Mathematica Pannonica 25/1 (2014–2015), 105–112

ON THE MULTIPLICATIVE GROUP GENERATED BY $\left\{ \frac{\left[\sqrt{2}n\right]}{n} \mid n \in \mathbb{N} \right\}$. IV

I. Kátai

Department of Computer Algebra, Faculty of Informatics, Eötvös Loránd University, Budapest, Pázmány Péter sétány 1/C, H-1117 Hungary

B. M. Phong

Department of Computer Algebra, Faculty of Informatics, Eötvös Loránd University, Budapest, Pázmány Péter sétány 1/C, H-1117 Hungary

Dedicated to the memory of our friend, Dr. János Fehér

Received: November 26, 2014

MSC 2000: 11 K 65, 11 N 37, 11 N 64

Keywords: Completely additive functions, multiplicative group.

Abstract: Assume that φ, ψ are completely additive functions mapping into G, where G is an Abelian topological group with the translation invariant metric ρ . Let $C \in G$. Assume that

$$\rho\left(\psi\left[\sqrt{2}n\right],\varphi(n)+C\right)\leq\varepsilon(n) \ \text{ and } \ \sum_{n=2}^{\infty}\frac{\varepsilon(n)\log\log 2n}{n}<\infty$$

where $\varepsilon(n) \downarrow 0$. Then $\varphi(n) = \psi(n), 2C = \varphi(2)$, and $\varphi(n)$ can be extended to \mathbb{R}^+ to be a continuous homomorphism into G.

E-mail addresses: katai@inf.elte.hu, bui@inf.elte.hu

I. Kátai and B. M. Phong

1. Introduction

1.1. Let G be an additively written Abelian topological group with the translation invariant metric ρ . A mapping $\varphi : \mathbb{N} \to G$ is called a completely additive function, if

(1.1)
$$\varphi(nm) = \varphi(n) + \varphi(m) \quad (n, n \in \mathbb{N}).$$

Let \mathbb{Q}^+ , resp. \mathbb{R}^+ be the multiplicative groups of the positive rationals and the positive reals. We can extend the domain of φ to \mathbb{Q}^+ by the relation

$$\varphi\left(\frac{n}{m}\right) := \varphi(n) - \varphi(m),$$

uniquely. Then φ satisfies the relation

$$\varphi(rs) = \varphi(r) + \varphi(s) \quad (r, s \in \mathbb{Q}^+),$$

so $\varphi : \mathbb{Q}^+ \to G$ is a homomorphism. We shall say that φ is continuous at the point 1, if $r_{\nu} \in \mathbb{Q}^+$, $r_{\nu} \to 1$ implies that $\varphi(r_{\nu}) \to 0$.

Z. Daróczy and the first named author in [1] proved the next

Lemma 1. Let G be an additively written closed Abelian topological group, $\varphi : \mathbb{Q}^+ \to G$ be a homomorphism that is continuous at the point 1. Then its domain can be extended onto \mathbb{R}^+ by the relation

$$\varphi(\alpha) := \lim_{\substack{r_{\nu} \to \alpha \\ r_{\nu} \in \mathbb{Q}^+}} \varphi(r_{\nu}) \quad (\alpha \in \mathbb{R}^+)$$

uniquely. The so obtained mapping $\varphi : \mathbb{R}^+ \to G$ is a continuous homomorphism, consequently

(1.2)
$$\varphi(\alpha\beta) = \varphi(\alpha) + \varphi(\beta) \quad (\alpha, \beta \in \mathbb{R}^+).$$

In [2] the following theorem has been proved which is cited now as Lemma 2. Let $\varphi : \mathbb{N} \to G$ be completely additive such that

(1.3)
$$\sum_{n=1}^{\infty} \frac{\rho(\varphi(n), \varphi(n+1))}{n} < \infty.$$

Then φ is a continuous $\mathbb{R}^+ \to G$ homomorphism.

1.2. We use the standard notation: $[x] = \text{integer part of } x, \{x\} =$ = fractional part of $x, ||x|| = \min(\{x\}, 1 - \{x\}).$

In our paper [3] we formulated the following conjecture:

106

On the multiplicative group generated by $\left\{\frac{\left[\sqrt{2}n\right]}{n} \mid n \in \mathbb{N}\right\}$. IV 107

Conjecture 1. If α, β are distinct real numbers at least one of which is irrational, then the multiplicative group $\mathcal{F}_{\alpha,\beta}$ generated by

$$\left\{\xi_n = \frac{|\alpha n|}{[\beta n]} \mid n \in \mathbb{N}\right\}$$

equals to \mathbb{Q}^+ .

This conjecture is open, except the case $\alpha = \sqrt{2}$, $\beta = 1$ (proved in [3]).

Let $\mathcal{A}^*, \mathcal{M}^*$ be the sets of real valued completely additive, respectively complex valued completely multiplicative functions. In [5] we proved

Theorem A. Let $\varepsilon(n) \downarrow 0$ arbitrarily. Assume that

(1.4)
$$\sum_{n=1}^{\infty} \frac{\varepsilon(n) \log \log 2n}{n} < \infty.$$

Let $f, g \in \mathcal{M}^*$, $C \in \mathbb{C}$, |f(n)| = |g(n)| = 1 $(n \in \mathbb{N})$ and $\left|g\left(\left[\sqrt{2}n\right]\right) - Cf(n)\right| \le \varepsilon(n) \quad (n \in \mathbb{N}).$

Then $f(n) = g(n) = n^{i\tau}$ $(\tau \in \mathbb{R})$, where $C = (\sqrt{2})^{i\tau}$.

Hopefully this assertion remains true if (1.4) holds without the $\log \log 2n$ for every $n \in \mathbb{N}$.

The above conjecture is equivalent to the next one.

Conjecture 2. If α, β are distinct real numbers at least one of which is irrational, then

 $f \in \mathcal{A}^*, f([\alpha n]) - f([\beta n]) \equiv 0 \pmod{1} \quad (n \in \mathbb{N})$

implies that $f(n) \equiv 0 \pmod{1}$ $(n \in \mathbb{N})$.

Our aim is to prove

Theorem. Let φ, ψ be completely additive functions mapping into G, where G is an Abelian topological group with the translation invariant metric ρ . Let $\varepsilon(n)$ be as in Th. A. Assume that

(1.5)
$$\rho\Big(\psi\big(\big[\sqrt{2}n\big]\big),\varphi(n)+C\Big) \le \varepsilon(n).$$

Then $\varphi(n) = \psi(n) \ (n \in \mathbb{N})$ and $\varphi(2) = 2C$, furthermore φ is a continuous homomorphism, $\varphi : \mathbb{R}^+ \to G$.

First we prove

Lemma 3. Let $\varphi : \mathbb{N} \to G$, $\psi : \mathbb{N} \to G$ be completely additive functions such that

(1.6)
$$\sum_{n=1}^{\infty} \frac{\rho\left(\psi\left(\left[\sqrt{2}n\right]\right), \varphi(n) + C\right)}{n} < \infty.$$

Then $\psi(n) = \varphi(n) \ (n \in \mathbb{N})$, furthermore (1.7) $\varphi(2) = 2C$.

2. Auxiliary results

Let

(2.1)
$$J_1 = \left\{ n \mid \left\{ \sqrt{2}n \right\} < \frac{1}{\sqrt{2}} \right\}$$
 and $J_2 = \left\{ n \mid \left\{ \sqrt{2}n \right\} > \frac{1}{\sqrt{2}} \right\}.$

Then $\mathbb{N} = J_1 \cup J_2$.

Let

(2.2)
$$a_n := \frac{\left[\sqrt{2}\left[\sqrt{2}n\right]\right]}{n}.$$

We proved in [3] (Lemma 2) that

(2.3)
$$a_n = \begin{cases} \frac{2n-1}{n} & \text{if } n \in J_1, \\ \frac{2(n-1)}{n} & \text{if } n \in J_2. \end{cases}$$

For some $N \in \mathbb{N}$, let

$$\mathcal{B}_0 = N$$
 and $\mathcal{B}_j = 2\mathcal{B}_{j-1} - 1$ for all $j \in \mathbb{N}$.

In [3] (Lemma 3) we proved that either $N \in J_2$, or there is a positive k, for which $\mathcal{B}_k \in J_2$. Let T(N) := k + 1, where k is the smallest positive integer for which $\mathcal{B}_k \in J_2$. We proved that

(2.4)
$$\frac{2^{k+1}(N-1)}{N} = \frac{2(\mathcal{B}_k - 1)}{N} = \left(\prod_{j=0}^{k-1} a_{\mathcal{B}_j}\right) a_{\mathcal{B}_k},$$

furthermore that

(2.5)
$$T(N) \le \frac{1}{\log 2} \cdot \log \frac{1}{\left\|\sqrt{2}(N-1)\right\|} + c_1,$$

 c_1 is an explicit constant.

108

On the multiplicative group generated by $\left\{\frac{\left[\sqrt{2}n\right]}{n} \mid n \in \mathbb{N}\right\}$. IV 109

3. Proof of Lemma 3

Let $k \in \mathbb{N}$, $\mathcal{T}_k = \left\{ n \in \mathbb{N} \mid \left\{ \sqrt{2}n \right\} < \frac{1}{k} \right\}$. Then $\left[\sqrt{2}kn \right] = k\left[\sqrt{2}n \right]$ and so $\rho \left(\psi \left[\sqrt{2}kn \right], \varphi(kn) + C \right) = \rho \left(\psi(k) + \psi \left(\left[\sqrt{2}n \right] \right), \varphi(n) + \varphi(k) + C \right) =$ $= \rho \left(\psi \left(\left[\sqrt{2}n \right] \right), \varphi(n) + \varphi(k) - \psi(k) + C \right),$ $\sum_{n \in \mathcal{T}_k} \frac{\rho \left(\psi \left(\left[\sqrt{2}n \right] \right), \varphi(n) + \varphi(k) - \psi(k) + C \right)}{n} < \infty.$

Hence, and from (1.6) we obtain that

$$\sum_{n\in\mathcal{T}_k}\frac{\rho\Big(0,\varphi(k)-\psi(k)\Big)}{n}<\infty,$$

which by

$$\sum_{n\in\mathcal{T}_k}\frac{1}{n}=\infty$$

implies that $\varphi(k) = \psi(k)$.

Now we prove (1.7).
Let
$$\Theta_1 = \{\sqrt{2}m\}, \ \Theta_2 = \{\sqrt{2} \cdot 2m\}, \ \Theta_3 = \{\sqrt{2}(2m-1)\}.$$
 If
 $\Theta_1 \in \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}+1\right)\right) := U,$

then

$$\Theta_2 = 2\Theta_1 - 1 < \frac{1}{\sqrt{2}}, \ 0 < \Theta_3 = \Theta_2 - \left(\sqrt{2} - 1\right) < \frac{1}{\sqrt{2}},$$

and so $m \in J_2, 2m - 1 \in J_1, 2m \in J_1$. Such integers m for which $\Theta_1 \in U$ can be found, since $\{\sqrt{2}m\}$ is dense in [0, 1). Then there exist positive integers k_1, k_2 such that

$$2^{\ell}(2m-2) + 1 \in \begin{cases} J_1 & \text{for } \ell < k_1, \\ J_2 & \text{for } \ell = k_1, \end{cases}$$
$$2^{\ell}(2m-1) + 1 \in \begin{cases} J_1 & \text{for } \ell < k_2, \\ J_2 & \text{for } \ell = k_2. \end{cases}$$

Then there exists a suitable $\delta > 0$ such that if $|\{\sqrt{2}N\} - \Theta_1| < \delta$, then

$$a_N = \frac{2(N-1)}{N}, \quad N \in J_2,$$

$$2^{\ell}(2N-2) + 1 \in \begin{cases} J_1 & \text{for } \ell < k_1, \\ J_2 & \text{for } \ell = k_1, \end{cases}$$

$$2^{\ell}(2N-1) + 1 \in \begin{cases} J_1 & \text{for } \ell < k_2, \\ J_2 & \text{for } \ell = k_2. \end{cases}$$

Let S_k be the set of the positive integers n, for which k is the smallest nonnegative integer for which $\mathcal{B}_k \in J_2$. Let $d_n = \frac{[\sqrt{2}n]}{n}$ and $a_n = d_n \cdot d_{[\sqrt{2}n]}$. Since ρ is translation invariant,

$$\rho\Big(\psi[\sqrt{2}n],\varphi(n)+C\Big) = \rho\Big(\varphi(d_n)-C,0\Big),$$

furthermore from the triangle inequality we obtain that

$$\rho\Big(\varphi(a_n) - 2C, 0\Big) \le \rho\Big(\varphi(d_n) - C, 0\Big) + \rho\Big(\varphi\big(d_{[\sqrt{2}n]}\big) - C, 0\Big).$$

If (2.4) holds, then

$$\rho\left(\varphi\left(\frac{2^{k+1}(N-1)}{N}\right) - 2(k+1)C, 0\right) \leq \\ \leq \sum_{j=0}^{\infty} \rho(\varphi(d_{\mathcal{B}_j}) - C, 0) + \sum_{j=0}^{\infty} \rho\left(\varphi(d_{\lfloor\sqrt{2}n\rfloor}) - C, 0\right).$$

Let $D := \varphi(2) - 2C$.

Let \mathcal{H}_{k_1,k_2} be the set of those N, for which $N \in S_0$, $2N - 1 \in S_{k_1}$, $2N \in S_{k_2}$. If \mathcal{H}_{k_1,k_2} is not empty, then

$$\sum_{N \in \mathcal{H}_{k_1, k_2}} \frac{1}{N} = \infty.$$

We have

$$\sum_{N \in S_0} \frac{\rho\left(\varphi\left(\frac{N-1}{N}\right) + D, 0\right)}{N} < \infty,$$
$$\rho\left(\varphi\left(\frac{2N-2}{2N-1}\right) + (k_1 + 1)D, 0\right)$$

$$\sum_{2N-1\in S_{k_1}} \frac{p(\varphi(2N-1) + (N_1 + 1)D, 0)}{2N-1} < \infty,$$

110

On the multiplicative group generated by $\left\{\frac{\left[\sqrt{2}n\right]}{n} \mid n \in \mathbb{N}\right\}$. IV 111

$$\sum_{2N\in S_{k_2}} \frac{\rho\left(\varphi\left(\frac{2N-1}{2N}\right) + (k_2+1)D, 0\right)}{2N} < \infty.$$

By using the triangle inequality we obtain that

$$\rho\Big((k_1+k_2+1)D,0\Big)\sum_{N\in\mathcal{H}_{k_1,k_2}}\frac{1}{N}<\infty,$$

therefore

$$(k_1 + k_2 + 1)D = 0.$$

One can compute easily that if m = 2, then $k_1 = 2, k_2 = 1$ and if m = 14, then $k_1 = k_2 = 1$. Consequently D = 0.

The proof of Lemma 3 is complete. \Diamond

4. Proof of Theorem

Due to Lemma 3 we may assume that $\psi(n) = \varphi(n)$, and that $\varphi(2) = 2C$.

Let $\mathcal{L}_M := [2^M, 2^{M+1}), k_M = \log 2M$. Let $N \in \mathcal{L}_M, T(N) = k$ $(\leq k_M)$. Then

$$\rho\left(\varphi\left(\frac{N-1}{N}\right),0\right) \leq \sum_{j=0}^{\infty} \rho\left(\varphi(d_{\mathcal{B}_j}),0\right) + \sum_{j=0}^{\infty} \rho\left(\varphi(d_{\lfloor\sqrt{2}n\rfloor}),0\right),$$

and so

$$\rho\left(\varphi\left(\frac{N-1}{N}\right),0\right) \le 2(k+1)\varepsilon(N) \le 3k_M\varepsilon(2^M)$$

Let us estimate the number of those $N \in \mathcal{L}_M$ for which $T(N) \ge k_M$.

From (2.5) we obtain that

$$\left\|\sqrt{2}(N-1)\right\| \le 2^{c_1} 2^{-k_M}.$$

Thus, the size of those integers $N \in \mathcal{L}_M$ for which $T(N) \ge k_M$ is less than

$$c_2 2^M 2^{-k_M} + O(M)$$

The O(M) term comes from the estimate of the discrepancy of $\{\sqrt{2n} \mid n \in \mathcal{L}_M\}$, which is bounded by O(M). See Th. 3.4 in [6]. Collecting our results we obtain that

$$\sum_{N \in \mathbb{N}, N \ge 2} \frac{\rho\left(\varphi\left(\frac{N-1}{N}\right), 0\right)}{N} < \infty,$$

which, by Lemma 2 implies the theorem. \Diamond

Acknowledgement. This work was completed with the support of the Hungarian and Vietnamese TET (grant agreement no. TET 10-1-2011-0645).

References

- DARÓCZY, Z. and KÁTAI, I.: On additive arithmetical functions with values in topological groups I, *Publ. Math. Debrecen.* 33 (3-4) (1986), 287–291.
- [2] DARÓCZY, Z. and KÁTAI, I.: On additive arithmetical functions with values in topological groups. II, *Publ. Math. Debrecen.* 34 (1987), 65–68.
- [3] KÁTAI, I. and PHONG, B. M.: On the multiplicative group generated by $\left\{\frac{[\sqrt{2n}]}{n} \mid n \in \mathbb{N}\right\}$, Acta Math. Hungar. **145** (2015) (1), 80–87.
- [4] KÁTAI, I. and PHONG, B. M.: On the multiplicative group generated by $\left\{\frac{\left[\sqrt{2}n\right]}{n} \mid n \in \mathbb{N}\right\}$. II, submitted to *Acta Math. Szeged*.
- [5] KÁTAI, I. and PHONG, B. M.: On the multiplicative group generated by $\left\{\frac{\left[\sqrt{2}n\right]}{n} \mid n \in \mathbb{N}\right\}$. III, submitted to *Acta Math. Hungar*.
- KUIPERS, L. and NIEDERREITER, H.: Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience, New York-London-Sydney, 1974. xiv+390 pp.