Centers and Generalized Centers of NearRings Without Identity Defined via Malone-Like Multiplications

G. Alan Cannon

Department of Mathematics Southeastern Louisiana University Hammond, LA 70402
Mark Farag
Department of Mathematics, Fairleigh Dickinson University, Teaneck, NJ, 07666

Lucyna Kabza

Department of Mathematics Southeastern Louisiana University Hammond, LA 70402

Kent M. Neuerburg
Department of Mathematics Southeastern Louisiana University Hammond, LA 70402

Received: October 22, 2014
MSC 2000: 16 Y 30
Keywords: Near-ring, center, generalized center, Malone trivial near-ring

Abstract

The multiplicative center of a right near-ring $(N,+, \cdot), C(N)=$ $\{x \in N \mid$ for all $y \in N, x \cdot y=y \cdot x\}$, in general, is not a subnear-ring of N. On the other hand, the generalized center, $G C(N)=\left\{g \in N \mid\right.$ for all $d \in N_{d}$, $g \cdot d=d \cdot g\}$, where $N_{d}=\{d \in N \mid d \cdot(x+y)=d \cdot x+d \cdot y$ for all $x, y \in N\}$, is always a subnear-ring of N. We investigate four classes of zero-symmetric near-rings defined via special multiplications on groups. Three of these classes have not appeared in the literature, and nearly all near-rings investigated are near-rings without identity. The center and generalized center of each nearring in these four classes are determined, with the center almost always being a subnear-ring of N. Numerous examples are given to illustrate the results.

E-mail addresses: acannon@southeastern.edu, mfarag@fdu.edu, lkabza@southeastern.edu, kneuerburg@southeastern.edu

1. Introduction

Given a right near-ring $(N,+, \cdot)$, its multiplicative center $C(N)=$ $\{x \in N \mid$ for all $y \in N, x \cdot y=y \cdot x\}$ is, when nonempty, a sub-semigroup of (N, \cdot) that need not be a subnear-ring of N. The first systematic study of when multiplicative centers are subnear-rings is found in [2] where all near-rings with identity of order p^{2}, p a prime, having additively closed multiplicative center are determined, and the multiplicative centers of matrix near-rings (in the sense of Meldrum and van der Walt [9]) are described. In [6], the notion of multiplicative center of a near-ring is generalized as follows. Let $N_{d}=\{d \in N \mid d \cdot(x+y)=d \cdot x+d$. y for all $x, y \in N\}$ be the set of left distributive elements of N. Then the generalized center of N is defined as $G C(N)=\left\{g \in N \mid\right.$ for all $d \in N_{d}$, $g \cdot d=d \cdot g\}$; when nonempty, $G C(N)$ is always a subnear-ring of N that contains $C(N)$. Furthermore, $G C(N)=C(N)$ when N is a ring. The generalized center of polynomial near-rings (in the sense of Bagley [3]) is studied in [6], and the generalized centers of distributively generated near-rings with identity, centralizer near-rings determined by groups of automorphisms on nontrivial finite groups, matrix near-rings, and nearrings of polynomials with zero constant term over commutative rings with identity are studied and compared with their associated multiplicative centers in [4]. We observe that the majority of the existing work on centers and generalized centers focuses on near-rings with identity.

In this paper, we continue the study of centers and generalized centers in near-rings defined via special multiplications on groups. The first construction is given by Malone in [7]. Next, we define and study three similarly-structured multiplications and completely characterize the centers and generalized centers of all four classes of near-rings. In almost all cases, the near-rings we treat herein do not contain a two-sided identity and yield multiplicative centers that are subnear-rings. These new constructions might also be useful in studying other near-ring properties.

Along with our characterization results, we present a host of examples to illustrate the cases described in the paper. Many of these examples were discovered using the SONATA software [1]. We refer the reader to [5], [8], and [10] for basic definitions and references regarding near-rings. All groups used in examples have their usual addition. Hereafter, we shall denote $x \cdot y$ by $x y$.

2. Malone Trivial Near-Rings

We begin with a well-known construction of a near-ring N with an elementary multiplication in which $C(N)$ is always a subnear-ring of N. Let $(G,+)$ be a group, not necessarily abelian, with $|G| \geq 2$. Let $S \subseteq G^{*}:=G \backslash\{0\}$ and define a multiplication on G by

$$
a \cdot b=\left\{\begin{array}{ll}
a & \text { if } b \in S \\
0 & \text { if } b \notin S
\end{array} .\right.
$$

Then $N=(G,+, \cdot)$ is a right, zero-symmetric near-ring [7], now called a Malone trivial near-ring. The next lemma demonstrates that Malone trivial near-rings rarely have a two-sided multiplicative identity.

Lemma 2.1. Let N be a Malone trivial near-ring. Then N has a twosided multiplicative identity, 1 , if and only if $N=\{0,1\}$ and $S=\{1\}$, i.e., $N \cong \mathbb{Z}_{2}$.

Proof. Assume N has a two-sided multiplicative identity, 1. If $S=\emptyset$, then $a b=0$ for all $a, b \in N$ and N does not have an identity. Thus, S is nonempty. Let $b \in S$. Then $b=1 \cdot b=1$ and $S=\{1\}$. Let $b \notin S$. Then $b=1 \cdot b=0$ and $N \backslash S=\{0\}$. By constructing the multiplication table for the Malone trivial near-ring using $N=\{0,1\}$ and $S=\{1\}$, one can see the resulting near-ring is \mathbb{Z}_{2}. The converse is immediate.

We now prove a sequence of lemmas which will be helpful in our characterization theorem and its ensuing examples.

Lemma 2.2. Let N be a Malone trivial near-ring. If $N_{d} \neq\{0\}$ and $x, y \in S$, then $x+y \notin S$.

Proof. Let $0 \neq a \in N_{d}$ and $x, y \in S$. Assume $x+y \in S$. Then $a(x+y)=$ $a x+a y$ implies $a=a+a$. Hence $a=0$, a contradiction. So $x+y \notin S$. \diamond

Lemma 2.3. Let N be a Malone trivial near-ring with $S \neq \emptyset$. Then $N_{d} \subseteq\{a \in N \mid 2 a=0\}$.

Proof. If $N_{d}=\{0\}$, the result is clear. So assume $N_{d} \neq\{0\}$. Let $a \in N_{d}$. Since $S \neq \emptyset$, there exists $b \in S$. Since $N_{d} \neq\{0\}$, by the previous lemma, $b+b \notin S$. So $a(b+b)=a b+a b$ implies $0=a+a$. Hence $N_{d} \subseteq\{a \in N \mid 2 a=0\}$.

Lemma 2.4. Let N be a Malone trivial near-ring with $S \neq \emptyset$. Then $C(N) \neq\{0\}$ if and only if $C(N)=G C(N)=N=\{0, a\}$ for some $a \neq 0$.

Proof. Assume $0 \neq a \in C(N)$. If $a \notin S$, then for $b \in S, a b=b a$ implies $a=0$, a contradiction. So $a \in S$. For $b \in S, a b=b a$ implies $a=b$. Thus $S=\{a\}$. For $b \notin S, b a=a b$ implies $b=0$. So $N=S \cup\{0\}$. Hence, $N=\{0, a\}=C(N)=G C(N)$. The converse is clear.

We now state the main characterization theorem for this section.
Theorem 2.5. Let N be a Malone trivial near-ring.

1. If $S=\emptyset$, then $C(N)=G C(N)=N$.
2. If $S \neq \emptyset$ and $|N|=2$, then $\{0\} \neq C(N)=G C(N)=N$.
3. If $S \neq \emptyset,|N|>2$, and $N_{d}=\{0\}$, then $\{0\}=C(N) \subsetneq G C(N)=N$.
4. If $S \neq \emptyset,|N|>2, N_{d} \cap S=\emptyset$, and $N_{d} \neq\{0\}$, then $\{0\}=C(N) \subsetneq$ $N \backslash S=G C(N) \subsetneq N$.
5. If $S \neq \emptyset,|N|>2, N_{d} \cap S \neq \emptyset$, and $\left|N_{d}\right|=2$, then $\{0\}=C(N) \subsetneq$ $N_{d}=G C(N) \subsetneq N$.
6. If $S \neq \emptyset,|N|>2, N_{d} \cap S \neq \emptyset$, and $\left|N_{d}\right|>2$, then $\{0\}=C(N)=$ $G C(N) \subsetneq N$.

In all cases, $C(N)$ is a subnear-ring of N.
Proof. The first two cases are straightforward to verify. Since $|N|>2$ in cases (3) through (6), by the previous lemma, $C(N)=\{0\}$. To complete case (3), note that if $N_{d}=\{0\}$, then $G C(N)=N$.

For case (4), let $n \in N_{d}$. Then $n \notin S$. For all $t \in N \backslash S$, $n t=$ $0=t n$. Thus, $N \backslash S \subseteq G C(N)$. Now let $s \in S$ and $0 \neq n \in N_{d}$. Then $n s=n \neq 0=s n$. Hence, $s \notin G C(N)$ and $G C(N)=N \backslash S \neq N$. Since $N_{d} \neq\{0\}$ and $N_{d} \cap S=\emptyset$, we conclude $\{0\} \neq N \backslash S$. Case (4) now follows.

For cases (5) and (6), fix $y \in N_{d} \cap S$. Let $a \in G C(N)$. If $a \in S$, then $a y=y a$ implies $a=y$. If $a \notin S$, then $a y=y a$ implies $a=0$. Thus $a=y$ or $a=0$, and $G C(N) \subseteq\{0, y\}$.

If $\left|N_{d}\right|=2$, then $N_{d}=\{0, y\}$. Thus $y \in G C(N)$, and $G C(N)=$ $\{0, y\}$. This finishes case (5). For case (6), assume $\left|N_{d}\right| \geq 3$. Let $z \in N_{d}$
such that $z \notin\{0, y\}$. Then $z y=z$ and $y z \in\{0, y\}$. Thus $z y \neq y z$ and $y \notin G C(N)$. It follows that $G C(N)=\{0\}$, completing case (6).

Since $C(N)=\{0\}$ or $C(N)=N$ in all cases, $C(N)$ is a subnear-ring of N.

We end the section by providing examples of each of the six cases in the characterization theorem.

Example 2.6. Examples of Malone trivial near-rings
Case (1). Let G be any group and $S=\emptyset$. Then $a b=0$ for all $a, b \in G$ and $C(N)=G C(N)=N$.

Case (2). Let $G=\mathbb{Z}_{2}$ and $S=\{1\}$. Then $\{0\} \neq\{0,1\}=C(N)=$ $G C(N)=N$.

Case (3). Let $G=\mathbb{Z}_{3}$ and $S=\{1\}$. Since $N_{d} \subseteq\{a \in N \mid 2 a=0\}$ by Lemma 2.3 and G has no elements of additive order two, $N_{d}=\{0\}$. Hence $\{0\}=C(N) \subsetneq G C(N)=N$.

Case (4). Let $G=\mathbb{Z}_{8}$ and $S=\{1,3,5,7\}$. By Lemma 2.3, $N_{d} \subseteq\{0,4\}$. We now show containment in the other direction. Note that for $x, y \in N, x+y \notin S$ if and only if $x, y \in S$ or $x, y \notin S$. Thus, for $x, y \in S, 4(x+y)=0=4+4=4 x+4 y$. For $x, y \notin S$, $4(x+y)=0=0+0=4 x+4 y$. For $x \in S$ and $y \notin S, 4(x+y)=$ $4=4+0=4 x+4 y$. By symmetry, $4(x+y)=4 x+4 y$ also follows when $x \notin S$ and $y \in S$. Thus, $4 \in N_{d}$ and $N_{d}=\{0,4\}$. It follows that $\{0\}=C(N) \subsetneq\{0,2,4,6\}=N \backslash S=G C(N) \subsetneq N$.

Case (5). Let $G=\mathbb{Z}_{6}$ and $S=\{1,3,5\}$. Using a similar technique as in case (4), one obtains $N_{d}=\{0,3\}$. Thus, $\{0\}=C(N) \subsetneq\{0,3\}=$ $N_{d}=G C(N) \subsetneq N$.

Case (6). Let $G=S_{3}$ and $S=\{(12),(13),(23)\}$. Again, using the technique as in case (4), one obtains $N_{d}=\{0,(12),(13),(23)\}$. It follows from the characterization theorem that $\{0\}=C(N)=G C(N) \subsetneq N$.

3. Complemented Malone Near-Rings

Let $(G,+)$ be an abelian group and suppose $\emptyset \neq S \subseteq G^{*}$ such that for all $x \in S,-x \notin S$. Define a multiplication on G by

$$
a \cdot b=\left\{\begin{array}{l}
a \text { if } b \in S \\
-a \text { if }-b \in S \\
0 \text { if } b \notin S \text { and }-b \notin S
\end{array} .\right.
$$

Here S is taken to be nonempty to avoid having the zero multiplication on G. In this section, we first show that $(G,+, \cdot)$ is always a near-ring and that there is only one such near-ring with identity. Next, we characterize the center and generalized center of the resulting near-ring. In particular, we find that the center of a near-ring with this multiplication is always a subnear-ring. We end this section with examples to illustrate the theory.

Theorem 3.1. Given an abelian group $(G,+)$ and a nonempty subset $S \subseteq G^{*}$ satisfying $x \in S$ implies $-x \notin S$ and using the multiplication defined above, $N=(G,+, \cdot)$ is a zero-symmetric right near-ring with $|N| \geq 3$.

Proof. It is straightforward to show $0 a=a 0=0$ for all $a \in N$, making N zero-symmetric. Next we establish that for all $a, b, c \in N, a(b c)=(a b) c$. If any of a, b, c equals 0 , then $a(b c)=0=(a b) c$. So suppose $a, b, c \neq 0$.

1. If $c \notin S$ and $-c \notin S$, then $(a b) c=0=a(0)=a(b c)$.
2. If $c \in S$, then $(a b) c=a b=a(b c)$.
3. If $-c \in S$, then $(a b) c=-(a b)$, and $a(b c)=a(-b)$.
(a) If $b \in S$, then $-(a b)=-a=a(-b)$.
(b) If $-b \in S$, then $-(a b)=-(-a)=a=a(-b)$.
(c) If $b,-b \notin S$, then $-(a b)=0=a(-b)$.

Then, in all cases, $(a b) c=a(b c)$, and hence the multiplication is associative. Now we show that for all $a, b, c \in N,(a+b) c=a c+b c$.

1. If $c \in S$, then $(a+b) c=a+b=a c+b c$.
2. If $-c \in S$, then $(a+b) c=-(a+b)=-a+(-b)=a c+b c$ since $(N,+)$ is abelian.
3. If $c \notin S$ and $-c \notin S$, then $(a+b) c=0=a c+b c$.

Thus, right distributivity holds in all cases and N is a right near-ring.
Since S is nonempty, there exists $0 \neq x \in S$. It follows that $0 \neq-x \notin S$. So $\{x,-x, 0\} \subseteq N$, and $|N| \geq 3$. The proof is now complete.

We refer to $(N,+, \cdot)$ as a complemented Malone near-ring since its multiplication is similar to that of ordinary Malone trivial near-rings, but with the additional condition that negatives of elements of S must be in the complement of S. This results in corresponding extra cases for multiplication.

Lemma 3.2. Let N be a complemented Malone near-ring. The following are equivalent:

1. $C(N) \neq\{0\}$;
2. N has a multiplicative left identity;
3. $|N|=3$;
4. $N \cong \mathbb{Z}_{3}$.

Proof. It is obvious that condition (4) implies conditions (1), (2), and (3). Assume condition (1). So there exists $0 \neq a \in C(N)$. Either $a \notin S$ or $a \in S$.

Assume $a \notin S$. If $-a \notin S$, then for $b \in S, a=a b=b a=0$, a contradiction. Thus, $-a \in S$ and $a \neq-a$. For $c \in S, a=a c=c a=-c$, or equivalently, $c=-a$. Since $c \in S$ is arbitrary, it follows that $S=$ $\{-a\}$

Consider $d \notin S$. If $-d \in S$, then $-a=a d=d a=-d$. Thus $d=a$. If $-d \notin S$, then $0=a d=d a=-d$. Thus $d=0$. It follows that $N \backslash S \subseteq\{0, a\}$ and $N=S \cup(N \backslash S)=\{0, a,-a\}$.

Now assume $a \in S$. By definition of $S,-a \notin S$ and $a \neq-a$. For $b \in S, a=a b=b a=b$. Since $b \in S$ is arbitrary, $S=\{a\}$. Now consider $d \notin S$. Using the cases $-d \in S$ and $-d \notin S$ with $a d=d a$
as above, we conclude $d=-a$ or $d=0$. Hence, $N \backslash S \subseteq\{0,-a\}$ and $N=S \cup(N \backslash S)=\{0, a,-a\}$. In both cases, $N=\{0, a,-a\}$ and $|N|=3$, giving condition (3). So (1) implies (3).

For condition (2), let $1 \in N$ be a multiplicative left identity. Then for $x \in S, 1 x=x$ implies $1=x$. So $1 \in S$, and since $x \in S$ is arbitrary, $S=\{1\}$ and $-S=\{-1\}$. Now let $y \in N \backslash\{-1,1\}$. Then $1 y=y$ implies $0=y$. Thus, $N=\{0,-1,1\}$ and $|N|=3$. Hence (2) implies (3).

Lastly, assume condition (3) holds. For $0 \neq a \in N$, either $a \notin S$ and $-a \in S$, or $a \in S$ and $-a \notin S$. So $N=\{0, a,-a\}$. Using the definition of complemented Malone near-rings, one can construct the multiplication table for N in each case and see that $N \cong \mathbb{Z}_{3}$. This gives (3) implies (4), completing the proof.

The lemma shows that the only complemented Malone near-ring with identity is the ring \mathbb{Z}_{3}. Furthermore, the only complemented Malone near-ring with nontrivial center is also the ring \mathbb{Z}_{3}.

We now state our main characterization theorem on complemented Malone near-rings.

Theorem 3.3. Let N be a complemented Malone near-ring.

1. If $|N|=3$, then $N \cong \mathbb{Z}_{3}$.
2. If $|N|>3$ and $N_{d}=\{0\}$, then $\{0\}=C(N) \subsetneq G C(N)=N$.
3. If $|N|>3, N_{d} \neq\{0\}$, and $N_{d} \cap S=\emptyset$, then $\{0\}=C(N) \subsetneq$ $N \backslash(S \cup(-S))=G C(N) \subsetneq N$.
4. If $|N|>3,\left|N_{d}\right|=3$, and $N_{d} \cap S \neq \emptyset$, then $\{0\}=C(N) \subsetneq N_{d}=$ $G C(N)=\{0, y,-y\} \subsetneq N$ for some $y \neq-y$.
5. If $|N|>3,\left|N_{d}\right|>3$, and $N_{d} \cap S \neq \emptyset$, then $\{0\}=C(N)=G C(N) \subsetneq$ N.

In all cases, $C(N)$ is a subnear-ring of N.
Proof. First note that $\left|N_{d}\right|=2$ and $N_{d} \cap S \neq \emptyset$ is an impossibility since $y \in N_{d} \cap S$ implies $N_{d}=\{0, y\}$. Since N is abelian, $-y \in N_{d}$, giving $y=-y \notin S$, a contradiction. So the five cases presented in the theorem are exhaustive.

Case (1) is immediate from the previous lemma. Since $|N|>3$ in (2) through (5), by the previous lemma, $C(N)=\{0\}$. To complete (2), note that if $N_{d}=\{0\}$, then $G C(N)=N$.

For (3), let $0 \neq y \in N_{d}$. Then $0 \neq-y \in N_{d}$. Thus $y,-y \notin S$. Let $t \in N \backslash(S \cup(-S))$. Then $t,-t \notin S$. So $y t=0=t y$ and $t \in G C(N)$. Hence, $N \backslash(S \cup(-S)) \subseteq G C(N)$. Now let $t \in G C(N)$. If $t \in S$, then $t y=0 \neq y=y t$, and $t \notin G C(N)$, a contradiction. So $t \notin S$. If $t \in-S$, then $-t \in S$ and $t y=0 \neq-y=y t$. Hence $t \notin G C(N)$, a contradiction. So $t \notin-S$. It follows that $t \in N \backslash(S \cup(-S))$ and $G C(N) \subseteq N \backslash(S \cup(-S))$.

To prove (4), let $y \in N_{d} \cap S$. Note that $-y \notin S$ since $y \in S$, making $y \neq-y$. Given N is abelian, we know that $-y \in N_{d}$, thus $N_{d}=\{0, y,-y\}$ since $\left|N_{d}\right|=3$. Let $a \in G C(N)$. The three cases (i) $a \in S$, (ii) $-a \in S$, and (iii) $a \notin S,-a \notin S$ used in conjunction with $a y=y a$ yield $a \in\{0, y,-y\}$. Thus, $G C(N) \subseteq\{0, y,-y\}$. As $y(-y)=-y=(-y) y$, all elements of $\{0, y,-y\}$ commute with one another. Hence, $G C(N)=\{0, y,-y\}=N_{d}$.

For the last case, let $y \in N_{d} \cap S$. Using similar arguments to those in case (4), we get $G C(N) \subseteq\{0, y,-y\} \subsetneq N_{d}$. Since $\left|N_{d}\right|>3$, there exists $z \in N_{d} \backslash\{0, y,-y\}$. If $z \in S$, then $G C(N) \subseteq\{0, z,-z\}$, so that $G C(N) \subseteq\{0, y,-y\} \cap\{0, z,-z\}=\{0\}$. For $z \notin S$, we consider two subcases. If $-z \in S$, then $z y=z \neq-y=y z$ and $z(-y)=-z \neq y=$ $(-y) z$. If $-z \notin S$, then $z y=z \neq 0=y z$ and $z(-y)=-z \neq 0=(-y) z$. In both subcases, $z y \neq y z$ and $z(-y) \neq(-y) z$. Since $z \in N_{d}$, it follows that $y,-y \notin G C(N)$. This leaves $G C(N)=\{0\}$.

In all cases, $C(N)=\{0\}$ or $C(N)=N$, making $C(N)$ a subnearring of N.

We now illustrate the characterization theorem through several examples.
Example 3.4. Examples of complemented Malone near-rings
Case (1). Let $G=\mathbb{Z}_{3}$ and $S=\{1\}$. Then N is the ring \mathbb{Z}_{3} with the usual multiplication. So $\{0\} \neq C(N)=G C(N)=N$.

Case (2). Let $G=\mathbb{Z}_{6}$ and $S=\{1\}$. Let $x \in N_{d}$. Then $0=$ $x \cdot 3=x(1+2)=x \cdot 1+x \cdot 2=x+0=x$. Thus, $N_{d}=\{0\}$ and $\{0\}=C(N) \subsetneq G C(N)=N$ follows.

Case (3). Let $G=\mathbb{Z}_{4}$ and $S=\{1\}$. So $3 \in-S$. It follows that $2(1)=2=-2=2(3)$. First we show that $2 \in N_{d}$. Let $a, b \in N$. If a and
b are odd, then $a+b \in\{0,2\}$ and $2(a+b)=0=2+2=2 a+2 b$. If a and b are even, then $a+b \in\{0,2\}$ and $2(a+b)=0=0+0=2 a+2 b$. If a and b have opposite parity, since G is abelian, we can assume without a loss of generality that a is odd and b is even. Then $a+b \in\{1,3\}$ and $2(a+b)=2=2+0=2 a+2 b$. Thus, $2 \in N_{d}$ and $N_{d} \neq\{0\}$. Note that $1 \cdot(1+2)=1 \cdot 3=3 \neq 1=1+0=1 \cdot 1+1 \cdot 2$ and $1 \notin N_{d}$. So $N_{d} \cap S=\emptyset$. The conclusion of case (3) yields $\{0\}=C(N) \subsetneq N \backslash(S \cup(-S))=$ $G C(N) \subsetneq N$.

Case (4). Let $G=\mathbb{Z}_{6}$ and $S=\{2,5\}$. Let $a, b \in N$. We leave it to the reader to verify $2(a+b)=2 a+2 b$ with the following combinations of choices for a and b : either a or b is zero; $a, b \in S ; a, b \in-S ; a \in S$, $b \in-S ; a=3, b \in S ; a=3, b \in-S ; a=b=3$. Thus $2 \in N_{d}$. Since G is abelian, N_{d} is a subgroup of G and $-2=4 \in N_{d}$ as well. Note that $1 \cdot(2+2)=1 \cdot 4=5 \neq 2=1+1=1 \cdot 2+1 \cdot 2$ and $1 \notin N_{d}$. So $\left|N_{d}\right|=3$. It follows that $N_{d}=\{0,2,4\}$ and $N_{d} \cap S=\{2\} \neq \emptyset$. Hence, $\{0\}=C(N) \subsetneq N_{d}=G C(N)=\{0, y,-y\} \subsetneq N$ for some $y \neq-y$.

Case (5). Let $G=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ and $S=\{(2,0),(2,1),(2,2)\}$. We leave it to the reader to verify $(1,0)(a+b)=(1,0) a+(1,0) b$ and $(0,1)(a+b)=$ $(0,1) a+(0,1) b$ with the following combinations of choices for a and b : $a, b \in S ; a, b \in-S ; a \in S, b \in-S ; a \in S, b \in S+(-S) ; a \in-S$, $b \in S+(-S) ; a, b \in S+(-S)$. Thus $(1,0),(0,1) \in N_{d}$. Since G is abelian, N_{d} is a subgroup of G. So $N_{d}=N$ and $N_{d} \cap S \neq \emptyset$. It follows that N is a ring. Therefore, $\{0\}=C(N)=G C(N) \subsetneq N$.

4. TS Near-Rings

In this section, we construct a near-ring N from a given finite group of even order. As with Malone trivial near-rings, a product $a \cdot b$ in N is defined in terms of the membership of b in a certain set S. Unlike multiplication in Malone trivial near-rings, however, the product $a \cdot b$ requires consideration of the membership of b in different subsets of S, and also depends on the set membership of a in a superset T of S. We show that for the near-ring N constructed in this section, $C(N)$ is always a subnear-ring of N.

Theorem 4.1. Let $(G,+)$ be a finite group of even order, not necessarily abelian. Suppose there exists $\emptyset \neq T \subseteq G^{*}$ such that $G \backslash T$ is a (normal)
subgroup of G of index 2 . Further suppose there is $\emptyset \neq S \subseteq T$ with $S=S_{1} \dot{\cup} S_{2} \dot{\cup} \cdots \dot{\cup} S_{n}$, a partition of S, and that there are distinct elements q_{1}, \ldots, q_{n} of order 2 in $G \backslash(T \cup\{0\})$.

Define a multiplication on G by

$$
a \cdot b=\left\{\begin{array}{rc}
q_{1} & \text { if } a \in T, b \in S_{1} \\
q_{2} & \text { if } a \in T, b \in S_{2} \\
\vdots & \\
q_{n} & \text { if } a \in T, b \in S_{n} \\
0 & \text { otherwise }
\end{array} .\right.
$$

Then $N=(G,+, \cdot)$ is a right, zero-symmetric near-ring without multiplicative identity.

Proof. Since $(G,+)$ is a group, we only need to show associativity of multiplication and right distributivity of multiplication over addition. To show associativity, let $a, b, c \in N$. If $a \notin T, b \notin T$ or $c \notin T$, then $(a b) c=0=a(b c)$. So assume $a, b, c \in T$. We consider four cases. (Note that if one assumes $x \in S$, then $x \in S_{i}$ for some $i=1,2, \ldots, n$. For ease of notation, throughout this section we will immediately assume $x \in S_{i}$.)

1. If $b \in S_{j}$ and $c \in S_{i}$, then $(a b) c=q_{j} c=0=a q_{i}=a(b c)$.
2. If $b, c \in T \backslash S$, then $(a b) c=0 \cdot c=0=a \cdot 0=a(b c)$.
3. If $b \in T \backslash S$ and $c \in S_{i}$, then $(a b) c=0 \cdot c=0=a q_{i}=a(b c)$.
4. If $b \in S_{j}$ and $c \in T \backslash S$, then $(a b) c=q_{j} c=0=a \cdot 0=a(b c)$.

So all cases are exhausted and multiplication is associative.
Now we verify the right distributive law. We note that $G \backslash T$ is a normal subgroup of index 2 in G, making T the other coset of G determined by $G \backslash T$. It follows that:

1. If $a, b \in T$, then $a+b \notin T$.
2. If $a \in T$ and $b \notin T$, then $a+b \in T$ and $b+a \in T$.
3. If $a, b \notin T$, then $a+b \notin T$.

Let $a, b, c \in N$. If $c \notin S$, then $(a+b) c=0=0+0=a c+b c$. So assume $c \in S_{i}$. We consider four cases.

1. If $a, b \in T$, then $a+b \notin T$ and $(a+b) c=0=q_{i}+q_{i}=a c+b c$.
2. If $a, b \notin T$, then $a+b \notin T$ and $(a+b) c=0=0+0=a c+b c$.
3. If $a \in T$ and $b \notin T$, then $a+b \in T$ and $(a+b) c=q_{i}=q_{i}+0=a c+b c$.
4. If $a \notin T$ and $b \in T$, then $a+b \in T$ and $(a+b) c=q_{i}=0+q_{i}=a c+b c$.

So all cases are exhausted and multiplication distributes over addition on the right. We conclude that N is a right near-ring.

Suppose N has a multiplicative identity 1 . If $1 \in T$, then for $b \in S_{1}, b=1 \cdot b=q_{1} \notin S_{1}$, a contradiction. So $1 \notin T$. Thus, for $b \in S_{1}$, $b=1 \cdot b=0 \notin S_{1}$, a contradiction. It follows that N does not have a multiplicative identity. This completes the proof.

We call the near-ring N above a $T S$ near-ring. Our characterization theorem for this section is given by the following.

Theorem 4.2. Let N be a TS near-ring with $S=S_{1} \dot{\cup} S_{2} \dot{\cup} \cdots \dot{\cup} S_{n}$ as described above.

1. If $n=1$ and $S=T$, then $C(N)=N_{d}=G C(N)=N$, making N a commutative near-ring.
2. If $n=1$ and $S \subsetneq T$, then $N \backslash T=C(N)=N_{d} \subsetneq G C(N)=N$.
3. If $n \geq 2$, then $N \backslash T=C(N)=N_{d} \subsetneq G C(N)=N$.

In all cases, $C(N)$ is a subnear-ring of N.
Proof. Note that in all cases if $x \in N \backslash T$ and $a \in N$, then $x a=0=a x$. Thus $N \backslash T \subseteq C(N)$.
(1) Assume $n=1$ and $S=T$. Let $x \in T$. For $a \in T=S_{1}$, $x a=0=a x$. For $a \notin T, x a=0=x a$. So $x \in C(N)$ and $T \subseteq C(N)$. From the remark above, $N \backslash T \subseteq C(N)$ as well, giving $C(N)=N$. Since $C(N) \subseteq N_{d}$ in any near-ring N, it follows that $N_{d}=N$. Thus $C(N)=N_{d}=G C(N)=N$.
(2) Assume $n=1$ and $S \subsetneq T$. Let $x \in C(N)$ and assume $x \in T$. Then for $a \in S, x a=a x$ implies $q_{1}=a x$. We conclude that $x \in S$. Now let $y \in T \backslash S$. Then $x y=0 \neq q_{1}=y x$, which contradicts $x \in C(N)$. It follows that $x \notin T$ and $C(N) \subseteq N \backslash T$. Using the comment at the beginning of the proof, we get $N \backslash T=C(N)$.

As above, since $C(N) \subseteq N_{d}$ for any near-ring, it follows that $N \backslash T \subseteq$ N_{d}. To show containment in the other direction, let $x \in N_{d}$ and assume
$x \in T$. Let $a \in S$ and $b \in T \backslash S$. Then $a+b \notin T$ as noted above when proving the right distributive law. Hence, $x(a+b)=0 \neq q_{1}=q_{1}+0=$ $x a+x b$, contradicting $x \in N_{d}$. Thus $x \notin T$ and $N \backslash T=N_{d}$. Since $C(N)=N_{d}, G C(N)=N$. Proper containment in the chain follows since $N \backslash T \subsetneq N$.
(3) Assume $n \geq 2$. Suppose first that $S=T$. Let $x \in C(N)$ and assume $x \in T=S$. Suppose $x \in S_{j}$ and choose any $a \in S_{i} \neq S_{j}$. Then $x a=q_{i} \neq q_{j}=a x$, contradicting $x \in C(N)$. Hence, $x \notin T$ and $C(N) \subseteq N \backslash T$. It follows that $N \backslash T=C(N) \subseteq N_{d}$. For containment the other way, let $x \in N_{d}$ and assume $x \in T$. Then for $a \in S_{1}$ and $b \in S_{2}$, $a+b \notin T=S$ and $x(a+b)=0 \neq q_{1}+q_{2}=x a+x b$. Thus, $x \notin N_{d}$, a contradiction. So $x \notin T$ and $N_{d}=N \backslash T=C(N)$. Since $N_{d}=C(N)$, we conclude $G C(N)=N$.

Now suppose $S \subsetneq T$. Let $x \in C(N)$ and assume $x \in T$. If $x \in S$, then using the same proof in the $S=T$ case above, we contradict $x \in$ $C(N)$. If $x \notin S$, then for $a \in S_{1}, x a=q_{1} \neq 0=a x$ and $x \notin C(N)$, a contradiction as well. Thus, $x \notin T$ and $N \backslash T=C(N) \subseteq N_{d}$. A similar argument as above shows containment in the other direction.

Lastly, we show that $C(N)$ is always a subnear-ring of N by considering the three cases given in the theorem. In case (1), since $C(N)=$ $G C(N), C(N)$ is a subnear-ring of N. For cases (2) and (3), we have $C(N)=N \backslash T$. Since $N \backslash T$ is a subgroup of $N, C(N)$ is closed under addition. As $C(N)$ is closed under multiplication, and N is finite, it follows that $C(N)$ is a subnear-ring of N.

Examples of each case of Theorem 4.2 may be easily constructed following the definition.

5. TSI Near-Rings

Theorem 5.1. Let $(G,+)$ be a group of even order, not necessarily abelian. Suppose there exists $\emptyset \neq T \subseteq G^{*}$ such that $G \backslash T$ is a (normal) subgroup of G of index 2. Let $\emptyset \neq I \subseteq T$ and $\emptyset \neq S \subseteq G^{*} \backslash I$ such that $T=I \cup(S \cap T)$. Partition S into $S=S_{1} \dot{\cup} S_{2} \dot{\cup} \cdots \dot{\cup} S_{n}$ such that for each $1 \leq i \leq n, S_{i} \subseteq S \cap T$ or $S_{i} \subseteq S \backslash T$. Furthermore, choose distinct $q_{i} \in S_{i}$ such that $2 q_{i}=0$ for each $1 \leq i \leq n$.

Define a multiplication on G by

$$
a b=\left\{\begin{array}{rc}
a & \text { if } b \in I \\
q_{1} & \text { if } a \in T, b \in S_{1} \\
\vdots & \\
q_{n} & \text { if } a \in T, b \in S_{n} \\
0 & \text { otherwise }
\end{array} .\right.
$$

Then $N=(G,+, \cdot)$ is a right zero-symmetric near-ring. Furthermore, N has a two-sided identity, 1 , if and only if $I=\{1\}, S=$ $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$, and $N \backslash(S \cup T)=\{0\}$.

Proof. Since $(N,+)$ is a group, we only need to show that the given multiplication is associative and that multiplication distributes from the right over the addition of N. First we need a lemma.
Lemma 5.2. The product $a b \in T$ if and only if $a \in T$ and $b \in T$.
Proof. Assume $a \in T$ and $b \in T$. Since $b \in T$, either $b \in I$ or $b \in S$. If $b \in I$, then $a b=a \in T$. If $b \in S$, then $b \in S_{j} \cap T$ for some j and $a b=q_{j} \in S_{j} \subseteq T$. Thus, $a b \in T$. For the converse, first assume $a \notin T$. Either $b \in I$ or $b \notin I$. If $b \in I$, then $a b=a \notin T$. If $b \notin I$, then $a b=0 \notin T$. Now assume $b \notin T$. If $b \in S_{j} \backslash T$ and $a \in T$, then $a b=q_{j} \in S_{j}$ and $a b \notin T$. Otherwise, $a b=0 \notin T$. Hence, if $a \notin T$ or $b \notin T$, then $a b \notin T$, and the proof of the lemma is complete.

To show associativity of multiplication, let $a, b, c \in N$. We consider five cases.

1. If $c \in I$, then $(a b) c=a b=a(b c)$.
2. If $c \notin I$ and $c \notin S$, then $(a b) c=0=a(b c)$.
3. If $c \notin I, c \in S_{i}$, and $a, b \in T$, then by the previous lemma, $a b \in T$. Thus $(a b) c=q_{i}=a q_{i}=a(b c)$.
4. If $c \notin I, c \in S_{i}$, and $a \notin T$, then by the previous lemma, $a b \notin T$. Since $c \in S_{i}$, it follows that $b c \notin I$. Therefore $(a b) c=0=a(b c)$.
5. If $c \notin I, c \in S_{i}$, and $b \notin T$, then by the previous lemma, $a b \notin T$. So $(a b) c=0=a \cdot 0=a(b c)$.

Associativity of multiplication now follows.
Since $G \backslash T$ is a normal subgroup of index 2 in G, we have the same conditions as in TS near-rings:

1. If $a, b \in T$, then $a+b \notin T$.
2. If $a \in T$ and $b \notin T$, then $a+b \in T$ and $b+a \in T$.
3. If $a, b \notin T$, then $a+b \notin T$.

To show distributivity, again let $a, b, c \in N$. If $c \in I$, then $(a+b) c=$ $a+b=a c+b c$. If $c \notin I$, but $c \in S_{i}$, then:

1. If $a, b \in T$, then $a+b \notin T$ and $(a+b) c=0=q_{i}+q_{i}=a c+b c$.
2. If $a, b \notin T$, then $a+b \notin T$ and $(a+b) c=0=0+0=a c+b c$.
3. If $a \in T, b \notin T$, then $a+b \in T$ and $(a+b) c=q_{i}=q_{i}+0=a c+b c$.
4. If $a \notin T, b \in T$, then $a+b \in T$ and $(a+b) c=q_{i}=0+q_{i}=a c+b c$.

Finally, if $c \notin I$ and $c \notin S,(a+b) c=0=0+0=a c+b c$. The right distributive law now follows and N is a right near-ring.

Assume 1 is a two-sided multiplicative identity for N. Let $b \in I$. Then $b=1 \cdot b=1$. So $I=\{1\}$. Now let $b \in S_{i}$. Then $b=1 \cdot b=q_{i}$ since $1 \in T$. Thus $S_{i}=\left\{q_{i}\right\}$ for every i. Finally, let $b \in N \backslash(S \cup T)$. Then $b=1 \cdot b=0$. So $N \backslash(S \cup T)=\{0\}$. Now assume $I=\{1\}$, $S=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$, and $N \backslash(S \cup T)=\{0\}$. Since $1 \cdot q_{i}=q_{i}=q_{i} \cdot 1$ for all i, it follows that 1 is a two-sided identity for N.

We call the near-ring N above a TSI near-ring. Note that I is the set of right identities in N. Throughout this section, let $Q=$ $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$. We consider three cases for S and $T: S \cap T=\emptyset, S \subsetneq T$, and $S \cap T \neq \emptyset$ with $S \nsubseteq T$.

Theorem 5.3. Let N be a $T S I$ near-ring such that $S \cap T=\emptyset$. Then:

1. $C(N)=Q \cup\{0\}$, which is a subnear-ring of N if and only if $Q \cup\{0\}$ is a subgroup of $G \backslash T$;
2. $N_{d}=\{d \in N \backslash T \mid$ order of $d \leq 2\}$;
3. If $N_{d}=Q \cup\{0\}$, then $G C(N)=N$. If $N_{d} \neq Q \cup\{0\}$, then $G C(N)=N \backslash T$.

Proof. Note that if $S \cap T=\emptyset$, then $T=I$.
(1) Let $c \in C(N)$. Assume $c \notin S$. Let $t \in T$. Then $c t=t c$ implies $c=0$. Hence $C(N) \subseteq S \cup\{0\}$. Now assume $c \in S$. Thus, $c \in S_{i}$ for some i. Then for $t \in T$, $c t=t c$ implies $c=q_{i}$. Hence $C(N) \subseteq Q \cup\{0\}$. For containment in the other direction, let $q \in Q$ and $n \in N$. If $n \in T$, then $q n=q=n q$. If $n \notin T$, then $q n=0=n q$. Thus $q \in C(N)$ and $C(N)=Q \cup\{0\}$. The last part of (1) is a restatement of the additive closure of $C(N)$.
(2) First we show that $N_{d} \subseteq N \backslash T$. Assume $d \in N_{d} \cap T$. Let $a \in T$ and $b \in S_{i}$. Then $a+b \in T$. So $d(a+b)=d$ and $d a+d b=d+q_{i}$ imply $q_{i}=0$, a contradiction. Hence, $d \notin T$. Thus, by contradiction, $N_{d} \subseteq$ $N \backslash T$. Now let $d \in N_{d}$ and $a, b \in T$. So $d, a+b \notin T$. Thus, $d(a+b)=0$ and $d a+d b=d+d$ imply $d+d=0$, and every element of N_{d} has order at most two. We conclude that $N_{d} \subseteq\{d \in N \backslash T \mid$ order of $d \leq 2\}$.

Now we show containment in the other direction. We know $0 \in N_{d}$, so let $0 \neq d \in\{d \in G \backslash T \mid$ order of $d \leq 2\}$. If $a, b \in T$, then $a+b \notin T$ and $d(a+b)=0=d+d=d a+d b$. If $a, b \notin T$, then $a+b \notin T$ and $d(a+b)=0=0+0=d a+d b$. If $a \in T$ and $b \notin T$, then $a+b \in T$ and $d(a+b)=d=d+0=d a+d b$. The case $a \notin T$ and $b \in T$ follows by symmetry. Thus $d \in N_{d}$ and $\{d \in N \backslash T \mid$ order of $d \leq 2\} \subseteq N_{d}$. The result now follows.
(3) If $N_{d}=Q \cup\{0\}=C(N)$, then $G C(N)=N$ is clear. Assume $N_{d} \neq Q \cup\{0\}$. Let $d \in N_{d}$. Then $d \notin T$. Let $x \notin T$. Then $d x=0=x d$, and $x \in G C(N)$. Thus, $N \backslash T \subseteq G C(N)$. Now let $x \in G C(N)$. Since $N_{d} \neq Q \cup\{0\}$, there exists $0 \neq d \in N_{d} \backslash Q$. Assume $x \in T$. Then $x d=d x=d$. If $d \in S$, then $x d=q_{i}$ for some $q_{i} \in Q$. So $d=q_{i} \in Q$, a contradiction. If $d \notin S$, then $x d=0$. So $d=0$, a contradiction. We conclude $x \notin T$. Thus $G C(N) \subseteq N \backslash T$, hence, equality.

Example 5.4. Examples of $T S I$ near-rings with $S \cap T=\emptyset$
Example 1. Let $G=\mathbb{Z}_{4}, T=I=\{1,3\}$, and $S=S_{1}=Q=\{2\}$. Then $S \cap T=\emptyset$ and by the previous theorem, the resulting TSI near-ring has $C(N)=Q \cup\{0\}=\{0,2\}=N_{d}$ and $G C(N)=N$. Here, $C(N)$ is a subnear-ring of N.
Example 2. Let $G=\mathbb{Z}_{4} \times \mathbb{Z}_{2}, T=I=\{(1,0),(3,0),(1,1),(3,1)\}$, $S=S_{1}=\{(2,0),(2,1),(0,1)\}$, and $Q=\{(0,1)\}$. Then $S \cap T=\emptyset$ and by the previous theorem, the resulting TSI near-ring has $C(N)=$ $Q \cup\{(0,0)\}=\{(0,1),(0,0)\}$ and $N_{d}=S \cup\{(0,0)\}$. So $N_{d} \neq Q \cup\{0\}$
and $G C(N)=N \backslash T=N_{d}=\{(2,0),(2,1),(0,1),(0,0)\}$. Here, $C(N)$ is a subnear-ring of N.
Theorem 5.5. Let N be a $T S I$ near-ring such that $S \subsetneq T$.

1. If $N_{d} \neq\{0\}$, then $S=S_{1}, Q=\left\{q_{1}\right\}, N_{d}=\left\{q_{1}, 0\right\}=C(N)$, and $G C(N)=N$.
2. If $N_{d}=\{0\}$, then $C(N)=\{0\}$ and $G C(N)=N$.

In both cases, $C(N)$ is a subnear-ring of N with $C(N) \subsetneq G C(N)$.
Proof. To show the first assertion, assume there exists $0 \neq d \in N_{d}$. Suppose $d \notin T$. Then for arbitrary $a \in I$ and $b \in S, a+b \notin T$. Thus $d(a+b)=0$ and $d a+d b=d+0$ imply $d=0$, a contradiction. So $d \in T$. Now choose arbitrary $a \in I$ and $b \in S$. Then $a+b \notin T$. Thus $d(a+b)=0$ and $d a+d b=d+q_{i}$ imply $d+q_{i}=0$ and $d=q_{i}$. Since $b \in S$ is arbitrary, $S=S_{1}$ and $Q=\left\{q_{1}\right\}$. Thus, $N_{d} \subseteq\left\{q_{1}, 0\right\}$.

Now we show $q_{1} \in C(N)$. Let $a \in N$. If $a \in S$, then $q_{1} a=q_{1}=a q_{1}$. If $a \in I$, then $q_{1} a=q_{1}=a q_{1}$. If $a \notin T$, then $q_{1} a=0=a q_{1}$. So $q_{1} \in$ $C(N)$. This gives $\left\{0, q_{1}\right\} \subseteq C(N)$. Since $C(N) \subseteq N_{d} \subseteq\left\{0, q_{1}\right\} \subseteq C(N)$, we obtain equality of all three sets. It follows that $G C(N)=N$.

If $N_{d}=\{0\}$, then $C(N) \subseteq N_{d}$ implies $C(N)=\{0\}$. The rest of the proof follows immediately.
Example 5.6. Examples of $T S I$ near-rings with $S \subsetneq T$
Example 3. Let $G=\mathbb{Z}_{6}, T=\{1,3,5\}, I=\{5\}, S=S_{1}=\{1,3\}$, and $Q=\{3\}$. Then the TSI near-ring N satisfies $S \subsetneq T$. One can verify that $C(N)=\{0,3\}$ so that $\{0\} \neq C(N) \subseteq N_{d}$. By the previous theorem, $N_{d}=\{0,3\}=C(N)$, and $G C(N)=N$.
Example 4. Let $G=S_{3}$, the symmetric group on 3 elements, $T=$ $\{(23),(12),(13)\}, I=\{(13)\}$ and $S=\{(23),(12)\}$ with $S_{1}=\{(23)\}$ and $S_{2}=\{(12)\}$. By the previous theorem, $S=S_{1} \cup S_{2}$ implies $C(N)=$ $N_{d}=\{(1)\}$ and $G C(N)=N$.
Lemma 5.7. Let N be a $T S I$ near-ring such that $S \cap T \neq \emptyset$ with $S \nsubseteq T$. Then $N_{d} \subseteq T \cup\{0\}$.

Proof. Assume $0 \neq x \in N_{d}$ such that $x \notin T$. Consider $q_{k} \in S \cap T$ and $i \in I$. Since $q_{k}, i \in T$, we know that $q_{k}+i \notin T$; hence $q_{k}+i \notin I$. Since $x \in N_{d}$, we have $x\left(q_{k}+\left(q_{k}+i\right)\right)=x q_{k}+x\left(q_{k}+i\right)$. Simplifying both sides of this equation yields $x=0$, a contradiction. It follows that $x \in T$ and $N_{d} \subseteq T \cup\{0\}$.

Note that if $N_{d}=\{0\}$, then $G C(N)=N$ and $C(N)=\{0\}$. So we turn our attention to the case where $N_{d} \neq\{0\}$.

Lemma 5.8. Let N be a $T S I$ near-ring such that $S \cap T \neq \emptyset$ with $S \nsubseteq T$. If $N_{d} \neq\{0\}$, then $N_{d}=\{0, t\}$, for some $t \in T$.

Proof. Since $S \cap T \neq \emptyset$, there exists $q_{j} \in S_{j} \subseteq S \cap T$. Fix $i \in I$. Since $i \in T$ and $q_{j} \in T$, we have $i+q_{j} \notin T$. So $i+q_{j} \notin S \cup T$ or $i+q_{j} \in S \backslash T$.

Let $t \in N_{d} \backslash\{0\}$. It follows that $t=t i=t\left(\left(i+q_{j}\right)+q_{j}\right)=t(i+$ $\left.q_{j}\right)+t q_{j}$. By the previous lemma, $t \in T$. If $i+q_{j} \notin S \cup T$, then the preceding equation simplifies to $t=q_{j}$. Since $t \in N_{d} \backslash\{0\}$ is arbitrary, we conclude that $N_{d}=\left\{0, q_{j}\right\}$. If $i+q_{j} \in S \backslash T$, the equation simplifies to $t=q_{k}+q_{j}$ for some $q_{k} \in S \backslash T$ which is independent of the choice of t. Since $t \in N_{d} \backslash\{0\}$ is arbitrary, we conclude that $N_{d}=\left\{0, q_{k}+q_{j}\right\}$. The result now follows.

Theorem 5.9. Let N be a $T S I$ near-ring such that $S \cap T \neq \emptyset$ with $S \nsubseteq T$ and $N_{d} \neq\{0\}$.

1. If $N_{d}=\{0, i\}$ for some $i \in I$, then $G C(N)=Q \cup\{0, i\}$. Furthermore, if $I=\{i\}, S=Q$, and $N \backslash(S \cup T)=\{0\}$, then $C(N)=\{0, i\}$; otherwise $C(N)=\{0\}$.
2. If $N_{d}=\{0, s\}$ for some $s \in\left(S_{j} \cap T\right) \backslash Q$, then $G C(N)=S_{j} \cup(N \backslash(S \cup$ $T)$) and $C(N)=\{0\}$.
3. If $N_{d}=\left\{0, q_{j}\right\}$ for some $q_{j} \in S_{j} \cap T \cap Q$, then $G C(N)=I \cup S_{j} \cup$ $(N \backslash(S \cup T))$ and $C(N)=\{0\}$.

The center $C(N)$ is a subnear-ring of N if and only if N does not have a two-sided multiplicative identity or N has a two-sided multiplicative identity of additive order two.

Proof. (1) Let $x \in G C(N)$. If $x \in I$, then $x i=i x$ implies $x=i$. If $x \in S$, then $x i=i x$ implies $x=q$ for some $q \in S$. If $x \notin S \cup T$, then $x i=i x$ implies $x=0$. Hence, $G C(N) \subseteq Q \cup\{0, i\}$. Now assume $x \in Q \cup\{0, i\}$. If $x \in\{0, i\}$, then x clearly commutes with 0 and i. If $x=q \in Q$, then $x 0=0=0 x$ and $x i=x=q=i x$. Thus, $x \in G C(N)$ and $G C(N)=Q \cup\{0, i\}$. Since $C(N) \subseteq N_{d}$, we only need to determine if $i \in C(N)$ to complete the proof of the second statement. But if $I=\{i\}, S=Q$, and $N \backslash(S \cup T)=\{0\}$, by Theorem 5.1, i is a two-sided
multiplicative identity for N. Thus $i \in C(N)$ and $C(N)=\{0, i\}$. For the last part of the theorem, assume $I \neq\{i\}, S \neq Q$, or $N \backslash(S \cup T) \neq\{0\}$. If $I \neq\{i\}$, then let $i \neq j \in I$. Then $i j=i \neq j=j i$ and $i \notin C(N)$. If $S \neq Q$, then let $s \in S_{k} \backslash Q$. Then $i s=q_{k} \neq s=$ si. Thus $i \notin C(N)$. If $N \backslash(S \cup T) \neq\{0\}$, then for $0 \neq x \notin S \cup T, i x=0 \neq x=x i$, and $i \notin C(N)$. In all three cases, $i \notin C(N)$; hence, $C(N)=\{0\}$.
(2) Let $x \in G C(N)$. If $x \notin S \cup T$, then $x s=0=s x$. Therefore, assuming $x \notin S \cup T$ imposes no restriction on x. If $x \in I$, then $x s=s x$ implies $q_{j}=s$, a contradiction. So $x \notin I$. If $x \in S_{k} \cap T$, then $x s=s x$ implies $q_{j}=q_{k}$. Thus $x \in S_{j}$. If $x \in S_{k} \backslash T$, then $x s=s x$ implies $0=q_{k}$, a contradiction. So $x \notin S \backslash T$. Hence, $G C(N) \subseteq S_{j} \cup(N \backslash(S \cup T))$. For the reverse inclusion, assume $x \in S_{j} \cup(N \backslash(S \cup T))$. Clearly, $x 0=0=0 x$. If $x \in S_{j}$, then $x s=q_{j}=s x$. If $x \notin S \cup T$, then $x s=0=s x$. Thus, $x \in G C(N)$ and $G C(N)=S_{j} \cup(N \backslash(S \cup T))$. Since $C(N) \subseteq N_{d}=\{0, s\}$ and for $i \in I$, si $=s \neq q_{j}=i s$, it follows that $C(N)=\{0\}$.
(3) Let $x \in G C(N)$. If $x \in I$, then $x q_{j}=q_{j}=q_{j} x$. If $x \notin S \cup T$, then $x q_{j}=0=q_{j} x$. Therefore, assuming $x \in I$ or $x \notin S \cup T$ imposes no restriction on x. If $x \in S_{k} \cap T$, then $x q_{j}=q_{j} x$ implies $q_{j}=q_{k}$, and $x \in S_{j}$. If $x \in S_{k} \backslash T$, then $x q_{j}=q_{j} x$ implies $0=q_{k}$, a contradiction. So $x \notin S \backslash T$. Hence, $G C(N) \subseteq I \cup S_{j} \cup(N \backslash(S \cup T))$. Now assume $x \in I \cup S_{j} \cup(N \backslash(S \cup T))$. Clearly, $x 0=0=0 x$. If $x \in I \cup S_{j}$, then $x q_{j}=q_{j}=q_{j} x$. If $x \notin S \cup T$, then $x q_{j}=0=q_{j} x$. In all cases x commutes with q_{j} and $x \in G C(N)$. Thus $G C(N)=I \cup S_{j} \cup(N \backslash(S \cup T))$. Since $C(N) \subseteq N_{d}=\left\{0, q_{j}\right\}$ and for $q_{k} \in S \backslash T, q_{j} q_{k}=q_{k} \neq 0=q_{k} q_{j}$, it follows that $C(N)=\{0\}$.

If N does not have a multiplicative identity, then $C(N)=\{0\}$. If N has a multiplicative identity i, then $C(N)=\{0, i\}$. The latter is closed under addition when i has additive order two.

Example 5.10. Examples of $T S I$ near-rings with $S \cap T \neq \emptyset$ and $S \nsubseteq T$
Example 5. Let $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}, T=\{(1,0),(1,1)\}, I=\{(1,1)\}$, and $S=Q=\{(0,1),(1,0)\}$ with $S_{1}=\{(0,1)\}$ and $S_{2}=\{(1,0)\}$. Since I consists of a single element, $S=Q$, and $N \backslash(S \cup T)=\{0\}$, by part (1) of the previous theorem one sees that $C(N)=\{(0,0),(1,1)\}=N_{d}$ and $G C(N)=N$. Note that $C(N)$ is a subnear-ring of N.
Example 6. Let $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, T=\{(1,0,0),(1,0,1),(1,1,0),(1,1,1)\}$, $I=\{(1,1,0),(1,1,1)\}, S_{1}=\{(0,1,0),(0,1,1)\}, S_{2}=\{(1,0,0),(1,0,1)\}$, and $Q=\{(0,1,0),(1,0,0)\}$. We claim that $(1,1,0) \in N_{d}$. To show this,
we use various combinations of the following subsets of the TSI near-ring $N: I, S_{1}, S_{2}, N \backslash(S \cup T)$. First note that if $A \in\left\{I, S_{1}, S_{2}, N \backslash(S \cup T)\right\}$ and $x, y \in A$, then $(1,1,0) x=(1,1,0) y$. We consider four cases:

1. Let $A \in\left\{I, S_{1}, S_{2}, N \backslash(S \cup T)\right\}$. Consider $a \in A$ and $b \in N \backslash(S \cup$ $T)$. Then $a+b \in A$. From the remark above, $(1,1,0)(a+b)=$ $(1,1,0) a=(1,1,0) a+(0,0,0)=(1,1,0) a+(1,1,0) b$. Since G is an abelian group, the case $a \in N \backslash(S \cup T)$ and $b \in A$ follows. Throughout the remainder of the proof, we will employ this symmetry as well.
2. Let $A \in\left\{I, S_{1}, S_{2}, N \backslash(S \cup T)\right\}$. Consider $a, b \in A$. Then $a+b \in N \backslash$ $(S \cup T)$. Since $a, b \in A$, it follows that $(1,1,0) a=(1,1,0) b$, which has order 2 in N. So $(1,1,0)(a+b)=(0,0,0)=(1,1,0) a+(1,1,0) b$.
3. Let $a \in I$ and $b \in S_{i}$, where $i \in\{1,2\}$. Then $a+b \in S_{j}$ where $j \in\{1,2\}-\{i\}$. So $(1,1,0)(a+b)=q_{j}=(1,1,0)+q_{i}=(1,1,0) a+$ $(1,1,0) b$.
4. Let $a \in S_{1}$ and $b \in S_{2}$. Then $a+b \in I$. So $(1,1,0)(a+b)=$ $(1,1,0)=(0,1,0)+(1,0,0)=(1,1,0) a+(1,1,0) b$.

It follows that $(1,1,0) \in N_{d}$. Since $(1,1,0) \in I$ and $I \neq\{(1,1,0)\}$, by (1) in the previous theorem, $C(N)=\{0\}$ and

$$
G C(N)=\{(0,0,0),(1,1,0),(0,1,0),(1,0,0)\} .
$$

Example 7. Let $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, T=\{(1,0,0),(1,0,1),(1,1,0),(1,1,1)\}$, $I=\{(1,1,1)\}, S_{1}=\{(0,1,0),(0,1,1)\}, S_{2}=\{(1,0,0),(1,0,1)\}, S_{3}=$ $\{(1,1,0)\}$, and $Q=\{(0,1,0),(1,0,0),(1,1,0)\}$. As in the previous example, using the subsets I, S_{1}, S_{2}, S_{3}, and $N \backslash(S \cup T)$ of the TSI near-ring N in various combinations, one can show that $(1,1,0) \in N_{d}$. Since $(1,1,0) \in S_{3} \cap T \cap Q$, by (3) in the previous theorem, $C(N)=\{0\}$ and $G C(N)=\{(0,0,0),(0,0,1),(1,1,0),(1,1,1)\}$.

Acknowledgment. The authors thank the referee for several suggestions that greatly improved the presentation of the paper.

References

[1] AICHINGER, E., BINDER, F., ECKER, J., EGGETSBERGER, R., MAYR, P. and NÖBAUER, C: SONATA - System of Near-Rings and Their Applications, Package for the group theory system GAP4, Division of Algebra, Johannes Kepler University, Linz, Austria, 1999.
[2] AICHINGER, E. and FARAG, M.: On when the multiplicative center of a nearring is a subnear-ring, Aequationes Math. 68 (2004), no. 1-2, 46-59.
[3] BAGLEY, S: Polynomial near-rings: polynomials with coefficients from a nearring. Nearrings, nearfields and K-loops (Hamburg, 1995), 179-190, Math. Appl., 426, Kluwer Acad. Publ., Dordrecht, 1997.
[4] CANNON, G. A., FARAG, M. and KABZA, L.: Centers and generalized centers of near-rings, Comm. Algebra 35 (2007), 443-453.
[5] CLAY, J. R.: Nearrings: Geneses and Applications, Oxford University Press, Oxford, 1992.
[6] FARAG, M.: A new generalization of the center of a near-ring with applications to polynomial near-rings, Comm. Algebra 29 (2001), no. 6, 2377-2387.
[7] MALONE, J. J. Jr.: Near-rings with trivial multiplications, Amer. Math. Monthly 74 (1967), no. 9, 1111-1112.
[8] MELDRUM, J. D. P.: Near-Rings and Their Links with Groups, Research Notes in Math., No. 134, Pitman Publ. Co., London, 1985.
[9] MELDRUM, J. D. P. and VAN DER WALT, A. P. J.: Matrix near-rings, Arch. Math. (Basel), 47 (1986), no. 4, 312-319.
[10] PILZ, G.: Near-Rings, North-Holland/American Elsevier, Amsterdam, 1983.

