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Abstract: The class of (0,m, s)-nets in base b has been introduced by Nieder-
reiter as examples of point sets in the s-dimensional unit cube with excellent
uniform distribution properties. In particular such nets have been proved to
have very low discrepancy. This property is essential for the use of nets in quasi-
Monte Carlo rules for numerical integration. In this short note we propose two
algorithms for the construction of plane (0,m, 2)-nets in base b.

1. Introduction

In many applications, notably numerical integration based on quasi-
Monte Carlo rules, one requires very uniformly distributed point sets in
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the unit-cube. The quality of the distribution is usually measured by the
discrepancy. For a point set P = {x1, . . . ,xN} in [0, 1)s and subintervals
J ⊆ [0, 1)s the local discrepancy is defined as

∆(J ;P) :=
#{n ∈ {1, . . . , N} : xn ∈ J}

N
− Vol(J).

The discrepancy of P is then defined as
DN(P) = sup

J
|∆(J ;P)|,

where the supremum is extended over all intervals J ⊆ [0, 1)s. Point
sets with discrepancy of order DN � (logN)s−1/N are called “low-
discrepancy point sets”.

One class of point sets with excellent distribution properties are
(t,m, s)-nets in base b as introduced by Niederreiter [5] (see also [6]):

Let s, b ∈ N, b ≥ 2. An elementary b-adic interval (or box) is an
interval of the form

s∏
j=1

[
aj
bdj
,
aj + 1

bdj

)
with d1, . . . , ds ∈ N0 and aj ∈ {0, 1, . . . , bdj − 1}.
Definition 1 (Niederreiter). Let b, s,m, t be integers such that b ≥ 2,
s ≥ 1, m ≥ 0 and 0 ≤ t ≤ m. A bm-element point set P in the s-
dimensional unit cube is called a (t,m, s)-net in base b if every elementary
b-adic interval of volume bt−m contains exactly bt points of P .

Thus a (t,m, s)-net in base b is a bm-element point set P in the
unit-cube for which the local discrepancy satisfies ∆(E;P) = 0 for all
elementary b-adic intervals E of volume bt−m. The smaller t is (in the
optimal case it is 0), the more demanding is this condition. This property
for the local discrepancy is transferred in some sense also to arbitrary sub-
intervals of [0, 1)s which still have very low local discrepancy, although
it cannot be zero in general. This is reflected in the discrepancy bounds
which are of the form

Dbm(P)�s,b b
tm

s−1

bm
� bt

(logN)s−1

N
if N = bm,

and if P is a (t,m, s)-net in base b (see one of [3, 4, 5, 6]). Thus a
(t,m, s)-net in base b is a low-discrepancy point set.

Motivated by the discrepancy bounds the parameter t in the defini-
tion of nets is called the “quality parameter” and, as already indicated,
a quality parameter which is as small as possible would be appreciated.
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However, the optimal value t = 0 is not achievable for all possible choices
of parameter pairs (b, s). It is well known that a (0,m, s)-net in base b
with m ≥ 2 can only exist if s ≤ b + 1. This follows easily from the
following proposition:

Proposition 1. There is no (0, 2, b+ 2)-net in base b.

This result is very well known and there are several proofs available
in the literature (see, e.g., [3, 4, 5, 6]). Nevertheless, we give here a short
and new proof which is based on arguments from Graph Theory and
which might bring some new aspects into the theory of (t,m, s)-nets.

Proof. Suppose to the contrary that there is a (0, 2, b+ 2)-net in base b.
Then its projection to the hyperplane orthogonal to the (b+2)nd coordi-
nate axis forms a (0, 2, b+1)-net. To every point in this net we may assign
one of the colors {0, . . . , b − 1}, namely the first digit of the (b + 2)nd
coordinate of the point in the original net.

Now we construct a graph G = (V,E) by setting V equal to the
points in the projection (hence |V | = b2) and letting {v1, v2} ∈ E iff v1
and v2 lie in the same b + 1-dimensional elementary box of volume b−1.
According to our construction two adjacent vertices have different colors.

Every point in V is contained in b+1 such elementary intervals and
every such interval contains exactly b points. Thus every vertex of G has
degree r = (b + 1)(b − 1) = b2 − 1 = |V | − 1. Thus G is isomorphic to
the complete graph with b2 vertices, for which we have found a coloring
by b colors. But this is of course impossible. ♦

Usually, (t,m, s)-nets are constructed with the digital method which
is based on m×m-matrices over a finite commutative ring with b elements
(one matrix per coordinate). If b is a prime power, then there always ex-
ists a (0,m, b + 1)-net in base b. More information about (t,m, s)-nets
can be found in [3, 4, 5, 6].

In this short note we will mainly be concerned with the two-dimen-
sional case. Here one example of a (0,m, 2)-net in base b is the well
known Hammersley net in base b

Hm,b =(1)

=

{(tm
b

+
tm−1
b2

+...+
t1
bm
,
t1
b

+
t2
b2

+...+
tm
bm

)
: t1, ..., tm∈{0, 1, ..., b− 1}

}
.

Combining results by Dick and Kritzer [2] and by De Clerck [1] we
obtain: for every (0,m, 2)-net P in base b we have
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(2) Dbm(P) ≤ 1

bm

(
cbm+9 +

4

b

)
, where cb :=

{
b2

b+1
if b is even,

b− 1 if b is odd.

So the discrepancy of a (0,m, 2)-net is in the order of magnitude
O((logN)/N), where N = bm = |P|. According to a celebrated re-
sult by Schmidt [7] this order is the best possible for the discrepancy of
any N -element plane point set.

Our aim is to present two interesting construction algorithms which
can in principle construct every (0,m, 2)-net in base b. This way we
construct point sets with an optimal order of star discrepancy.

2. The first algorithm

If we are given a (0,m, s)-net in base b, say P = {x1,x2, . . . ,xbm},
then each point xn belongs to a b-adic bm × bm box of the form

(3)
s∏

j=1

[
uj(n)

bm
,
uj(n) + 1

bm

)
where uj(n) = bbmxn,jc whenever xn,j is the jth component of xn. It
is elementary to see that the (0,m, s)-net property remains valid if one
shifts the elements of a (0,m, s)-net within their corresponding b-adic
boxes of the form (3).

So, instead of constructing point sets, we are now going to construct
sets of b-adic boxes of the form (3).

For a given box X =
∏s

j=1[
uj

bm
,
uj+1

bm
) let Em(X) be the set of all

b-adic boxes of volume b−m which contain X as a subset,

Em(X) = {E : E is a b-adic box of volume b−m with X ⊆ E}.
We propose the following algorithm for the construction of finite

sequences of b-adic boxes X =
∏2

j=1[
uj

bm
,
uj+1

bm
):
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Algorithm 1 Construction of a finite sequence of boxes of the form (3)

1: Input: base b, resolution m
2: Set n = 1;
3: Set U1 = [0, 1)2;
4: repeat
5: Choose an arbitrary box

Xn =
2∏

j=1

[
uj(n)

bm
,
uj(n) + 1

bm

)
⊆ Un;

6: Set n = n+ 1;
7: Set

Un = Un−1 \
⋃

E∈Em(Xn−1)

E;

8: until Un = ∅
9: return X1, X2, . . . , Xn

An example of a construction according to Algorithm 1 is illustrated
in Fig. 1.

Theorem 1. Algorithm 1 terminates after exactly bm steps and the
outcome yields a (0,m, 2)-net in base b. In particular, the so constructed
point set satisfies the discrepancy bound (2).

We split the proof into several short lemmas:

Lemma 1. Algorithm 1 terminates after at most bm steps, i.e., n ≤ bm.

Proof. Each Xj belongs to exactly one b-adic interval of the form[
a

bm
,
a+ 1

bm

)
× [0, 1) for a ∈ {0, 1, . . . , bm − 1}.

Hence the result follows since
bm−1⋃
a=0

[
a

bm
,
a+ 1

bm

)
× [0, 1) = [0, 1)2. ♦

Lemma 2. If Algorithm 1 terminates after exactly bm steps, then the
output sequence X1, X2, . . . , Xbm constitutes a (0,m, 2)-net in base b.

For the proof we need the following easy lemma which we state for
arbitrary dimension s:

Lemma 3. 1. There are exactly bm
(
m+s−1

m

)
many s-dimensional b-adic

intervals with volume b−m.
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Figure 1: Algorithm 1 for b = s = 2 and m = 3; The chosen X1, . . . , X8 are
colored black. The corresponding b-adic boxes are in dark gray.
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2. Every b-adic interval of the form X =
∏s

j=1[
uj

bm
,
uj+1

bm
) is con-

tained in exactly
(
m+s−1

m

)
s-dimensional b-adic intervals with volume b−m,

i.e., |Em(X)| =
(
m+s−1

m

)
.

Proof. 1. The requested number is given by
∞∑

d1,...,ds=0
d1+···+ds=m

bd1−1∑
a1=0

· · ·
bds−1∑
as=0

1 =
∞∑

d1,...,ds=0
d1+···+ds=m

bd1+···+ds = bm
(
m+ s− 1

m

)
.

2. For fixed (d1, . . . , ds) ∈ Ns
0 with d1+ · · ·+ds = m there is exactly

one choice

(a1, . . . , as) ∈
s∏

j=0

{0, 1, . . . , bdj − 1}

such that
s∏

j=1

[
uj
bm
,
uj + 1

bm

)
⊆

s∏
j=1

[
aj
bdj
,
aj + 1

bdj

)
.

Hence the requested number is exactly the number of (d1, . . . , ds) ∈ Ns
0

with d1 + · · ·+ ds = m and this is
(
m+s−1

m

)
. ♦

Now we give the proof of Lemma 2:

Proof. Assume that Algorithm 1 constructs the finite sequence X1, X2,
. . ., Xbm . According to Lemma 2 we have |Em(X`)| =

(
m+1
m

)
= m +

1. Each b-adic interval E ∈ Em(X`) contains exactly one element of
X1, . . . , Xbm , namely X`, which is the correct number. Of course,

Em(X`) ∩ Em(Xk) = ∅ whenever ` 6= k.

Hence the number of b-adic boxes of volume b−m which contain exactly
one of X1, X2, . . . , Xbm is given by

bm∑
`=1

|Em(X`)| = bm(m+ 1).

This is already the number of all b-adic boxes in dimension 2 with volume
b−m. Hence, every b-adic box in dimension 2 with volume b−m contains
exactly one of X1, X2, . . . , Xbm . This means that X1, X2, . . . , Xbm consti-
tute a (0,m, 2)-net in base b. ♦

Lemma 4. Algorithm 1 terminates after exactly bm steps.

Proof. Assume that Algorithm 1 terminates after the step n < bm. Then
there exists a k ∈ {0, 1, . . . , bm − 1} such that
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X` 6⊆
[
k

bm
,
k + 1

bm

)
× [0, 1) for all ` = 1, 2, . . . , n.

We may assume without loss of generality that k = 0. Hence X` 6⊆
6⊆ [0, 1

bm
)× [0, 1) for all ` = 1, 2, . . . , n.

Now consider elementary boxes of the form

(4)

[
0,

1

bm−1

)
×
[
k

b
,
k + 1

b

)
for k = 0, 1, . . . , b− 1.

Assume that all of these b boxes contain one of X1, . . . , Xn. Then

(5)
b−1⋃
h=1

([
h

bm
,
h+ 1

bm

)
× [0, 1)

)
contains b intervals Xj. According to the pigeonhole principle there must
be an interval among the b− 1 intervals in union (5) which contains two
Xj’s. This however is impossible due to the definition of the algorithm.
Thus we have shown that at least one of the intervals in (4) does not
contain a Xj.

Again it is no loss of generality if we assume that Xj 6⊆ [0, 1
bm−1 )×

×[0, 1
b
) for all j = 1, . . . , n.
Now we consider elementary boxes of the form

(6)

[
0,

1

bm−2

)
×
[
k

b2
,
k + 1

b2

)
for k = 0, 1, . . . , b− 1.

Assume that all of these b boxes contain one of X1, . . . , Xn. Then

(7)
b−1⋃
h=1

([
h

bm−1
,
h+ 1

bm−1

)
×
[
0,

1

b

))
contains b intervals Xj. According to the pigeonhole principle there must
be an interval among the b− 1 intervals in union (7) which contains two
Xj’s. This however is impossible due to the definition of the algorithm.
Thus we have shown that at least one of the intervals in (6) does not
contain a Xj.

Again it is no loss of generality if we assume that Xj 6⊆ [0, 1
bm−2 )×

×[0, 1
b2

) for all j = 1, . . . , n.
If we continue this process we finally find that Un contains a b-adic

box with side length b−m. For example, if in each step k equals 0, then
this is the box [0, 1

bm
)s. Therefore it is possible to choose a further interval

Xn+1. ♦
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3. Algorithm 1 for arbitrary dimension

In principle we can formulate Algorithm 1 also in arbitrary dimen-
sion s ≥ 2:

Algorithm 1’ Construction of a finite sequence of boxes of the form (3)
in dimension s
1: Input: base b, number of dimensions s, resolution m
2: Set n = 1;
3: Set U1 = [0, 1)s;
4: repeat
5: Choose an arbitrary box

Xn =
s∏

j=1

[
uj(n)

bm
,
uj(n) + 1

bm

)
⊆ Un;

6: Set n = n+ 1;
7: Set

Un = Un−1 \
⋃

E∈Em(Xn−1)

E;

8: until Un = ∅
9: return X1, X2, . . . , Xn

Then Algorithm 1’ still terminates after at most bm steps (same proof as
for Lemma 2) and if it terminates after exactly bm steps, then the output
again constitutes a (0,m, s)-net in base b (same proof as for Lemma 2).
The problem is that we cannot guarantee that the algorithm runs until
the bmth step, i.e., we do not have a counterpart of Lemma 2 for di-
mension s ≥ 3. Even for s = 3 and b = 2 there are instances where
the algorithm stops before bm. An example is illustrated in Fig. 2. A
necessary condition for Algorithm 1’ is running until n = bm is of course
that s ≤ b+ 1, since otherwise a (0,m, s)-net in base b cannot exist.

Figure 2: Situation in dimension s = 3 and base b = 2 where Algorithm 1’
stops already after 2 steps. Each square is a slice of the cube of height 1/4.
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4. The second algorithm

The second algorithm we propose is a recursive construction in two
dimensions which mimics the construction of Hammersley. It relies on
the observation, that every (0,m, 2)-net in base b with m ≥ 2 induces a
(0,m− 1, 2)-net on each of the b rectangles with exactly one side length
equal to b−1, that partition the unit square.

The algorithm we propose synthesizes a (0,m, 2)-net by (recur-
sively) generating b (not necessarily different) (0,m − 1, 2)-nets, scaling
and shifting them and adjusting the points in a way that guarantees that
the net-property is satisfied.

Let Q(bm) := {0, 1
bm
, 2
bm
, . . . , b

m−1
bm
} be the set of b-adic rationals

with denominator not larger than bm. Recall that any b-adic b−m × b−m
box is uniquely described by the coordinates of its left lower corner. So
we assume in the following without loss of generality that the elements
of a (0,m, 2)-net in base b belong to Q(bm)×Q(bm).

LetSb denote the set of permutations of the b elements {0, ..., b− 1}.
We also need the following two mappings:

• for b ∈ N, b ≥ 2, let Ab : R2 → R2 be the linear scaling by b−1 in
the direction of the first coordinate, i.e., Ab(x, y) = (x/b, y), and

• for m ∈ N, and permutations π0, ..., πbm−1 ∈ Sb let ψb,m : Q(bm)×
×Q(bm−1)→ Q(bm)×Q(bm),

ψb,m(x, y) := (x, y + πbm−1y(x1)b
−m), where x1 = bbxc.

Algorithm 2 Recursive construction of a (0,m, 2)-net in base b

1: Input: base b, final resolution m
2: Set P0 = {(0, 0)};
3: for n = 1 to m do
4: Choose bn−1 permutations π

(n)
0 , . . . , π

(n)

bn−1−1 ∈ Sb;
5: Set P̂n :=

⋃b−1
j=0Ab(Pn−1 + (j, 0));

6: Set Pn := ψb,n(P̂n)
7: end for
8: return Pm

Theorem 2. The output Pm of Algorithm 2 is a (0,m, s)-net in base b,
and therefore its discrepancy satisfies the bound (2).
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The proof of this result follows from the observation that P0 is a
(0, 0, 2)-net in base b and by the following proposition which is slightly
more general than necessary.

Proposition 2. Let b,m ∈ N, b ≥ 2. Let b (not necessarily different)
(0,m − 1, 2)-nets Pj in base b for j = 0, . . . , b − 1 be given as well as
bm−1 permutations π0, . . . , πbm−1−1 ∈ Sb. Construct a set P of bm points
as follows: put

P̂ :=
b−1⋃
j=0

Ab(Pj + (j, 0)) and P := ψb,m(P̂).

Then P is a (0,m, 2)-net in base b.

Proof. We need to show that every elementary interval of volume b−m

contains exactly one element of P . Consider first an elementary interval
I of the form

I =

[
a1
bk
,
a1 + 1

bk

)
×
[
a2
bm−k

,
a2 + 1

bm−k

)
with a1 ∈ {0, . . . , bk−1}, a2 ∈ {0, . . . , bm−k−1} and with k ∈ {1, . . . ,m}.
We may thus write

I = Ab(J + (i, 0)),

where i = ba1b−(k−1)c and where J is the elementary interval

J =

[
a1 − ibk−1

bk−1
,
a1 − ibk−1 + 1

bk−1

)
×
[
a2
bm−k

,
a2 + 1

bm−k

)
of volume b−(m−1). This interval J contains precisely one element of Pi

and hence I contains precisely one element of Ab(Pi+(i, 0)). On the other
hand we have Ab(Pj + (j, 0))∩ I = ∅ for j 6= i. Thus I contains precisely

one element of P̂ . Since the second coordinate of this element belongs
to Q(bm−1), and since ψb,m adds at most b−1

bm
to the second coordinate, I

contains precisely one element of P .

It remains to consider the case that I is an elementary interval of
the form

I = [0, 1)×
[
a2
bm
,
a2 + 1

bm

)
.

Let j = ba2b−1c. By construction, each of the b elementary intervals[
`

b
,
`+ 1

b

)
×
[

j

bm−1
,
j + 1

bm−1

)
,
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for ` = 0, . . . , b − 1, contains precisely one element of P . But by con-
struction of ψb,m, precisely for one of these elements the second coordinate
equals a2b

−m. ♦

Remark 1. If we choose the identity for every permutation in Algo-
rithm 2, then we obtain the Hammersley net in base b as output, i.e.,
Pm = Hm,b (see (1)).
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