩T ). Partition S into S = S1∪̇S2∪̇ · · · ∪̇Sn such that for each
1 ≤ i ≤ n, Si ⊆ S ∩T or Si ⊆ S\T . Furthermore, choose distinct qi ∈ Si

such that 2qi = 0 for each 1 ≤ i ≤ n.
Define a multiplication on G by
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ab =



a if b ∈ I
q1 if a ∈ T, b ∈ S1
...

qn if a ∈ T, b ∈ Sn

0 otherwise

.

Then N = (G, +, ·) is a right zero-symmetric near-ring. Fur-
thermore, N has a two-sided identity, 1, if and only if I = {1}, S =
{q1, q2, . . . , qn}, and N \ (S ∪ T ) = {0}.

Proof. Since (N, +) is a group, we only need to show that the given
multiplication is associative and that multiplication distributes from the
right over the addition of N . First we need a lemma.

Lemma 5.2. The product ab ∈ T if and only if a ∈ T and b ∈ T .

Proof. Assume a ∈ T and b ∈ T . Since b ∈ T , either b ∈ I or b ∈ S.
If b ∈ I, then ab = a ∈ T . If b ∈ S, then b ∈ Sj ∩ T for some j
and ab = qj ∈ Sj ⊆ T . Thus, ab ∈ T . For the converse, first assume
a 6∈ T . Either b ∈ I or b 6∈ I. If b ∈ I, then ab = a 6∈ T . If b 6∈ I,
then ab = 0 6∈ T . Now assume b 6∈ T . If b ∈ Sj \ T and a ∈ T , then
ab = qj ∈ Sj and ab 6∈ T . Otherwise, ab = 0 6∈ T . Hence, if a 6∈ T or
b 6∈ T , then ab 6∈ T , and the proof of the lemma is complete. ♦

To show associativity of multiplication, let a, b, c ∈ N . We consider
five cases.

1. If c ∈ I, then (ab)c = ab = a(bc).

2. If c 6∈ I and c 6∈ S, then (ab)c = 0 = a(bc).

3. If c 6∈ I, c ∈ Si, and a, b ∈ T , then by the previous lemma, ab ∈ T .
Thus (ab)c = qi = aqi = a(bc).

4. If c 6∈ I, c ∈ Si, and a 6∈ T , then by the previous lemma, ab 6∈ T .
Since c ∈ Si, it follows that bc 6∈ I. Therefore (ab)c = 0 = a(bc).

5. If c 6∈ I, c ∈ Si, and b 6∈ T , then by the previous lemma, ab 6∈ T .
So (ab)c = 0 = a · 0 = a(bc).
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Associativity of multiplication now follows.

Since G\T is a normal subgroup of index 2 in G, we have the same
conditions as in TS near-rings:
1. If a, b ∈ T , then a + b /∈ T .
2. If a ∈ T and b /∈ T , then a + b ∈ T and b + a ∈ T .
3. If a, b /∈ T , then a + b /∈ T .

To show distributivity, again let a, b, c ∈ N . If c ∈ I, then (a+b)c =
a + b = ac + bc. If c 6∈ I, but c ∈ Si, then:

1. If a, b ∈ T , then a + b 6∈ T and (a + b)c = 0 = qi + qi = ac + bc.

2. If a, b 6∈ T , then a + b 6∈ T and (a + b)c = 0 = 0 + 0 = ac + bc.

3. If a ∈ T , b 6∈ T , then a+ b ∈ T and (a+ b)c = qi = qi +0 = ac+ bc.

4. If a 6∈ T , b ∈ T , then a+ b ∈ T and (a+ b)c = qi = 0+ qi = ac+ bc.

Finally, if c 6∈ I and c 6∈ S, (a + b)c = 0 = 0 + 0 = ac + bc. The
right distributive law now follows and N is a right near-ring.

Assume 1 is a two-sided multiplicative identity for N . Let b ∈ I.
Then b = 1 · b = 1. So I = {1}. Now let b ∈ Si. Then b = 1 · b = qi

since 1 ∈ T . Thus Si = {qi} for every i. Finally, let b ∈ N \ (S ∪ T ).
Then b = 1 · b = 0. So N \ (S ∪ T ) = {0}. Now assume I = {1},
S = {q1, q2, . . . , qn}, and N \ (S ∪ T ) = {0}. Since 1 · qi = qi = qi · 1 for
all i, it follows that 1 is a two-sided identity for N . ♦

We call the near-ring N above a TSI near-ring. Note that I
is the set of right identities in N . Throughout this section, let Q =
{q1, q2, . . . , qn}. We consider three cases for S and T : S ∩ T = ∅, S ( T ,
and S ∩ T 6= ∅ with S 6⊆ T .

Theorem 5.3. Let N be a TSI near-ring such that S ∩ T = ∅. Then:

1. C(N) = Q∪{0}, which is a subnear-ring of N if and only if Q∪{0}
is a subgroup of G \ T ;

2. Nd = {d ∈ N\T | order of d ≤ 2};

3. If Nd = Q ∪ {0}, then GC(N) = N . If Nd 6= Q ∪ {0}, then
GC(N) = N\T .
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Proof. Note that if S ∩ T = ∅, then T = I.
(1) Let c ∈ C(N). Assume c 6∈ S. Let t ∈ T . Then ct = tc implies

c = 0. Hence C(N) ⊆ S ∪ {0}. Now assume c ∈ S. Thus, c ∈ Si for
some i. Then for t ∈ T , ct = tc implies c = qi. Hence C(N) ⊆ Q ∪ {0}.
For containment in the other direction, let q ∈ Q and n ∈ N . If n ∈ T ,
then qn = q = nq. If n 6∈ T , then qn = 0 = nq. Thus q ∈ C(N) and
C(N) = Q ∪ {0}. The last part of (1) is a restatement of the additive
closure of C(N).

(2) First we show that Nd ⊆ N\T . Assume d ∈ Nd ∩ T . Let a ∈ T
and b ∈ Si. Then a + b ∈ T . So d(a + b) = d and da + db = d + qi imply
qi = 0, a contradiction. Hence, d 6∈ T . Thus, by contradiction, Nd ⊆
N\T . Now let d ∈ Nd and a, b ∈ T . So d, a + b 6∈ T . Thus, d(a + b) = 0
and da + db = d + d imply d + d = 0, and every element of Nd has order
at most two. We conclude that Nd ⊆ {d ∈ N\T | order of d ≤ 2}.

Now we show containment in the other direction. We know 0 ∈ Nd,
so let 0 6= d ∈ {d ∈ G\T | order of d ≤ 2}. If a, b ∈ T , then a + b 6∈ T
and d(a + b) = 0 = d + d = da + db. If a, b 6∈ T , then a + b 6∈ T and
d(a + b) = 0 = 0 + 0 = da + db. If a ∈ T and b 6∈ T , then a + b ∈ T
and d(a + b) = d = d + 0 = da + db. The case a 6∈ T and b ∈ T follows
by symmetry. Thus d ∈ Nd and {d ∈ N\T | order of d ≤ 2} ⊆ Nd. The
result now follows.

(3) If Nd = Q ∪ {0} = C(N), then GC(N) = N is clear. Assume
Nd 6= Q ∪ {0}. Let d ∈ Nd. Then d 6∈ T . Let x 6∈ T . Then dx = 0 = xd,
and x ∈ GC(N). Thus, N\T ⊆ GC(N). Now let x ∈ GC(N). Since
Nd 6= Q ∪ {0}, there exists 0 6= d ∈ Nd\Q. Assume x ∈ T . Then
xd = dx = d. If d ∈ S, then xd = qi for some qi ∈ Q. So d = qi ∈ Q,
a contradiction. If d 6∈ S, then xd = 0. So d = 0, a contradiction. We
conclude x 6∈ T . Thus GC(N) ⊆ N\T , hence, equality. ♦

Example 5.4. Examples of TSI near-rings with S ∩ T = ∅

Example 1. Let G = Z4, T = I = {1, 3}, and S = S1 = Q = {2}. Then
S ∩ T = ∅ and by the previous theorem, the resulting TSI near-ring has
C(N) = Q ∪ {0} = {0, 2} = Nd and GC(N) = N . Here, C(N) is a
subnear-ring of N .
Example 2. Let G = Z4 × Z2, T = I = {(1, 0), (3, 0), (1, 1), (3, 1)},
S = S1 = {(2, 0), (2, 1), (0, 1)}, and Q = {(0, 1)}. Then S ∩ T = ∅
and by the previous theorem, the resulting TSI near-ring has C(N) =
Q ∪ {(0, 0)} = {(0, 1), (0, 0)} and Nd = S ∪ {(0, 0)}. So Nd 6= Q ∪ {0}
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and GC(N) = N \ T = Nd = {(2, 0), (2, 1), (0, 1), (0, 0)}. Here, C(N) is
a subnear-ring of N .

Theorem 5.5. Let N be a TSI near-ring such that S ( T .

1. If Nd 6= {0}, then S = S1, Q = {q1}, Nd = {q1, 0} = C(N), and
GC(N) = N .

2. If Nd = {0}, then C(N) = {0} and GC(N) = N .

In both cases, C(N) is a subnear-ring of N with C(N) ( GC(N).

Proof. To show the first assertion, assume there exists 0 6= d ∈ Nd.
Suppose d 6∈ T . Then for arbitrary a ∈ I and b ∈ S, a + b 6∈ T . Thus
d(a + b) = 0 and da + db = d + 0 imply d = 0, a contradiction. So
d ∈ T . Now choose arbitrary a ∈ I and b ∈ S. Then a + b 6∈ T . Thus
d(a + b) = 0 and da + db = d + qi imply d + qi = 0 and d = qi. Since
b ∈ S is arbitrary, S = S1 and Q = {q1}. Thus, Nd ⊆ {q1, 0}.

Now we show q1 ∈ C(N). Let a ∈ N . If a ∈ S, then q1a = q1 = aq1.
If a ∈ I, then q1a = q1 = aq1. If a 6∈ T , then q1a = 0 = aq1. So q1 ∈
C(N). This gives {0, q1} ⊆ C(N). Since C(N) ⊆ Nd ⊆ {0, q1} ⊆ C(N),
we obtain equality of all three sets. It follows that GC(N) = N .

If Nd = {0}, then C(N) ⊆ Nd implies C(N) = {0}. The rest of the
proof follows immediately. ♦

Example 5.6. Examples of TSI near-rings with S ( T

Example 3. Let G = Z6, T = {1, 3, 5}, I = {5}, S = S1 = {1, 3}, and
Q = {3}. Then the TSI near-ring N satisfies S ( T . One can verify
that C(N) = {0, 3} so that {0} 6= C(N) ⊆ Nd. By the previous theorem,
Nd = {0, 3} = C(N), and GC(N) = N .
Example 4. Let G = S3, the symmetric group on 3 elements, T =
{(2 3), (1 2), (1 3)}, I = {(1 3)} and S = {(2 3), (1 2)} with S1 = {(2 3)}
and S2 = {(1 2)}. By the previous theorem, S = S1∪S2 implies C(N) =
Nd = {(1)} and GC(N) = N .

Lemma 5.7. Let N be a TSI near-ring such that S∩T 6= ∅ with S 6⊆ T .
Then Nd ⊆ T ∪ {0}.
Proof. Assume 0 6= x ∈ Nd such that x 6∈ T . Consider qk ∈ S ∩ T and
i ∈ I. Since qk, i ∈ T , we know that qk + i 6∈ T ; hence qk + i 6∈ I. Since
x ∈ Nd, we have x(qk +(qk + i)) = xqk +x(qk + i). Simplifying both sides
of this equation yields x = 0, a contradiction. It follows that x ∈ T and
Nd ⊆ T ∪ {0}. ♦
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Note that if Nd = {0}, then GC(N) = N and C(N) = {0}. So we
turn our attention to the case where Nd 6= {0}.

Lemma 5.8. Let N be a TSI near-ring such that S∩T 6= ∅ with S 6⊆ T .
If Nd 6= {0}, then Nd = {0, t}, for some t ∈ T .

Proof. Since S ∩ T 6= ∅, there exists qj ∈ Sj ⊆ S ∩ T . Fix i ∈ I. Since
i ∈ T and qj ∈ T , we have i + qj 6∈ T . So i + qj 6∈ S ∪ T or i + qj ∈ S\T .

Let t ∈ Nd\{0}. It follows that t = ti = t((i + qj) + qj) = t(i +
qj) + tqj. By the previous lemma, t ∈ T . If i + qj 6∈ S ∪ T , then the
preceding equation simplifies to t = qj. Since t ∈ Nd\{0} is arbitrary,
we conclude that Nd = {0, qj}. If i + qj ∈ S\T , the equation simplifies
to t = qk + qj for some qk ∈ S\T which is independent of the choice of t.
Since t ∈ Nd\{0} is arbitrary, we conclude that Nd = {0, qk + qj}. The
result now follows. ♦

Theorem 5.9. Let N be a TSI near-ring such that S ∩ T 6= ∅ with
S 6⊆ T and Nd 6= {0}.

1. If Nd = {0, i} for some i ∈ I, then GC(N) = Q ∪ {0, i}. Further-
more, if I = {i}, S = Q, and N\(S∪T ) = {0}, then C(N) = {0, i};
otherwise C(N) = {0}.

2. If Nd = {0, s} for some s ∈ (Sj∩T )\Q, then GC(N) = Sj∪(N\(S∪
T )) and C(N) = {0}.

3. If Nd = {0, qj} for some qj ∈ Sj ∩ T ∩ Q, then GC(N) = I ∪ Sj ∪
(N\(S ∪ T )) and C(N) = {0}.

The center C(N) is a subnear-ring of N if and only if N does not
have a two-sided multiplicative identity or N has a two-sided multiplica-
tive identity of additive order two.

Proof. (1) Let x ∈ GC(N). If x ∈ I, then xi = ix implies x = i. If
x ∈ S, then xi = ix implies x = q for some q ∈ S. If x 6∈ S ∪ T ,
then xi = ix implies x = 0. Hence, GC(N) ⊆ Q ∪ {0, i}. Now assume
x ∈ Q ∪ {0, i}. If x ∈ {0, i}, then x clearly commutes with 0 and i. If
x = q ∈ Q, then x0 = 0 = 0x and xi = x = q = ix. Thus, x ∈ GC(N)
and GC(N) = Q ∪ {0, i}. Since C(N) ⊆ Nd, we only need to determine
if i ∈ C(N) to complete the proof of the second statement. But if
I = {i}, S = Q, and N\(S ∪ T ) = {0}, by Theorem 5.1, i is a two-sided
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multiplicative identity for N . Thus i ∈ C(N) and C(N) = {0, i}. For the
last part of the theorem, assume I 6= {i}, S 6= Q, or N\(S ∪ T ) 6= {0}.
If I 6= {i}, then let i 6= j ∈ I. Then ij = i 6= j = ji and i 6∈ C(N). If
S 6= Q, then let s ∈ Sk\Q. Then is = qk 6= s = si. Thus i 6∈ C(N).
If N\(S ∪ T ) 6= {0}, then for 0 6= x 6∈ S ∪ T , ix = 0 6= x = xi, and
i 6∈ C(N). In all three cases, i 6∈ C(N); hence, C(N) = {0}.

(2) Let x ∈ GC(N). If x 6∈ S ∪ T , then xs = 0 = sx. Therefore,
assuming x 6∈ S ∪ T imposes no restriction on x. If x ∈ I, then xs = sx
implies qj = s, a contradiction. So x 6∈ I. If x ∈ Sk ∩ T , then xs = sx
implies qj = qk. Thus x ∈ Sj. If x ∈ Sk\T , then xs = sx implies 0 = qk,
a contradiction. So x 6∈ S\T . Hence, GC(N) ⊆ Sj ∪ (N\(S ∪ T )). For
the reverse inclusion, assume x ∈ Sj∪(N\(S∪T )). Clearly, x0 = 0 = 0x.
If x ∈ Sj, then xs = qj = sx. If x 6∈ S ∪ T , then xs = 0 = sx. Thus,
x ∈ GC(N) and GC(N) = Sj ∪ (N\(S ∪ T )). Since C(N) ⊆ Nd = {0, s}
and for i ∈ I, si = s 6= qj = is, it follows that C(N) = {0}.

(3) Let x ∈ GC(N). If x ∈ I, then xqj = qj = qjx. If x 6∈ S ∪ T ,
then xqj = 0 = qjx. Therefore, assuming x ∈ I or x 6∈ S ∪ T imposes
no restriction on x. If x ∈ Sk ∩ T , then xqj = qjx implies qj = qk, and
x ∈ Sj. If x ∈ Sk\T , then xqj = qjx implies 0 = qk, a contradiction.
So x 6∈ S\T . Hence, GC(N) ⊆ I ∪ Sj ∪ (N\(S ∪ T )). Now assume
x ∈ I ∪ Sj ∪ (N\(S ∪ T )). Clearly, x0 = 0 = 0x. If x ∈ I ∪ Sj, then
xqj = qj = qjx. If x 6∈ S∪T , then xqj = 0 = qjx. In all cases x commutes
with qj and x ∈ GC(N). Thus GC(N) = I ∪ Sj ∪ (N\(S ∪ T )). Since
C(N) ⊆ Nd = {0, qj} and for qk ∈ S\T , qjqk = qk 6= 0 = qkqj, it follows
that C(N) = {0}.

If N does not have a multiplicative identity, then C(N) = {0}. If N
has a multiplicative identity i, then C(N) = {0, i}. The latter is closed
under addition when i has additive order two. ♦

Example 5.10. Examples of TSI near-rings with S ∩T 6= ∅ and S 6⊆ T

Example 5. Let G = Z2 × Z2, T = {(1, 0), (1, 1)}, I = {(1, 1)}, and
S = Q = {(0, 1), (1, 0)} with S1 = {(0, 1)} and S2 = {(1, 0)}. Since I
consists of a single element, S = Q, and N\(S ∪ T ) = {0}, by part (1)
of the previous theorem one sees that C(N) = {(0, 0), (1, 1)} = Nd and
GC(N) = N . Note that C(N) is a subnear-ring of N .
Example 6. Let G = Z2×Z2×Z2, T = {(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)},
I = {(1, 1, 0), (1, 1, 1)}, S1 = {(0, 1, 0), (0, 1, 1)}, S2 = {(1, 0, 0), (1, 0, 1)},
and Q = {(0, 1, 0), (1, 0, 0)}. We claim that (1, 1, 0) ∈ Nd. To show this,



22 G. A. Cannon, M. Farag, L. Kabza, K. Neuerburg

we use various combinations of the following subsets of the TSI near-ring
N : I, S1, S2, N \ (S ∪ T ). First note that if A ∈ {I, S1, S2, N \ (S ∪ T )}
and x, y ∈ A, then (1, 1, 0)x = (1, 1, 0)y. We consider four cases:

1. Let A ∈ {I, S1, S2, N \ (S ∪ T )}. Consider a ∈ A and b ∈ N \ (S ∪
T ). Then a + b ∈ A. From the remark above, (1, 1, 0)(a + b) =
(1, 1, 0)a = (1, 1, 0)a+(0, 0, 0) = (1, 1, 0)a+(1, 1, 0)b. Since G is an
abelian group, the case a ∈ N \(S∪T ) and b ∈ A follows. Through-
out the remainder of the proof, we will employ this symmetry as
well.

2. Let A ∈ {I, S1, S2, N\(S∪T )}. Consider a, b ∈ A. Then a+b ∈ N\
(S ∪ T ). Since a, b ∈ A, it follows that (1, 1, 0)a = (1, 1, 0)b, which
has order 2 in N . So (1, 1, 0)(a+b) = (0, 0, 0) = (1, 1, 0)a+(1, 1, 0)b.

3. Let a ∈ I and b ∈ Si, where i ∈ {1, 2}. Then a + b ∈ Sj where
j ∈ {1, 2}−{i}. So (1, 1, 0)(a+ b) = qj = (1, 1, 0)+qi = (1, 1, 0)a+
(1, 1, 0)b.

4. Let a ∈ S1 and b ∈ S2. Then a + b ∈ I. So (1, 1, 0)(a + b) =
(1, 1, 0) = (0, 1, 0) + (1, 0, 0) = (1, 1, 0)a + (1, 1, 0)b.

It follows that (1, 1, 0) ∈ Nd. Since (1, 1, 0) ∈ I and I 6= {(1, 1, 0)},
by (1) in the previous theorem, C(N) = {0} and

GC(N) = {(0, 0, 0), (1, 1, 0), (0, 1, 0), (1, 0, 0)}.
Example 7. Let G = Z2×Z2×Z2, T = {(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)},
I = {(1, 1, 1)}, S1 = {(0, 1, 0), (0, 1, 1)}, S2 = {(1, 0, 0), (1, 0, 1)}, S3 =
{(1, 1, 0)}, and Q = {(0, 1, 0), (1, 0, 0), (1, 1, 0)}. As in the previous ex-
ample, using the subsets I, S1, S2, S3, and N \ (S ∪ T ) of the TSI
near-ring N in various combinations, one can show that (1, 1, 0) ∈ Nd.
Since (1, 1, 0) ∈ S3 ∩ T ∩Q, by (3) in the previous theorem, C(N) = {0}
and GC(N) = {(0, 0, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1)}.
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