ON THE MULTIPLICATIVE GROUP GENERATED BY $\left\{\left.\frac{[\sqrt{2} n]}{n} \right\rvert\, n \in \mathbb{N}\right\}$. IV

I. Kátai

Department of Computer Algebra, Faculty of Informatics, Eötvös Loránd University, Budapest, Pázmány Péter sétány 1/C, H-1117 Hungary

B. M. Phong

Department of Computer Algebra, Faculty of Informatics, Eötvös Loránd University, Budapest, Pázmány Péter sétány 1/C, H-1117 Hungary

Dedicated to the memory of our friend, Dr. János Fehér

Received: November 26, 2014
MSC 2000: $11 \mathrm{~K} 65,11 \mathrm{~N} 37,11 \mathrm{~N} 64$
Keywords: Completely additive functions, multiplicative group.
Abstract: Assume that φ, ψ are completely additive functions mapping into G, where G is an Abelian topological group with the translation invariant metric ρ. Let $C \in G$. Assume that

$$
\rho(\psi[\sqrt{2} n], \varphi(n)+C) \leq \varepsilon(n) \text { and } \sum_{n=2}^{\infty} \frac{\varepsilon(n) \log \log 2 n}{n}<\infty
$$

where $\varepsilon(n) \downarrow 0$. Then $\varphi(n)=\psi(n), 2 C=\varphi(2)$, and $\varphi(n)$ can be extended to \mathbb{R}^{+}to be a continuous homomorphism into G.
$\overline{\text { E-mail addresses: }}$ katai@inf.elte.hu, bui@inf.elte.hu

1. Introduction

1.1. Let G be an additively written Abelian topological group with the translation invariant metric ρ. A mapping $\varphi: \mathbb{N} \rightarrow G$ is called a completely additive function, if

$$
\begin{equation*}
\varphi(n m)=\varphi(n)+\varphi(m) \quad(n, n \in \mathbb{N}) \tag{1.1}
\end{equation*}
$$

Let \mathbb{Q}^{+}, resp. \mathbb{R}^{+}be the multiplicative groups of the positive rationals and the positive reals. We can extend the domain of φ to \mathbb{Q}^{+}by the relation

$$
\varphi\left(\frac{n}{m}\right):=\varphi(n)-\varphi(m)
$$

uniquely. Then φ satisfies the relation

$$
\varphi(r s)=\varphi(r)+\varphi(s) \quad\left(r, s \in \mathbb{Q}^{+}\right)
$$

so $\varphi: \mathbb{Q}^{+} \rightarrow G$ is a homomorphism. We shall say that φ is continuous at the point 1, if $r_{\nu} \in \mathbb{Q}^{+}, r_{\nu} \rightarrow 1$ implies that $\varphi\left(r_{\nu}\right) \rightarrow 0$.
Z. Daróczy and the first named author in [1] proved the next

Lemma 1. Let G be an additively written closed Abelian topological group, $\varphi: \mathbb{Q}^{+} \rightarrow G$ be a homomorphism that is continuous at the point 1. Then its domain can be extended onto \mathbb{R}^{+}by the relation

$$
\varphi(\alpha):=\lim _{\substack{r_{\nu} \rightarrow \alpha \\ r_{\nu} \in \mathbb{Q}^{+}}} \varphi\left(r_{\nu}\right) \quad\left(\alpha \in \mathbb{R}^{+}\right)
$$

uniquely. The so obtained mapping $\varphi: \mathbb{R}^{+} \rightarrow G$ is a continuous homomorphism, consequently

$$
\begin{equation*}
\varphi(\alpha \beta)=\varphi(\alpha)+\varphi(\beta) \quad\left(\alpha, \beta \in \mathbb{R}^{+}\right) \tag{1.2}
\end{equation*}
$$

In [2] the following theorem has been proved which is cited now as Lemma 2. Let $\varphi: \mathbb{N} \rightarrow G$ be completely additive such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\rho(\varphi(n), \varphi(n+1))}{n}<\infty \tag{1.3}
\end{equation*}
$$

Then φ is a continuous $\mathbb{R}^{+} \rightarrow G$ homomorphism.
1.2. We use the standard notation: $[x]=$ integer part of $x,\{x\}=$ $=$ fractional part of $x,\|x\|=\min (\{x\}, 1-\{x\})$.

In our paper [3] we formulated the following conjecture:

Conjecture 1. If α, β are distinct real numbers at least one of which is irrational, then the multiplicative group $\mathcal{F}_{\alpha, \beta}$ generated by

$$
\left\{\left.\xi_{n}=\frac{[\alpha n]}{[\beta n]} \right\rvert\, n \in \mathbb{N}\right\}
$$

equals to \mathbb{Q}^{+}.
This conjecture is open, except the case $\alpha=\sqrt{2}, \beta=1$ (proved in [3]).

Let $\mathcal{A}^{*}, \mathcal{M}^{*}$ be the sets of real valued completely additive, respectively complex valued completely multiplicative functions. In [5] we proved
Theorem A. Let $\varepsilon(n) \downarrow 0$ arbitrarily. Assume that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\varepsilon(n) \log \log 2 n}{n}<\infty \tag{1.4}
\end{equation*}
$$

Let $f, g \in \mathcal{M}^{*}, C \in \mathbb{C},|f(n)|=|g(n)|=1(n \in \mathbb{N})$ and

$$
|g([\sqrt{2} n])-C f(n)| \leq \varepsilon(n) \quad(n \in \mathbb{N})
$$

Then $f(n)=g(n)=n^{i \tau}(\tau \in \mathbb{R})$, where $C=(\sqrt{2})^{i \tau}$.
Hopefully this assertion remains true if (1.4) holds without the $\log \log 2 n$ for every $n \in \mathbb{N}$.

The above conjecture is equivalent to the next one.
Conjecture 2. If α, β are distinct real numbers at least one of which is irrational, then

$$
f \in \mathcal{A}^{*}, \quad f([\alpha n])-f([\beta n]) \equiv 0 \quad(\bmod 1) \quad(n \in \mathbb{N})
$$

implies that $f(n) \equiv 0(\bmod 1)(n \in \mathbb{N})$.
Our aim is to prove
Theorem. Let φ, ψ be completely additive functions mapping into G, where G is an Abelian topological group with the translation invariant metric ρ. Let $\varepsilon(n)$ be as in Th. A. Assume that

$$
\begin{equation*}
\rho(\psi([\sqrt{2} n]), \varphi(n)+C) \leq \varepsilon(n) \tag{1.5}
\end{equation*}
$$

Then $\varphi(n)=\psi(n)(n \in \mathbb{N})$ and $\varphi(2)=2 C$, furthermore φ is a continuous homomorphism, $\varphi: \mathbb{R}^{+} \rightarrow G$.

First we prove
Lemma 3. Let $\varphi: \mathbb{N} \rightarrow G, \psi: \mathbb{N} \rightarrow G$ be completely additive functions such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\rho(\psi([\sqrt{2} n]), \varphi(n)+C)}{n}<\infty \tag{1.6}
\end{equation*}
$$

Then $\psi(n)=\varphi(n)(n \in \mathbb{N})$, furthermore

$$
\begin{equation*}
\varphi(2)=2 C \tag{1.7}
\end{equation*}
$$

2. Auxiliary results

Let

$$
\begin{equation*}
J_{1}=\left\{n \left\lvert\,\{\sqrt{2} n\}<\frac{1}{\sqrt{2}}\right.\right\} \text { and } J_{2}=\left\{n \left\lvert\,\{\sqrt{2} n\}>\frac{1}{\sqrt{2}}\right.\right\} . \tag{2.1}
\end{equation*}
$$

Then $\mathbb{N}=J_{1} \cup J_{2}$.
Let

$$
\begin{equation*}
a_{n}:=\frac{[\sqrt{2}[\sqrt{2} n]]}{n} . \tag{2.2}
\end{equation*}
$$

We proved in [3] (Lemma 2) that

$$
a_{n}=\left\{\begin{array}{lll}
\frac{2 n-1}{n} & \text { if } & n \in J_{1}, \tag{2.3}\\
\frac{2(n-1)}{n} & \text { if } & n \in J_{2} .
\end{array}\right.
$$

For some $N \in \mathbb{N}$, let

$$
\mathcal{B}_{0}=N \text { and } \mathcal{B}_{j}=2 \mathcal{B}_{j-1}-1 \quad \text { for all } \quad j \in \mathbb{N} .
$$

In [3] (Lemma 3) we proved that either $N \in J_{2}$, or there is a positive k, for which $\mathcal{B}_{k} \in J_{2}$. Let $T(N):=k+1$, where k is the smallest positive integer for which $\mathcal{B}_{k} \in J_{2}$. We proved that

$$
\begin{equation*}
\frac{2^{k+1}(N-1)}{N}=\frac{2\left(\mathcal{B}_{k}-1\right)}{N}=\left(\prod_{j=0}^{k-1} a_{\mathcal{B}_{j}}\right) a_{\mathcal{B}_{k}} \tag{2.4}
\end{equation*}
$$

furthermore that

$$
\begin{equation*}
T(N) \leq \frac{1}{\log 2} \cdot \log \frac{1}{\|\sqrt{2}(N-1)\|}+c_{1} \tag{2.5}
\end{equation*}
$$

c_{1} is an explicit constant.

3. Proof of Lemma 3

Let $k \in \mathbb{N}, \mathcal{T}_{k}=\left\{n \in \mathbb{N} \left\lvert\,\{\sqrt{2} n\}<\frac{1}{k}\right.\right\}$. Then $[\sqrt{2} k n]=k[\sqrt{2} n]$ and so

$$
\begin{gathered}
\rho(\psi[\sqrt{2} k n], \varphi(k n)+C)=\rho(\psi(k)+\psi([\sqrt{2} n]), \varphi(n)+\varphi(k)+C)= \\
=\rho(\psi([\sqrt{2} n]), \varphi(n)+\varphi(k)-\psi(k)+C) \\
\sum_{n \in \mathcal{T}_{k}} \frac{\rho(\psi([\sqrt{2} n]), \varphi(n)+\varphi(k)-\psi(k)+C)}{n}<\infty
\end{gathered}
$$

Hence, and from (1.6) we obtain that

$$
\sum_{n \in \mathcal{T}_{k}} \frac{\rho(0, \varphi(k)-\psi(k))}{n}<\infty
$$

which by

$$
\sum_{n \in \mathcal{T}_{k}} \frac{1}{n}=\infty
$$

implies that $\varphi(k)=\psi(k)$.
Now we prove (1.7).

$$
\begin{gathered}
\text { Let } \Theta_{1}=\{\sqrt{2} m\}, \Theta_{2}=\{\sqrt{2} \cdot 2 m\}, \Theta_{3}=\{\sqrt{2}(2 m-1)\} . \text { If } \\
\Theta_{1} \in\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}+1\right)\right):=U
\end{gathered}
$$

then

$$
\Theta_{2}=2 \Theta_{1}-1<\frac{1}{\sqrt{2}}, 0<\Theta_{3}=\Theta_{2}-(\sqrt{2}-1)<\frac{1}{\sqrt{2}}
$$

and so $m \in J_{2}, 2 m-1 \in J_{1}, 2 m \in J_{1}$. Such integers m for which $\Theta_{1} \in U$ can be found, since $\{\sqrt{2} m\}$ is dense in $[0,1)$. Then there exist positive integers k_{1}, k_{2} such that

$$
\left\{\begin{array}{l}
2^{\ell}(2 m-2)+1 \in \begin{cases}J_{1} & \text { for } \ell<k_{1}, \\
J_{2} & \text { for } \ell=k_{1},\end{cases} \\
2^{\ell}(2 m-1)+1 \in \begin{cases}J_{1} & \text { for } \ell<k_{2}, \\
J_{2} & \text { for } \ell=k_{2}\end{cases}
\end{array}\right.
$$

Then there exists a suitable $\delta>0$ such that if $\left|\{\sqrt{2} N\}-\Theta_{1}\right|<\delta$, then

$$
\left\{\begin{array}{l}
a_{N}=\frac{2(N-1)}{N}, \quad N \in J_{2}, \\
2^{\ell}(2 N-2)+1 \in \begin{cases}J_{1} & \text { for } \ell<k_{1}, \\
J_{2} & \text { for } \ell=k_{1},\end{cases} \\
2^{\ell}(2 N-1)+1 \in \begin{cases}J_{1} & \text { for } \ell<k_{2} \\
J_{2} & \text { for } \ell=k_{2}\end{cases}
\end{array}\right.
$$

Let S_{k} be the set of the positive integers n, for which k is the smallest nonnegative integer for which $\mathcal{B}_{k} \in J_{2}$. Let $d_{n}=\frac{[\sqrt{2} n]}{n}$ and $a_{n}=d_{n} \cdot d_{[\sqrt{2} n]}$. Since ρ is translation invariant,

$$
\rho(\psi[\sqrt{2} n], \varphi(n)+C)=\rho\left(\varphi\left(d_{n}\right)-C, 0\right)
$$

furthermore from the triangle inequality we obtain that

$$
\rho\left(\varphi\left(a_{n}\right)-2 C, 0\right) \leq \rho\left(\varphi\left(d_{n}\right)-C, 0\right)+\rho\left(\varphi\left(d_{[\sqrt{2} n]}\right)-C, 0\right) .
$$

If (2.4) holds, then

$$
\begin{gathered}
\rho\left(\varphi\left(\frac{2^{k+1}(N-1)}{N}\right)-2(k+1) C, 0\right) \leq \\
\leq \sum_{j=0}^{\infty} \rho\left(\varphi\left(d_{\mathcal{B}_{j}}\right)-C, 0\right)+\sum_{j=0}^{\infty} \rho\left(\varphi\left(d_{[\sqrt{2} n]}\right)-C, 0\right) .
\end{gathered}
$$

Let $D:=\varphi(2)-2 C$.
Let $\mathcal{H}_{k_{1}, k_{2}}$ be the set of those N, for which $N \in S_{0}, 2 N-1 \in S_{k_{1}}$, $2 N \in S_{k_{2}}$. If $\mathcal{H}_{k_{1}, k_{2}}$ is not empty, then

$$
\sum_{N \in \mathcal{H}_{k_{1}, k_{2}}} \frac{1}{N}=\infty .
$$

We have

$$
\begin{gathered}
\sum_{N \in S_{0}} \frac{\rho\left(\varphi\left(\frac{N-1}{N}\right)+D, 0\right)}{N}<\infty \\
\sum_{2 N-1 \in S_{k_{1}}} \frac{\rho\left(\varphi\left(\frac{2 N-2}{2 N-1}\right)+\left(k_{1}+1\right) D, 0\right)}{2 N-1}<\infty,
\end{gathered}
$$

On the multiplicative group generated by $\left\{\left.\frac{[\sqrt{2} n]}{n} \right\rvert\, n \in \mathbb{N}\right\}$.IV

$$
\sum_{2 N \in S_{k_{2}}} \frac{\rho\left(\varphi\left(\frac{2 N-1}{2 N}\right)+\left(k_{2}+1\right) D, 0\right)}{2 N}<\infty
$$

By using the triangle inequality we obtain that

$$
\rho\left(\left(k_{1}+k_{2}+1\right) D, 0\right) \sum_{N \in \mathcal{H}_{k_{1}, k_{2}}} \frac{1}{N}<\infty
$$

therefore

$$
\left(k_{1}+k_{2}+1\right) D=0
$$

One can compute easily that if $m=2$, then $k_{1}=2, k_{2}=1$ and if $m=14$, then $k_{1}=k_{2}=1$. Consequently $D=0$.

The proof of Lemma 3 is complete. \diamond

4. Proof of Theorem

Due to Lemma 3 we may assume that $\psi(n)=\varphi(n)$, and that $\varphi(2)=2 C$.

Let $\mathcal{L}_{M}:=\left[2^{M}, 2^{M+1}\right), k_{M}=\log 2 M$. Let $N \in \mathcal{L}_{M}, T(N)=k$ $\left(\leq k_{M}\right)$. Then

$$
\rho\left(\varphi\left(\frac{N-1}{N}\right), 0\right) \leq \sum_{j=0}^{\infty} \rho\left(\varphi\left(d_{\mathcal{B}_{j}}\right), 0\right)+\sum_{j=0}^{\infty} \rho\left(\varphi\left(d_{[\sqrt{2} n]}\right), 0\right)
$$

and so

$$
\rho\left(\varphi\left(\frac{N-1}{N}\right), 0\right) \leq 2(k+1) \varepsilon(N) \leq 3 k_{M} \varepsilon\left(2^{M}\right)
$$

Let us estimate the number of those $N \in \mathcal{L}_{M}$ for which $T(N) \geq k_{M}$.
From (2.5) we obtain that

$$
\|\sqrt{2}(N-1)\| \leq 2^{c_{1}} 2^{-k_{M}}
$$

Thus, the size of those integers $N \in \mathcal{L}_{M}$ for which $T(N) \geq k_{M}$ is less than

$$
c_{2} 2^{M} 2^{-k_{M}}+O(M)
$$

The $O(M)$ term comes from the estimate of the discrepancy of $\left\{\sqrt{2} n \mid n \in \mathcal{L}_{M}\right\}$, which is bounded by $O(M)$. See Th. 3.4 in [6].

Collecting our results we obtain that

$$
\sum_{N \in \mathbb{N}, N \geq 2} \frac{\rho\left(\varphi\left(\frac{N-1}{N}\right), 0\right)}{N}<\infty
$$

which, by Lemma 2 implies the theorem. \diamond
Acknowledgement. This work was completed with the support of the Hungarian and Vietnamese TET (grant agreement no. TET 10-1-20110645).

References

[1] DARÓCZY, Z. and KÁTAI, I.: On additive arithmetical functions with values in topological groups I, Publ. Math. Debrecen. 33 (3-4) (1986), 287-291.
[2] DARÓCZY, Z. and KÁTAI, I.: On additive arithmetical functions with values in topological groups. II, Publ. Math. Debrecen. 34 (1987), 65-68.
[3] KÁTAI, I. and PHONG, B. M.: On the multiplicative group generated by $\left\{\left.\frac{[\sqrt{2} n]}{n} \right\rvert\, n \in \mathbb{N}\right\}$, Acta Math. Hungar. 145 (2015) (1), 80-87.
[4] KÁTAI, I. and PHONG, B. M.: On the multiplicative group generated by $\left\{\left.\frac{[\sqrt{2} n]}{n} \right\rvert\, n \in \mathbb{N}\right\}$. II, submitted to Acta Math. Szeged.
[5] KÁTAI, I. and PHONG, B. M.: On the multiplicative group generated by $\left\{\left.\frac{[\sqrt{2} n]}{n} \right\rvert\, n \in \mathbb{N}\right\}$. III, submitted to Acta Math. Hungar.
[6] KUIPERS, L. and NIEDERREITER, H.: Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience, New York-London-Sydney, 1974. xiv+390 pp.

