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Abstract: CNS polynomials whose constant term is large in comparison to
their other coefficients are studied. Characterization results for this class of
polynomials are given provided that their degrees do not exceed five.

1. Introduction

Many generalizations of our ordinary decimal number system have
been known and investigated for a long time. Here we deal with canonical
number systems (commonly abbreviated by CNS) special cases of which
were already presented by Grünwald [16], Knuth [24], Penney [28] and
Gilbert [15]. The systematic study of canonical number systems has been
initiated by the Hungarian school some decades ago (see [22, 20, 21, 26]).
The works [7, 8, 19] are recommended as profound surveys on this subject
in a broader context. Detailed background information on the historical
development and relations of CNS polynomials to other areas such as
shift radix systems, finite automata or fractal tilings can be found in the
surveys by Barat et al. [7] and by Kirschenhofer and Thuswaldner [23].

The general notion of canonical number systems and the concept
of CNS polynomials (see Sec. 2 for the definition1) were introduced by

E-mail address: brunoth@web.de
1CNS polynomials are named complete base polynomials in [13].
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Pethő [30] and extended in the sequel (see for example [1, 6, 33]). The
CNS property of a given polynomial can algorithmically be decided [34,
9, 13], and some characterization results on these polynomials are known
(for instance, see [20, 15] for quadratic polynomials, [26, 4, 10, 5] for
some other classes of polynomials and [27, 18] for more general results).
Several open questions in a more general framework are listed in [2].

In particular, there is strong evidence that the CNS property of
polynomials of degree larger than 2 having relatively small constant term
can hardly be predicted. In fact, several examples illustrating this phe-
nomenon can be found in [25, 3, 12, 11]. In view of these observations we
here concentrate on monic integer polynomials whose constant term is
large compared to the remaining coefficients and provide some character-
izing properties for this class of polynomials. In particular, we describe
certain CNS quadrinomials and extend the respective results of Akiyama
and Rao [5] on cubic, quartic and quintic polynomials.

2. Definition and fundamental properties of CNS
polynomials

Let

(1) P = Xd + pd−1X
d−1 + · · ·+ p1X + p0 ∈ Z[X]

be a monic integer polynomial of positive degree with non-vanishing con-
stant term. Recall that P is a CNS polynomial if for every A ∈ Z[X]
there exists a polynomial B ∈ {0, . . . , |P (0)| − 1}[X] such that A ≡ B
(mod P ). Throughout we denote by Z (N, C, respectively) the set of
rational integers (the set of nonnegative rational integers, CNS polyno-
mials, respectively).

We briefly illustrate the definition of a CNS polynomial by exhibit-
ing some examples.

Example 2.1. (i) Let b ≥ 2 and m ∈ Z. By [16] we can write

m =
∑̀
j=0

ei(−b)i (` ∈ N, e0, . . . , e` ∈ {0, . . . , b− 1}).

The polynomial
∑`

i=0 eiX
i − m vanishes at −b, hence it is divisible by

P := X + b. In other words, m is canonically represented by
∑`

j=0 eiX
i
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modulo P . Using the Euclidean algorithm every integer polynomial is
congruent to an integer modulo P , hence P is a CNS polynomial (in fact,
every linear CNS polynomial is of this form [1, Rem. 4.5]).

(ii) Consider the quadratic polynomial P := X2 + 2X + 2. In view
of

(X − 1) · P = X3 +X2 − 2
we have 2 ≡ X3 + X2 (mod P ), i.e., 2 is canonically represented by
X3 + X2 modulo P . With some more effort one can show that P is
indeed a CNS polynomial [20, 21, 15, 10, 35, 5].

(iii) Take P := X2− 2X+ 2 and assume that there exist e0, ..., e` ∈
∈ {0, 1} such that

2 ≡
∑̀
j=0

eiX
i (mod P ).

Then there are t0, . . . , td ∈ Z such that∑̀
i=0

eiX
i − 2 = P ·

d∑
i=0

tiX
i .

Comparing coefficients we successively find
e0 = e1 = 0, t0 = t1 = −1, e2 = 1, t2 = 0, e3 = t3 = 1, e4 = 0, t4 = 1

and en = tn = 1 for n ≥ 5 which is absurd. Therefore, 2 does not admit
a canonical representation modulo P , hence P is not a CNS polynomial.

(iv) The reader might find it instructive to notice that

P := X3 + 50X2 + 73X + 55 ∈ C,
but P + 1 /∈ C (e.g., see [11, Prop. 10]).

To P we associate the mapping τP : Zd 7→ Zd by2

τP (a1, . . . , ad) :=

(
a2, . . . , ad,−

⌊(d−1∑
j=0

pd−j aj+1

)
/|p0|

⌋)
(pd := 1)

and the sets
NP := {z ∈ Zd : τ kP (z) = 0 for some k ∈ N}

and EP :=∅ if all coefficients of P are nonnegative, and EP :={(e1, ..., ed)∈
∈ E0 : ed = 1}, otherwise, where we put E0 := {0, 1}d. If there is no
fear of confusion we will occasionally omit the subscript P . For more
details and background the reader is referred to [23]; here we only recall
the following important facts.

Theorem 2.2. Let P =
∑d

i=0 piX
i be a CNS polynomial of degree d.

2We denote by b. . .c the usual floor function.
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(i) P is expansive, i.e., every root of P lies outside the closed unit disc.

(ii) If r is a real root of P then r < −1.

(iii) For every k ∈ {1, . . . , d} the polynomial P satisfies the k-subsum
condition, i.e., there exists ` ∈ {0, . . . , k − 1} such that

Sk(`) :=
∑

0≤ki+`≤d

pki+` /∈ [0, p0 − 1] .

(iv)
∑d

i=1 pi ≥ 0.

Proof. (i) [29, Th. 6.1].

(ii) This was shown by Gilbert [15, Prop. 6] under the (unused)
assumption of the irreducibility of P .

(iii) [5, Sec. 3].

(iv) Either see [4, Lemma 2] or use (ii) and the 1-subsum condi-
tion. ♦

3. CNS polynomials with dominant constant term

Following Dubickas [14] we say that the polynomial f ∈ Z[X] has
a dominant constant term if

(2) 2|f(0)| ≥ L(f),

where L(f) denotes the length of f , i.e., the sum of the moduli of the
coefficients of f . Scheicher and Thuswaldner [32] coined the notion that
the monic integer polynomial f with positive constant term fulfills the
AP-condition if strict inequality holds in (2).

We review and slightly extend some well-known properties of CNS
polynomials with dominant constant term. Further, we prepare our main
tool (see Lemma 3.8 below) and subsequent characterization results, e.g.,
the characterization of CNS quadrinomials with at least one negative
coefficient and dominant constant term. Let us start with a reformulation
of an important result by Akiyama and Pethő [4, Lemma 5].

Lemma 3.1. Let P be given by (1) and assume that P has a positive
dominant constant term, i.e.,

p0 ≥
d∑

i=1

|pi|.
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Then we have
‖τP (a)‖∞ ≤ ‖a‖∞ (a ∈ Zd).

In particular, the set E := {−1, 0, 1}d is τP -invariant, i.e., we have
τP (E) ⊆ E. Moreover, if P satisfies the AP-condition then the set E0

is τP - invariant, and for every e ∈ E there is some n ∈ N such that
τnP (e) ∈ E0.

Akiyama and Pethő [4] and Akiyama and Rao [5] established the
following necessary conditions for CNS polynomials with dominant con-
stant term.

Theorem 3.2. Let P given by (1) be a CNS polynomial of degree d ≥ 2
with dominant constant term.

(i) For every ` ∈ {1, . . . , d− 1} we have p` +
∑d

i=`+1 |pi| ≥ 0.

(ii) 1 + pd−1 + pd−2 ≥ 0.

(iii)
∑

2≤i≤d, 2|i pi ≥ 0.

Proof. (i) [4, Th. 3]. (ii), (iii) [5, Th. 5.2]. ♦

Remark 3.3. In view of Th. 2.2 (iv) the property mentioned in Th. 3.2
(i) holds for every CNS polynomial and ` = 1 .

The characterization of CNS polynomials with dominant constant
term relies on a result by Akiyama and Rao [5, Th. 4.3] which we refor-
mulate in the following way.

Theorem 3.4. Let P be monic integer polynomial with dominant con-
stant term and P (0) ≥ 2. Then P is a CNS polynomial if and only if
E ⊂ NP .

We apply this result to slightly sharpen the characterization of CNS
polynomials with exactly one negative coefficient and dominant constant
term given by Akiyama and Rao [5, Th. 3.5].

Theorem 3.5. Let P =
∑d

i=0 piX
i ∈ Z[X] be monic, 0 < k < d, pi ≥ 0

for i ∈ {1, . . . , d − 1} \ {k} and pk < 0. If P has a positive dominant
constant term then P is a CNS polynomial if and only if∑

1≤ki≤d

pki ≥ 0.

Proof. Let P ∈ C, thus by Th. 2.2 the k-subsum condition holds. Since
Sk(`) ∈ [0, p0− 1] for ` ∈ {1, . . . , k− 1} we must have Sk(0) /∈ [0, p0− 1].
In view of Sk(0) ≥ 0 we then find Sk(0) ≥ p0, which implies our assertion.

To prove the converse we assume P /∈ C. Clearly,
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p0 ≥ 1 + |pk| > 1,

thus by Th. 3.4 and Lemma 3.1 the set E contains a non-zero element
which is periodic under τP . Similarly as in the proof of [5, Th. 3.5] this
leads to a contradiction. ♦

Focusing our attention upon the non-vanishing coefficients of poly-
nomials we let r ≥ 3 and introduce the set

Sr : =

{ r∑
i=1

pni
Xni ∈ Z[X] : nr > · · · > n2 > n1 = 0,(3)

pnr = 1, p0 ≥ 2, pni
6= 0 (i = 2, . . . , r − 1)

}
which is contained in the set of monic integer r-sparse polynomials with
positive constant term; recall that a polynomial is called r-sparse if it
has at most r nonzero terms.

A useful result by Akiyama and Rao [5, Th. 5.2] can immediately
be extended.

Proposition 3.6. If
∑r

i=1 pni
Xni ∈ Sr ∩ C has a dominant constant

term then we have
pnr−1 ≥ −1.

Proof. This is a direct consequence of Th. 3.2 since we have

pnr−1 ≥ −
nr∑

i=nr−1+1

|pi| = −|pnr | = −1. ♦

For convenience, the following convention is adopted: For the word
w of a (finite) alphabet3 we let

wn := w · · ·w︸ ︷︷ ︸
n

if n is a positive integer; w0 denotes the empty word. By abuse of nota-
tion we denote by εn (δn, respectively) a word of length n with arbitrary
(possibly different) elements of {−1, 0, 1} ({0, 1}, respectively). For in-
stance, we apply notions of the shape ε3 = εε′ε′′. If there is no danger of
confusion we symbolize the action of τP by an arrow connecting words.
Two simple examples might clarify the use of this notation.

3In this connection we use the terminology of [31, Chapter 0].
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Example 3.7. (i) Let n ≥ 2, a1, . . . , an ∈ Z, an = 1 and
∑n

i=1 ai > 0.
Then clearly

P :=
n∑

i=1

ai(X
2i−1 + 1) /∈ C,

by Th. 2.2 (ii), because P (−1) = 0. Alternatively, we might consider the
periodic4 τP -orbit

(1 (−11)n−1) 7→ ((−11)n−1 (−1)) 7→ (1 (−11)n−1).

(ii) Let d > r > 3 and a1, . . . , ar−2 ∈ N>0. Then the r-sparse
polynomial with dominant constant term

P := Xd +

( r−2∑
i=1

(
ai(X

d−i + 1)
))

+ 1

is not a CNS polynomial. Indeed, we see

1r−10d−(r−1) 7→ 1r−20d−(r−1)(−1) 7→ · · · 7→ 0d−(r−1)(−1)0r−2 7→ · · ·

· · · 7→ 0r−2(−1)0d−(r−1) 7→ 0r−3(−1)0d−(r−1)1 7→ · · ·

· · · 7→ 0d−(r−1)1r−1 7→ · · · 7→ 1r−10d−(r−1),

i.e., there exists a non-zero periodic orbit under τP .

For P ∈ Sr we need the set

FP :=
{

(εnr−nr−1−1w εn2−1 (−1)) ∈ Znr : w ∈ ΠP

}
with

ΠP :=
{

sgn(pnr−1) ε
nr−1−nr−2−1 sgn(pnr−2) ε

nr−2−nr−3−1 · · ·
· · · εn3−n2−1 sgn(pn2)

}
.

The following criterion will play a central role in our subsequent
considerations.

Lemma 3.8. Let P =
∑r

i=1 pni
Xni ∈ Sr such that p0 =

∑r
i=2 |pni

|.
Then P is a CNS polynomial if and only if

(4) EP ∪ FP ⊂ NP .

Proof. If P is a CNS polynomial then (4) clearly holds. Therefore, in
view of Th. 3.4 it suffices to show that (4) implies E ⊂ NP . Let d := nr

and assume that there exists

(5) e ∈ E \ NP .

4For the definition the reader is referred to [1].
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Then we have

(6) (τ kP (e))d ≥ 0 (k > 0),

because otherwise (τ kP (e))d = −1 for some positive k. We easily check

τ k−1P (e) = ( 1 εnr−nr−1−1w εn2−1 )

with some w ∈ ΠP which implies

τ kP (e) = ( εnr−nr−1−1w εn2−1 (−1)) ∈ FP

and then the contradiction e ∈ NP .

From (6) and Lemma 3.1 we deduce that τ kP (e) ∈ E0 for all suf-
ficiently large k, and then (5) tells us that there is some m ∈ N such
that f := τmP (e) satisfies f ∈ E0 and fd = 1. Thus f ∈ EP ⊂ NP which
implies e ∈ NP contradicting our assumption. ♦

We point out an immediate consequence of this result.

Corollary 3.9. Let P =
∑d

i=0 piX
i ∈ Z[X] be a monic polynomial of

degree d ≥ 2 with p0 =
∑r

i=2 |pni
| and pi 6= 0 for all i = 1, . . . , d − 1. If

EP ⊂ NP and
(sgn(pd−1), sgn(pd−2), · · · , sgn(p1), −1) ∈ NP

then P is a CNS polynomial.

Proof. Note that FP = {(sgn(pd−1) sgn(pd−2) · · · sgn(p1) (−1))}. ♦
In favorable cases the verification of the prerequisites of Lemma 3.8

can slightly be simplified.

Lemma 3.10. Let P =
∑d

i=0 piX
i ∈ Z[X] be monic with d ≥ 2 and

p0 =
∑d

i=1 |pi|. Then we have

(7) (τP (sgn(pd−1), . . . , sgn(p1),−1))d ≥ 0.

Proof. Let us assume the contrary. In view of Lemma 3.1 we then have

p0 =
d∑

i=2

si−1pi − p1,

where we set si := sgn(pi) (i = 1, . . . , d). Therefore, we have

|p1|+ p1 +
d∑

i=2

(|pi| − si−1pi) = 0,

which implies

s1 ∈ {0,−1} and sipi = si−1pi (i = 2, . . . , d)



Semiprimary tame nearrings and N -groups 121

and then s2, . . . , sd ∈ {0,−1} contradicting sd = 1. ♦

Corollary 3.11. Let P =
∑d

i=0 piX
i ∈ Z[X] be monic with d ≥ 3,

p1, ..., pd−1 6= 0 and p0 =
∑d

i=1 |pi|. If (sgn(pd−2), ..., sgn(p1),−1, δ)∈NP

for δ ∈ {0, 1} then we have FP ⊂ NP .

Proof. By definition we have FP = {(sgn(pd−1) · · · sgn(p1) (−1))} and
Lemma 3.10 and our prerequisites yield

τP (sgn(pd−1), . . . , sgn(p1),−1) ∈ NP . ♦

Remark 3.12. Note that in general we cannot abdicate the assumption
EP ⊂ NP in Lemma 3.8 above. For instance, the polynomial P = X4+
+2X3 − 2X2 − X + 6 ∈ S5 fulfills FP ⊂ NP , but it is not a CNS
polynomial, since (1, 0, 1, 0) ∈ EP is a periodic element under τP .

The following lemma can be useful in verifying the prerequisites of
Lemma 3.8.

Lemma 3.13. Let P ∈Sr with dominant constant term such that pni
>0

(i = 2, . . . , r − 1) and d = deg(P ). Then the following statements hold.

(i) If e ∈ E0 and ‖e‖1 ≤ r − 2 then e ∈ NP .

(ii) (0, δd−1) 7→ (δd−1, 0).

(iii) If n2 = 1 then (δd−10), (0, δd−1) ∈ NP .

(iv) If (δd−1, 0) ∈ NP then (0, δd−1), (−1, δd−1) ∈ NP .

Proof. (i) We observe

(τP (e))d = 0, τP (e) ∈ E0, ‖τP (e)‖1 ≤ ‖e‖1
and use induction on the 1-norm of e.

(ii), (iii), (iv) This can immediately be checked by the definitions. ♦

Now we are in a position to extend a result by Akiyama and Rao [5,
Th. 3.2].

Theorem 3.14. Let P =
∑d

i=0 piX
i ∈ Z[X] be a monic polynomial of

degree d ≥ 2 with positive dominant constant term. Then P is a CNS
polynomial if one of the two following conditions is satisfied:

(i) p1, . . . , pd−1 > 0,

(ii) pi ≥ 0 for i ∈ {2, . . . , d− 1} and

−
d∑

i=2

pi ≤ p1 ≤ −1.

Proof. (i) If P satisfies the AP-condition then P is expansive by [4,
Lemma 1] and the assertion is clear by [5, Th. 3.2]. Therefore, we assume
2P (0) = P (1). In view of Lemma 3.8 it suffices to show that
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EP ∪ FP ⊂ NP .

Note that EP = ∅ and FP = {(1 · · · 1 (−1))}. Obviously, we have

(1, . . . , 1,−1) 7→ (1, . . . , 1,−1, δ) 7→ · · ·
· · · 7→ (−1, δd−1) 7→ {(0d−1, 1), (δd−1, 0)} ⊂ NP .

(ii) Clear by Th. 3.5. ♦

Remark 3.15. (i) Observe that in Th. 3.14 (i) the positivity condition
on the coefficients cannot be relaxed. Indeed, the expansive polynomial
X3 +X2 + 2 is not a CNS polynomial (e.g., see [10, Th. 3]).

(ii) Th. 3.14 (ii) is no longer valid if the linear term is replaced by a
different negative coefficient. For instance, by Th. 3.5 we have X4+aX3−
−2X2 + bX + c /∈ C for all c ≥ a+ b+ 3.

We close this section by a characterization of certain CNS quadri-
nomials.

Theorem 3.16. Let P := Xd + aXm + bXn + c ∈ S4 have a positive
dominant constant term.

(i) Let a < 0. Then P ∈ C if and only if a = −1, b > 0 and m
divides d.

(ii) Let b < 0. Then P ∈ C if and only if one of the following two
conditions is satisfied.

(a) a+ b ≥ 0 and n divides m.

(b) b = −1, a > 0 and n divides d.

Proof. In view of [10, Th. 1] we may assume that P is primitive. Ac-
cording to Jankauskas [17] we say that a polynomial f(X) is primitive if
it is not of the form g(Xk) for some k > 1.

(i) If P ∈ C the we infer

b ≥ −1− a ≥ 0

from Th. 2.2 and our assertion is clear by Th. 3.5. The same theorem
implies the converse.

(ii) Let P ∈ C. Assuming a < 0 Th. 2.2 yields the contradiction

−1 ≤ a+ b ≤ −1 + b.

Thus we have a > 0.

If n divides m then n does not divide d by primitivity, and Th. 3.5
delivers a+ b ≥ 0. If n does not divide m then Th. 3.5 yields 1 + b ≥ 0,
thus b = −1.
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To prove the converse we first assume that (a) holds. Then clearly
a > 0, and we are done by Th. 3.5. Finally, supposing that (b) holds an
application of Th. 3.5 concludes the proof. ♦

Remark 3.17. Let P be as in Th. 3.16. If ab = 0 then the CNS
property of P is characterized by [10, Theorems 1 and 3]. However, if
a, b > 0 then Ex. 3.7 and the calculations in the last section suggest that
the characterization of P ∈ C will be more difficult.

4. CNS polynomials of small degrees with dominant
conditions

In this section we characterize CNS polynomials of small degrees
with dominant constant term. Here our main tools are results by Akiyama
and Rao [5] and Lemma 3.8. Several straightforward but tedious verifi-
cations are left to the reader or postponed to the final section.

Theorem 4.1. Let a, b, c ∈ Z such that c ≥ 1+|a|+|b|. Then X3+aX2+
+bX + c is a CNS polynomial if and only if the following four conditions
are satisfied.

(i) 1 + a+ b ≥ 0,

(ii) a ≥ 0,

(iii) a = 0 =⇒ b ≤ c− 2,

(iv) b = 0 =⇒ a ≤ c− 2.

Proof. First assume that the polynomial P defined above is a CNS
polynomial. The first property is clear by Th. 2.2 and the other three
properties follow from Gilbert’s conditions (see [3, Th. 3.1]).

Now we prove the converse and assume that all four conditions
hold. If c > 1 + |a|+ |b| then we are done by [5, Th. 5.3]. Therefore, let
c = 1 + |a|+ |b|. Then we have b 6= 0 by (i) and (iv), and we distinguish
two cases.

Case 1. b ≥ 1.

Then we clearly have a ≥ 1. If a ≤ b then we are done by [3,
Th. 3.9]. Now, let a > b, hence E = ∅, F = {(1, 1,−1)} and thus our
assertion drops out from Lemma 3.8, since we have

(1, 1,−1) 7→ (1,−1, 0) 7→ (−1, 0, 1) 7→ (0, 1, 1) 7→
7→ (1, 1, 0) 7→ (1, 0, 0) 7→ (0, 0, 0).
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Case 2. b ≤ −1.

If a = 0 then b = −1 then we are done by [3, Prop. 3.2] or [10,
Th. 3], and if a > 0 then b ≥ −c+ a+ 1 and we apply [3, Prop. 3.4]. ♦

Theorem 4.2. Let P = X4 + aX3 + bX2 + cX + d have a positive
dominant constant term. Then P is a CNS polynomial if and only if the
following seven conditions are satisfied.

(i) 1 + a+ b+ c ≥ 0,

(ii) 1 + a+ b ≥ 0,

(iii) a ≥ −1,

(iv) b ≥ −1,

(v) a = −1 =⇒ c ≤ −2,

(vi) b = c = 0 =⇒ 0 ≤ a ≤ d− 2,

(vii) a = b = 0 =⇒ c ≤ d− 2.

Proof. If P defined above is a CNS polynomial then similarly as in
the proof of [5, Th. 5.4] the above conditions immediately follow using
Th. 2.2, Th. 3.2 and [10, Th. 3].

Now we assume that all seven conditions hold. If P satisfies the
AP-condition then we are done by [5, Th. 5.4]. Therefore we suppose

d = 1 + |a|+ |b|+ |c|.
We note that d ≥ 2 and prove P ∈ C using Lemma 3.8 and subdividing
our considerations into several cases and subcases.

Case 1. a < 0.

Then a=−1, c≤−2 and b≥1. We show that E∪{(−1, 1,−1,−1)}⊂
⊂ N by verifying the following statements:

(i) (1, 1, 0, 0) 7→ (1, 0, 0, 0) ∈ N .

(ii) (0, 1, 1, 0) 7→ (1, 1, 0, 0) ∈ N by (i).

(iii) (1, 1, 1, 0) 7→ (1, 1, 0, 0) ∈ N by (i).

(iv) (1, 1, 1, 1) 7→ (1, 1, 1, 0) ∈ N by (iii).

(v) (0, 1, 1, 1) 7→ {(1, 1, 1, 0), (1, 1, 1, 1)} ⊂ N by (iii) and (iv).

(vi) (0, 1, 0, 1) 7→ (1, 0, 1, 1) 7→ {(0, 1, 1, 0), (0, 1, 1, 1)} ⊂ N by (ii)
and (v).

(vii) (0, 0, 1, 1) 7→ {(0, 1, 1, 0), (0, 1, 1, 1)} ⊂ N by (ii) and (v).

(viii) (1, 0, 0, 1) 7→ (0, 0, 1, 1) ∈ N by (vii).

(ix) (0, 0, 0, 1) 7→ (0, 0, 1, 1) ∈ N again by (vii).
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(x) (1, 1, 0, 1) 7→ (1, 0, 1, 1) ∈ N by (vi). Observe that we now
have shown E ⊂ N .

(xi) (1,−1,−1, 0) 7→ (−1,−1, 0, 1) 7→ (−1, 0, 1, 1) 7→
7→ {(0, 1, 1, 0), (0, 1, 1, 1)} ⊂ N by (ii) and (v).

(xii) (1,−1,−1, 1) 7→ (−1,−1, 1, 1) 7→ (−1, 1, 1, 0) 7→
7→ {(1, 1, 0, 0), (1, 1, 0, 1)} ⊂ N by (i) and (x).

(xiii) (−1, 1,−1,−1) 7→ {(1,−1,−1, 0), (1,−1,−1, 1)} ⊂ N by (xi)
and (xii).

Case 2. a = 0.

Then we have b ≥ −1 and c 6= 0.

Case 2.1. b < 0.

Then we have b = −1 and c > 0 and Th. 3.5 yields our assertion.

Case 2.2. b = 0.

Then we are done by [10, Th. 3].

Case 2.3. b > 0.

For c < 0 our claim is clear by Th. 3.5 and for c > 0 by Lemma 5.1
below.

Case 3. a > 0.

Case 3.1. b < 0.

Then we have b = −1 and a+ c ≥ 0.

Case 3.1.1. c < 0.

We verify E ⊂ N and then

(−1,−1,−1, 0) 7→ (−1,−1, 0, 1) 7→ (−1, 0, 1, 1) 7→ (0, 1, 1, 1) ∈ N
and

(−1,−1,−1, 1) 7→ (−1,−1, 1, 1) 7→ (−1, 1, 1, 1) 7→
7→ {(1, 1, 1, 0), (1, 1, 1, 1)} ⊂ N

which imply F = {(1,−1,−1,−1)} ⊂ N .

Case 3.1.2. c ≥ 0.

Now Th. 3.5 yields our assertion.

Case 3.2. b = 0.

Case 3.2.1. c < 0.

Then we have a+ c ≥ −1 and our claim follows from Th. 3.5.
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Case 3.2.2. c = 0.

We are done by [10, Th. 3].

Case 3.2.3. c > 0.

We apply Lemma 5.1.

Case 3.3. b > 0.

Our claim follows from Th. 3.5 (for c < 0), Lemma 5.2 (for c = 0)
and Th. 3.14 (for c > 0). ♦

Theorem 4.3. Let P = X5 + aX4 + bX3 + cX2 + dX + e ∈ Z[X] have
a positive dominant constant term. Then P is a CNS polynomial if and
only if the following eleven conditions are satisfied.

(i) 1 + a+ b+ c+ d ≥ 0,

(ii) a+ c ≥ 0,

(iii) a < 0 =⇒ a = −1, b ≥ 1, and d ≤ −2,

(iv) b < 0 and a+ d ≥ 0 =⇒ b = −1 and c ≤ −2,

(v) b < 0 and a+ d < 0 =⇒ a ≥ 0 and a+ b ≥ 0,

(vi) a = b = c = 0 =⇒ −1 ≤ d ≤ e− 2,

(vii) a = b = d = 0 =⇒ 0 ≤ c ≤ e− 2,

(viii) a = c = d = 0 =⇒ 0 ≤ b ≤ e− 2,

(ix) b = c = d = 0 =⇒ 0 ≤ a ≤ e− 2,

(x) a = c = 0 and b > 0 =⇒ d = 0 or e > 1 + b+ |d|,
(xi) a > 0, b > 0, and c = d = 0 =⇒ e > 1 + a+ b.

Proof. Let P be a CNS polynomial. Proceeding analogously as in the
proof of [5, Th. 5.6] the above conditions are immediately verified using
Th. 2.2, Th. 3.2, [10, Th. 3] and Ex. 3.7.

Now we assume that all indicated conditions hold. If P satisfies the
AP-condition then we are done by [5, Th. 5.6]. Thus we suppose

e = 1 + |a|+ |b|+ |c|+ |d|.
The proof is completed analogously as in Th. 4.2; therefore, we leave most
of the rather involved but straightforward verifications to the reader.
Note that e ≥ 2 and that the first five conditions imply

a+ b ≥ −1.

Case 1. a < 0.

Then a = −1, b ≥ 1, d ≤ −2 and c ≥ 1. We show E ⊂ N by
successively checking the following elements:



Semiprimary tame nearrings and N -groups 127

(0, 1, 1, 0, 0), (δ, 1, 1, 1, 0), (0, 0, 1, 1, 0), (1, 1, 1, 1, 1),

(0, 1, 1, 1, 1), (0, 0, 1, 1, 1), (δ, 0, 0, 1, 1),

(δ, 0, 0, 0, 1), (0, 1, 0, 0, 0), (1, 0, 0, 1, 0), (δ, 1, 0, 0, 1), (1, 0, 1, 1, δ).

Then we convince ourselves that (1, 1, 1,−1, δ) ∈ N and infer F ⊂ N
from Cor. 3.11. An application of Lemma 3.8 concludes the proof of
Case 1.

Case 2. a = 0.

Then we have c ≥ 0 and b ≥ 0.

Case 2.1. b = 0.

Case 2.1.1. c = 0.

Then we are done by [10, Th. 3].

Case 2.1.2. c > 0.

We apply Th. 3.5 (for d < 0), [10, Th. 3] (for d = 0) and Lemma 5.1
(for d > 0).

Case 2.2. b > 0.

If c = 0 then we are done by [10, Th. 3], and for c > 0 we apply
Th. 3.5 (for d < 0), Lemma 5.2 (for d = 0) and Lemmas 3.8 and 3.13
(for d > 0).

Case 3. a > 0.

Case 3.1. b < 0.

Case 3.1.1. c < 0.

Case 3.1.1.1. d < 0.

First, we observe that a + d < 0 implies a + b > 0 and that
a + d ≥ 0 implies b = −1 and c ≤ −2. In both subcases tedious,
but straightforward applications of Lemma 3.8 prove our assertion.

Case 3.1.1.2. d ≥ 0.

Then we have b = −1, c ≤ −2 and a+ d ≥ 2. Again we check that
the prerequisites of Lemma 3.8 are satisfied.

Case 3.1.2. c = 0.

Then we have a+d < 0, hence a+d ≤ −2 and consequently d ≤ −3.
The proof of this subcase is accomplished by Lemma 3.8.

Case 3.1.3. c > 0.
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Then we have a+ d < 0, a+ b ≥ 0 and d ≤ −2, and we again infer
our assertion from Lemma 3.8.

Case 3.2. b = 0.

Case 3.2.1. c < 0.

Then we have a+ d ≥ 0. Our proof is accomplished by Lemma 3.8
(for d < 0) and by Th. 3.5 (for d ≥ 0).

Case 3.2.2. c = 0.

Then we have a + d ≥ −1, and we apply Th. 3.5 (for d < 0), [10,
Th. 3] (for d = 0) and Lemma 5.1 (for d > 0).

Case 3.2.3. c > 0.

We exploit Th. 3.5 (for d < 0), Lemma 5.2 (for d = 0) and Lem-
mas 3.8 and 3.13 (for d > 0).

Case 3.3. b > 0.

Case 3.3.1. c < 0.

Then we have d ≥ −(a+ b), and our can be settled by Lemma 3.8
(for d < 0) and by Th. 3.5 (for d ≥ 0).

Case 3.3.2. c = 0.

If d < 0 then we apply Th. 3.5, and if d ≥ 0 then we observe d > 0,
and the proof is accomplished by Lemma 3.8.

Case 3.3.3. c > 0.

We exploit Th. 3.5 (for d < 0), Lemmas 3.8 and 3.13 (for d = 0)
and Th. 3.14 (for d > 0). ♦

5. Proofs of auxiliary results

In this section we study the CNS property of low degree integer
quadrinomials

P := Xd + aXm + bXn + c (d > m > n > 0)

whose coefficients enjoy the following properties:
a, b > 0 and c = 1 + a+ b.

We keep in mind that the set EP is empty, and we subdivide our results
according to the least positive degree of a non-vanishing term.

Lemma 5.1. Let 4 ≤ d ≤ 5 and 2 ≤ m ≤ d − 1. Then Xd + aXm+
+bX + c ∈ C if and only if (d,m) 6= (5, 3).



Semiprimary tame nearrings and N -groups 129

Proof. We have
FP = {(εd−m−1w (−1)) ∈ Zd : w ∈ ΠP}

with
ΠP = {(1 εm−2 1)}.

In view of EP = ∅ and Lemma 3.8 we show that FP ⊂ NP exactly in
the cases mentioned above. The proof consists of a long sequence of
elementary verifications.

Case 1. d = 4.

Case 1.1. m = 2.

We have ΠP = {(1 1)} and FP = {(ε 1 1 − 1)} ⊂ NP by successive
verification of the subsequent statements:

(i) (−1, 1, 1, 0) 7→ (1, 1, 0, 0), hence using Lemma 3.13 we find
(−1, 1, 1, 0) ∈ N .

(ii) (1,−1, 0, δ) 7→ (−1, 0, δ, 0) 7→ {(0, 0, 0, 1), (0, 1, 0, 0)} ⊂ N again
by Lemma 3.13.

(iii) (1, 1,−1, 0) 7→ (1,−1, 0, δ) ∈ N by (ii).

(iv) If b− a ≥ 0 then (1, 1,−1, 1) ∈ N , because (1, 1,−1, 1) 7→
7→ (1,−1, 1, 0) 7→ 7→ (−1, 1, 0, 0) 7→ (1, 0, 0, 1) ∈ N by Lemma
3.13.

(v) (−1, 1, 1,−1) ∈ N by (iii) and (iv), since

(1,−1, 1,−1)→

{
(1, 1,−1, 0) (a− b ≥ −1),

(1, 1,−1, 1) (a− b < −1).

(vi) (1,−1, 1, 1) 7→ (−1, 1, 1,−1) ∈ N by (v).

(vii) (1, 1,−1, 1) 7→ (1,−1, 1, δ) ∈ N by (i) and (vi).

(viii) (ε, 1, 1,−1) 7→ (1, 1,−1, δ) ∈ N by (iii) and (vii).

Case 1.2. m = 3.

We have ΠP = {(1 ε 1)} and FP = {(1 ε 1 − 1)} ⊂ NP by arguing
similarly as above:

(i) (1,−1, 1, 0) 7→ (−1, 1, 0, δ 7→ (1, 0, δ, 0) ∈ N by Lemma 3.13.

(ii) (1,−1, 1,−1) 7→ (−1, 1,−1, 1) 7→ (1,−1, 1, 0) ∈ N by (i).

(iii) (1,−1, 0, 0) 7→ (−1, 0, 0, δ) 7→ {(0, 0, 0, 1), (0, 0, 1, 0)} ⊂ N again
by Lemma 3.13.

(iv) (1, ε, 1,−1) 7→ (ε, 1,−1, δ) 7→ {(1,−1, 0, 0), (1,−1, 1,−δ′)} ⊂ N
by (i), (ii) and (iii).
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Case 2. d = 5.

Case 2.1. m = 2.

We have ΠP = {(1 1)} and FP = {(ε2 1 1 − 1)} ⊂ NP analogously
as before:

(i) For (δ, δ′) 6= (1, 1) we have (1, 1,−1, δ, δ′) 7→ (1,−1, δ, δ′, 0) 7→
7→ (−1, δ, δ′, 0, 0) 7→ (δ, δ′, 0, 0, 1), hence using Lemma 3.13 we find
(1, 1,−1, δ, δ′) ∈ N .

(ii) (−1, 1, 1,−1, 0) 7→ (1, 1,−1, 0, 1) ∈ N by (i).

(iii) If a− b ≤ −1 then (−1, 1, 1,−1, 1) ∈ N , because (−1, 1, 1,−1, 1) 7→
7→ (1, 1,−1, 1, 0) ∈ N by (i).

(iv) (1,−1, 1, 1,−1) ∈ N by (ii) and (iii), since

(1,−1, 1, 1,−1)→

{
(−1, 1, 1,−1, 0) (a− b ≥ −1),

(−1, 1, 1,−1, 1) (a− b < −1).

(v) (1, 1,−1, 1, 1) 7→ (1,−1, 1, 1,−1) ∈ N by (iv).

(vi) (ε′, ε, 1 1−1) 7→(ε 1 1−1, δ) 7→ {(1, 1,−1, 1, 0, δ′), (1, 1,−1, 1, 1, δ′)}⊂
⊂ N by (i) and (v).

Case 2.2. m = 3.

Then P /∈ C by Ex. 3.7.

Case 2.3. m = 4.

We have ΠP = {(1 ε2 1)} and FP = {(1 ε2 1 − 1)} ⊂ NP by succes-
sive verification of the subsequent statements:

(i) (1,−1, δ3) 7→ (−1, δ4) 7→ {(04, 1), (δ4, 0)} ⊂ N by Lemma 3.13.

(ii) (1, 1,−1, 1,−1) 7→ (1,−1, 1,−1, δ) 7→ (−1, 1,−1, δ2) 7→ (1,−1, δ3)∈N
by (i).

(iii) (δ, 1,−1, 1, 0) 7→ (1,−1, δ3) ∈ N by (i).

(iv) (1,−1, δ, 1,−1) 7→ (−1, δ, 1,−1, 1) 7→ (δ, 1,−1, 1, 0) ∈ N by (iii).

(v) (ε, 1,−1, δ2) 7→ {(1,−1, 1, 1,−1), (1,−1, δ3)} ⊂ N by (i) and (iv).

(vi) (1, ε2, 1,−1) 7→ (ε2, 1,−1, δ) 7→ {(ε, 1,−1, δ2), (1, 1,−1, 1,−1)} ⊂ N
by (ii) and (v). ♦

Lemma 5.2. If 4 ≤ d ≤ 5 and 3 ≤ m ≤ d− 1 then Xd + aXm + bX2+
+c ∈ C.

Proof. In view of EP = ∅ and Lemma 3.8 we aim at showing FP ⊂
⊂ NP . Similarly as in Lemma 5.1 the proof consists of several elementary
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verifications. In the following we only indicate the succession of elements
to be checked.

Case 1. d = 4.

Then we have m = 3, FP = {(1 1 ε − 1)} and check the following
elements:

(1, 1, 0,−1), (δ3, 0), (1,−δ′,−1, δ), (1, 1,−1, 1), (1, 1, ε,−1).

Case 2. d = 5.

We have FP = {(ε4−m 1 εm−3 1 ε − 1)}.
Case 2.1. m = 3.

Then we have FP = {(ε′ 1 1 ε − 1)} and check the following ele-
ments:

(δ, 1, 1, 0− 1), (δ3, 0, 0), (δ4, 0), (−1, 0, 0, δ, 1), (δ′, 0, 0, δ, 1),

(−1, δ4), (−1, 1, 1, δ,−1), (1, 1, ε,−1, δ), (1, 1, 1,−1,−1),

(1, 1, 1, 1,−1), (0, 1, 1, ε,−1), (−1, 1, 1, ε,−1).

Case 2.2. m = 4.

First we verify that the following elements belong to NP :

(1, 0,−1, 0, δ), (1, 0, 1, 0,−1), (1, 1, 1, 0,−1), (δ3, 0, δ),

(δ4, 0), (0, δ′, 0, δ, 1),

(1, 0,−1, δ2), (−1, δ4), (1, 0, 1, δ, 1), (1, 1, 1,−1,−1),

(1,−1, 1, 0,−1), (−1, 1, 1,−1, 0), (δ′′,−1, δ′, δ).

Now, if a− b > 1 then we easily check that (−1, 1, 1,−1, 1) ∈ NP . Then
we successively show that the following elements also belong to NP :

(1,−1, 1,−1), (1,−1, 1, δ,−1), (ε,−1, δ3), (ε′, 1, ε,−1, δ), (1, ε′, 1, ε,−1). ♦
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[34] TÁTRAI, A.: Parallel implementations of Brunotte’s algorithm, J. Parallel Dis-
trib. Comput. 71 (2011), 565–572.

[35] THUSWALDNER, J. M.: Elementary properties of canonical number systems
in quadratic fields, in: Applications of Fibonacci numbers, Vol. 7 (Graz, 1996),
Kluwer Acad. Publ., Dordrecht, 1998, pp. 405–414.


