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Abstract: In this article we extend the concept of the Riemann summa-
bility (see in [10]) from single to double trigonometric series. We make a
brief overview of bounded-regular linear transformations applied to double se-
quences. Using Robison’s [7] results in the theory of regular transformations
we give two new theorems which are extensions of Riemann’s famous theorems
(see also in [10, Vol. I, p. 319–320]).

1. Introduction: Riemann summability of single trigo-
nometric series

We briefly summarize the basic definitions and results on the Rie-
mann summability of single trigonometric series. We also note that the
Riemann summability of trigonometric series has been investigated ex-
haustively in [9] by F. Weisz, see especially on p. 202.

Let {cm : m ∈ Z} be a doubly infinite series of complex numbers,
in symbols: {cm} ⊂ C. We consider the single trigonometric series

(1.1)
∑
m∈Z

cme
imx
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with its symmetric partial sums

SM (x) :=
∑
|m|6M

cme
imx, M = 0, 1, 2, . . . .

The series is convergent if the sequence of its symmetric partial sums
converges.

Integrating the series (1.1) formally twice, we obtain the series

(1.2) c0
x2

2
−
∑
|m|>1

cm
eimx

m2
=: f (x) .

If the sequence {cm} is bounded, then the series in (1.2) converges
absolutely and uniformly. Consequently, the function f is defined at
every x ∈ R, and it is continuous.

It is readily seen that

∆2f (x; 2u)

4u2
:=

f (x + 2u) + f (x− 2u)− 2f (x)

4u2
=(1.3)

= c0 +
∑
|m|>1

cme
imx

(
sinmu

mu

)2

, u > 0.

If the limit of ∆2f (x; 2u) /4u2 exists as u→ 0, then it is called the
symmetric derivative of f at the point x, and it is denoted by D2f (x).
Now, if D2f (x0) exists, then the series (1.1) is said to be summable at
the point x0 by the Riemann method of summation, or briefly: Riemann
summable to the sum D2f (x0).

The next two theorems were proved by Riemann [6] (see also in [10,
Vol. I, pp. 319–320]).

Theorem 1.1. Suppose that {cm} ⊂ C is such that

(1.4) lim
|m|→∞

cm = 0.

If the series (1.1) converges at some point x to a finite sum S, then it is
also Riemann summable to S.

Theorem 1.2. If condition (1.4) is satisfied, then uniformly in x we
have

∆2f (x; 2u)

4u
= c0u +

∑
|m|>1

cme
imx sin2mu

m2u
→ 0 as u→ 0.
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2. New results: Riemann summability of double trigo-
nometric series

Let {cm,n : (m,n) ∈ Z2} be a double sequence of complex numbers,
in symbols: {cm,n} ⊂ C. We consider the double trigonometric series

(2.1)
∑
m∈Z

∑
n∈Z

cm,ne
i(mx+ny)

with the symmetric rectangular partial sums

(2.2) SM,N (x, y) :=
∑
|m|6M

∑
|n|6N

cm,ne
i(mx+ny), M,N = 0, 1, 2, . . . .

We recall that the double series (2.1) is said to converge in Prings-
heim’s sense to the finite sum S at some point (x0, y0) if for every ε > 0
there exists a natural number M0 such that

|SM,N (x0, y0)− S| < ε if M,N > M0.

This notion of convergence was introduced by Pringsheim [5]. The con-
vergence of a double series in Pringsheim’s sense does not imply the
boundedness of its terms, and also does not involve the convergence of
any of its row or column series defined respectively by

(2.3)

∑
m∈Z

eimx
(
cm,−ne

−iny + cm,ne
iny
)

(n ∈ Z)

and ∑
n∈Z

einx
(
c−m,ne

−imx + cm,ne
imx
)

(m ∈ Z).

These are the reasons why Hardy [2] introduced a stronger notion
of convergence, namely the regular convergence of double series. The
series (2.1) is said to converge regularly to the sum S if it converges to
S in Pringsheim’s sense and each of its row and column series defined in
(2.3) also converge as single series.

Móricz [3] showed that the regular convergence of the series (2.1)
is equivalent with the following condition: for every ε > 0 there exists
M1 ∈ N such that∣∣∣∣ ∑

m06|m|6M

∑
n06|n|6N

cm,ne
i(mx+ny)

∣∣∣∣< ε if max {m0, n0}>M1(2.4)

and 06m06M, 06n06N.
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Integrating the double series (2.1) formally twice with respect to
both x and y, we obtain the double series

c0,0
x2y2

4
− y2

2

∑
|m|>1

cm,0
eimx

m2
− x2

2

∑
|n|>1

c0,n
einx

n2
+(2.5)

+
∑
|m|>1

∑
|n|>1

cm,n
ei(mx+ny)

m2n2
=: F (x, y).

If the sequence {cm,n} is bounded, then the double series in (2.5) con-
verges absolutely and uniformly. Consequently, the function F is defined
at every (x, y) ∈ R2, and it is continuous.

We introduce the notation (cf. the numerator in (1.3))

∆2F (x, y; 2u, 2v) :=

:= F (x + 2u, y + 2v) + F (x− 2u, y + 2v) + F (x + 2u, y − 2v)+

+ F (x− 2u, y − 2v)− 2F (x + 2u, y)− 2F (x, y + 2v)−
− 2F (x− 2u, y)− 2F (x, y − 2v) + 4F (x, y), u, v > 0.

It is easy to check that analogously to (1.3) we have

∆2F (x, y; 2u, 2v)

16u2v2
= c0,0+

∑
|m|>1

cm,0e
imx

(
sinmu

mu

)2

+
∑
|n|>1

c0,ne
iny

(
sinnv

nv

)2

+

(2.6)

+
∑
|m|>1

∑
|n|>1

cm,ne
i(mx+ny)

(
sinmu

mu

)2(
sinnv

nv

)2

.

If the limit of ∆2F (x, y; 2u, 2v) /16u2v2 exists as u, v → 0, then it may
be called the second symmetric derivative of F at the point (x, y), and
it may be denoted by D2F (x, y). Now, if D2F (x0, y0) exists, then the
double series (2.1) is said to be summable at the point (x0, y0) by the
Riemann method of summation, or briefly: Riemann summable to the
sum D2F (x0, y0).

The next two theorems are counterparts of Riemann’s First and
Second Theorems.

Theorem 2.1. Suppose that {cm,n} ⊂ C is such that

(2.7) lim
|m|+|n|→∞

cm,n = 0.
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If the double series (2.1) converges regularly at some point (x, y) to a
finite sum S, then it is also Riemann summable to S.

Theorem 2.2. If condition (2.7) is satisfied, then uniformly in (x, y) we
have

∆2F (x, y; 2u, 2v)

16uv
→ 0 as u, v → 0.

3. Proofs of the new theorems

We recall that the proofs of Riemann’s First and Second Theorems
(see in [10, Vol. I, pp. 319–320]) based on the following two well-known
methods:

(i) summation by parts;

(ii) checking the fulfillment of the Toeplitz conditions, which guarantee
that a linear transformation of sequences be regular (see [8] and also
[10, Vol. I, pp. 74–75]).

In order to present a linear transformation of double sequences let
A :=

[
aj,km,n : m,n = 0, 1, 2, ...

]
be a doubly infinite matrix of real numbers

for all j, k = 1, 2, . . . . Given a double sequence {sm,n : m,n = 0, 1, 2, . . . }
of real or complex numbers, the sums

(3.1) tj,k :=
∞∑

m=0

∞∑
n=0

aj,km,nsm,n

are called the A-means of the sequence {sm,n}, yield a method of summa-
bility (see in [1]). More exactly, the double sequence {sm,n} is said to be
A-summable to a finite limit s if the A-means exist for all j, k = 1, 2, . . .
in the sense of Pringsheim’s converence:

lim
M,N→∞

M∑
m=0

N∑
n=0

aj,km,nsm,n = tj,k and lim
j,k→∞

tj,k = s.

Now, we say that a matrix A is bounded-regular if every bounded
and convergent sequence {sm,n} is A-summable to the same limit and the
A-means are also bounded. G. M. Robison [7] proved that the necessary
and sufficient conditions for A to be bounded-regular are the following
four ones:
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(a) lim
j,k→∞

∞∑
m=0

∣∣aj,km,n

∣∣ = 0 for n = 0, 1, 2, . . . ;

(b) lim
j,k→∞

∞∑
n=0

∣∣aj,km,n

∣∣ = 0 for m = 0, 1, 2, . . . ;

(c)
∞∑

m=0

∞∑
n=0

∣∣aj,km,n

∣∣ 6 C <∞ for j, k = 1, 2, . . . ;

(d) lim
j,k→∞

∞∑
m=0

∞∑
n=0

aj,km,n = 1.

We note that the finiteness of the double sum in (c) implies the
existence of the double sum in (d); and it also implies the convergence
of the double series in (3.1) for every bounded and convergent double
sequence {sm,n}. Furthermore, in the special case when

lim
m,n→∞

sm,n = 0,

condition (d) is not needed in order to conclude that

lim
j,k→∞

tj,k = 0.

After these preliminaries we are ready to prove the theorems given
in Sec. 2.

Proof of Theorem 2.1. Let (x, y) ∈ R2 be a point at which the series
(2.1) converges to the limit S in Pringsheim’s sense. By (2.6), it is enough
to show that

∆2F (x, y; 2uj, 2vk)

16u2
jv

2
k

→ S

holds for every uj, vk → 0, uj, vk > 0. Set

g : [0,∞)→ R, g(0) := 1 and g(x) =

(
sinx

x

)2

(x 6= 0).

This notation and (2.6) with u = uj, v = vk give

(3.2)
∆2F (x, y; 2uj, 2vk)

16u2
jv

2
k

=
∑
m∈Z

∑
n∈Z

cm,ne
i(mx+ny)g(muj)g(nvk).

Using the symmetric rectangular partial sums of (2.1) defined in (2.2)
we have
cm,ne

i(mx+ny) + c−m,−ne
−i(mx+ny) + c−m,ne

i(−mx+ny) + cm,−ne
i(mx−ny) =

= Sm,n − Sm−1,n − Sm,n−1 + Sm−1,n−1, m, n > 1.
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Consequently, the symmetric rectangular partial sums of the series in
(3.2) can be represented as follows (for further details, see [4]):∑
|m|6M

∑
|n|6N

cm,ne
i(mx+ny)g(muj)g(nvk) =

=
M−1∑
m=0

N−1∑
n=0

Sm,n [ g (muj) g (nvk)− g ((m + 1)uj) g (nvk)−

− g (muj) g ((n + 1)vk) + g ((m + 1)uj) g ((n + 1)vk) ] +

+
M−1∑
m=0

Sm,N [g (muj) g (Nvk)− g ((m + 1)uj) g (Nvk)] +

+
N−1∑
n=0

SM,n [g (Muj) g (nvk)− g (Muj) g ((n + 1)vk)] +

+ SM,Ng (Muj) g (Nvk) =: S1 + S2 + S3 + S4,

say. Our first goal is to prove that

∆2F (x, y; 2uj, 2vk)

16u2
jv

2
k

= lim
M,N→∞

S1 =(3.3)

=
∞∑

m=0

∞∑
n=0

Sm,n

[
g(muj)g(nvk)− g((m + 1)uj)g(nvk)−

− g(muj)g((n+1)vk)+g((m+1)uj)g((n+1)vk)
]
,

which can be obtained by showing that S2, S3, S4 → 0, as M,N → ∞.
First, we observe that (2.4) implies the boundedness of the symmetric
rectangular partial sums Sm,n. In this case S4 → 0 is clearly satisfied.
Second, we have

∞∑
m=0

|g (muj) g (Nvk)− g ((m + 1)uj) g (Nvk)| =(3.4)

= g (Nvk)
∞∑

m=0

|g (muj)− g ((m + 1)uj)| .

Furthermore, we can estimate as follows
(3.5)
∞∑

m=0

|g (muj)− g ((m + 1)uj)| =
∞∑

m=0

∣∣∣∣∣
∫ (m+1)uj

muj

g′(t)dt

∣∣∣∣∣ 6
∫ ∞
0

|g′(t)| dt.
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Applying l’Hospital’s rule twice we find

(3.6) g′(t) = 2 · t sin t cos t− sin2 t

t3
→ 0 (t→ 0),

thus we obtain

(3.7)

∫ ∞
0

|g′(t)| dt 6 C1 + 2 ·
∫ ∞
1

t + 1

t3
dt =: C2(<∞).

Since g (Nvk) → 0, by (3.4)–(3.7) we may conclude that S2 → 0. With
minor modifications, from

lim
M→∞

∞∑
n=0

|g (Muj) g (nvk)− g (Muj) g ((n + 1)vk)| = 0,

we can also deduce that S3 → 0. Summarizing the above results, (3.3) is
proved.

Now, we define the A =
[
aj,km,n

]
matrix with

aj,km,n :=g(muj)g(nvk)− g((m + 1)uj)g(nvk)−
− g(muj)g((n + 1) vk) + g((m + 1)uj)g((n + 1) vk).

It is clearly seen from (3.3) that the bounded-regularity of the matrix
A ensures the Riemann summability of the series (2.1) to S. Hence, to
complete the proof we need to check whether this matrix A satisfies the
(a)–(d) conditions of Robison’s theorem. To verify (a) we see that
∞∑

m=0

∣∣aj,km,n

∣∣= ∞∑
m=0

| g(nvk) (g(muj)− g((m + 1)uj))−

− g((n + 1) vk) (g(muj) + g((m + 1)uj)) | =

=
∞∑

m=0

|(g(muj)− g((m + 1)uj)) (g(nvk)− g((n + 1)vk))| =

=

∣∣∣∣(sinnvk
nvk

)2
−
(

sin(n + 1)vk
(n + 1)vk

)2∣∣∣∣· ∞∑
m=0

∣∣g(muj)−g((m + 1)uj)
∣∣.

For any n = 0, 1, 2, . . . we clearly have(
sinnvk
nvk

)2

−
(

sin(n + 1)vk
(n + 1)vk

)2

→ 0 (k →∞).

Using our results (3.5)–(3.7) again, we get that condition (a) is satisfied.
Condition (b) can be shown in the same way.
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We may also prove condition (c) from (3.5)–(3.7) in the following
way

∞∑
m=0

∞∑
n=0

∣∣aj,km,n

∣∣ =

=
∞∑

m=0

|g (muj)− g ((m + 1)uj)| ·
∞∑
n=0

|g (nvk)− g ((n + 1) vk)| <

< 2C2 =: C(<∞) for every j, k = 1, 2, . . . .

Finally, to verify condition (d) we will show that
∞∑

m=0

∞∑
n=0

aj,km,n = 1 for every j, k = 1, 2, . . . .

To prove this equality we use the form
∞∑

m=0

∞∑
n=0

aj,km,n =
∞∑

m=0

((
sinmuj

muj

)2

−
(

sin(m + 1)uj

(m + 1)uj

)2
)
·

·
∞∑
n=0

((
sinnvk
nvk

)2

−
(

sin(n + 1)vk
(n + 1)vk

)2
)
,

where both series have telescoping partial sums which converge to 1 in-
dependently of j and k.

Now, Robison’s theorem completes the proof of our theorem. ♦

Proof of Theorem 2.2. Similarly to (2.6) we find that

∆2F (x, y; 2uj, 2vk)

16ujvk
= ujvkc0,0 + vk

∑
|m|>1

cm,0e
imx sin2muj

m2uj

+

+ uj

∑
|n|>1

c0,ne
iny sin2 nvk

n2vk
+
∑
|m|>1

∑
|n|>1

cm,ne
i(mx+ny) sin

2muj

m2uj

sin2 nvk
n2vk

=: S5 + S6 + S7 + S8,

say. We will show that Si → 0 (i = 5, 6, 7, 8) as uj, vk → 0 (j, k →∞).

It is obvious that S5 → 0 as j, k →∞. We may also get S6, S7 → 0
(j, k →∞) due to Th. 1.2.

We rewrite S8 into the following equivalent form

S8 =
∞∑

m=1

∞∑
n=1

(
cm,ne

i(mx+ny) + c−m,−ne
−i(mx+ny)+

+ c−m,ne
i(−mx+ny) + cm,−ne

i(mx−ny))sin2muj

m2uj

sin2 nvk
n2vk

.
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Since the double sequence

sm,n := cm,ne
i(mx+ny)+c−m,−ne

−i(mx+ny)+c−m,ne
i(−mx+ny)+cm,−ne

i(mx−ny)

tends to 0 as m,n → ∞, arguing in the same way as in the proof of
Th. 2.1 it is enough to prove that the matrix A =

[
aj,km,n

]
defined by

aj,km,n :=
sin2muj

m2uj

sin2 nvk
n2vk

satisfies the conditions of bounded-regularity. As we have mentioned
earlier, condition (d) is superfluous in the special case when our sequence
tends to zero. In order to verify (a), we analyze the following series

(3.8)
∞∑

m=1

∣∣aj,km,n

∣∣ =
sin2 nvk
n2vk

∞∑
m=1

sin2muj

m2uj

.

Since
sin2 nvk
n2vk

→ 0 as k →∞,

hence we need to show that the series on the right-hand side of (3.8)
remains bounded as j →∞. Set

M = M(j) :=

[
1

uj

]
+ 1,

and accordingly
1

uj

< M 6
1

uj

+ 1.

After these observations we may estimate in the following:

∞∑
m=1

sin2muj

m2uj

=
M∑

m=1

m2u2
j

m2uj

+
∞∑

m=M+1

1

m2uj

< Muj +
1

ujM
6(3.9)

6

(
1

uj

+ 1

)
uj +

1

uj
1
uj

= 2 + uj < 2 + max
j

uj.

Thus, we justified that condition (a) is satisfied. Analogously, we may
obtain that condition (b) is also satisfied. To check the fulfillment of
condition (c) we may estimate in a similar way as in (3.9):

∞∑
m=1

∞∑
n=1

∣∣aj,km,n

∣∣ =
∞∑

m=1

sin2muj

m2uj

∞∑
n=1

sin2 nvk
n2vk

6

6

(
2 + max

j
uj

)(
2 + max

k
vk

)
=: C(<∞).

Finally, applying Robison’s theorem gives the proof of our statement. ♦
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