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Abstract: In the author’s preceding paper a free product of dimonoids was
constructed and for such a dimonoid the investigation of the structure was
started. In this paper we continue to study structural properties of free prod-
ucts of dimonoids. The main results are a characterization of basic types of
diband and band decompositions of free products of dimonoids.

1. Introduction

Following J.-L. Loday [4], a dimonoid is a nonempty set equipped
with two binary associative operations - and F satisfying the axioms
(xdy)dz=xzd@ykz2),(xty) dz=aF(yd2), (xdy)F 2z =
=zk(yt 2).

There exist numerous examples of dimonoids showing the consis-
tency of axioms of a dimonoid. So, for example, an arbitrary semigroup S
with operations defined by x 4y = x(yf), z -y = (zf)y for all z,y € 5,
where f is an idempotent endomorphism of S, forms a dimonoid. In [§]
it was proved that a system of axioms of a dimonoid is independent.
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For further details and background see [4], [8], [9], [15]. Dialgebras,
which are linear analogs of dimonoids, were studied by many authors
(see, e.g., [1], [3], [4], [6]). A free dimonoid was constructed by J.-L.
Loday [4] and applied to the study of free dialgebras and a cohomology
of dialgebras. Decompositions of free dimonoids into dibands of subdi-
monoids have been studied in [9-11]. The variety theory of dimonoids
was developed in [11-16].

In the author’s preceding paper [17] a free product of dimonoids was
constructed and for such a dimonoid the investigation of the structure
was started. In this paper we continue to study structural properties of
free products of dimonoids.

The paper is organized as follows. In Sec. 2 we give bands and
dimonoid constructions which will be used in the paper. In Sec. 3 we
describe decompositions of free products of dimonoids into relatively free
dibands of subdimonoids. In Sec. 4 we describe decompositions of free
products of dimonoids into relatively free bands of subdimonoids. The
results from Sections 3 and 4 extend the corresponding results from [10]
and [11]. In the final section we give a faithful representation of free
products of left zero and right zero dimonoids.

The obtained results were announced in [18] and they can be applied
in dialgebra theory for obtaining decomposition results.

2. Preliminaries

In this section we give bands and dimonoid constructions which will
be used in the paper.

2.1. Recall the construction of a free product of dimonoids [17]. As
usual, N denotes the set of all positive integers.
Let F'r[S;];ex be the free product of arbitrary semigroups S;, i € X.
For every w € Fr[S;|icx denote the first (respectively, last) letter of w
by w® (respectively, w™") and the length of w by l,. Consider the set
G(Si)iex = {(w,m) € Fr[Siliex x N|l, > m}.
For all (w,m) € G(S;)icx and u € Fr[S;];cx assume

o ) L+m, Ly = 2,
Jwam) = { Ly +m =1, la,0 =1 (1)
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For a given relation p on a dimonoid (D, -, ), the congruence gen-
erated by p is the least congruence on (D, ,F) containing p. It will be
denoted by p* and can be characterized as the intersection of all congru-
ences on (D, -, F) containing p.

Let {(D;, i, Fi) }iex be a family of arbitrary pairwise disjoint di-
monoids. Operations on Fr[(D;, ;)];ex and Fr[(D;,t;)]iex will be de-
noted by - and F respectively. For every i € X consider a relation

02‘ = {(CL |_z b,a _|z b)|a,b€ Dz}
on a dimonoid (D;,-;,+;). It is clear that operations of (D;,;,t;)/0F
coincide and it is a semigroup.

Let wy = (21%2...2%... 5, 1), w2 = (Y12 Yk---Yp, ) € G((Ds, i) )iex,
where 1,22, ..., Ti, ooy T, Y1, Y25 s Yks - Yp € U;ex Di- Define a relation
~ 0on G((D“ _|i))i€X by
D1~y {s =p,t =1 and 40} y; for all 1 <k < s and some ji € X,

at that z; = y,.

It is not hard to check that ~ is an equivalence relation. Denote
the equivalence class of ~ containing an element (w, m) € G((D;, %) )iex
by [w, m] and the quotient set G((D;, ;))iex/ ~ by G*((D;, i) )iex-

Define operations 4 and - on G*((D;, %;))iex by

[wl,mﬂ _|/ [w27m2] = [w1 = wo, m1],
(w1, m] = [wa, ma] = [wy F wa, ZZ,IQ,W)]

for all [wy, m4], [we, msy] € Q*((Di, =i))iex. The algebra (G*((D;,;))iex,
') will be denoted by G(D;)sex-

v

Theorem 2.1 ([17], Th. 2.3). G(D;)iex is the free product of dimonoids
(D;, =i, b)), 1€ X.

2.2. Construct the free rectangular dimonoid [11]. A dimonoid (D, -, F)
is called a rectangular dimonoid or a rectangular diband (respectively, an
idempotent dimonoid or a diband), if both semigroups (D, ) and (D, F)
are rectangular bands (respectively, idempotent semigroups).
Let X be an arbitrary nonempty set and X3 = X x X x X. Define

operations - and - on X3 by

(21,2, 73) 7 (Y1,Y2,¥3) = (71,72, Y3),

(21,72, 3) & (Y1, 92,¥3) = (71,92, Y3)
for all (z1,22,23), (Y1,v2,y3) € X3. Denote the algebra (X3, H,F) by
FRet(X).
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Theorem 2.2 ([11], Th. 1). FRct(X) is the free rectangular dimonoid.

2.3. Construct the free left zero and right zero dimonoid [11]. Let
X, = (X, ), X, = (X, F), X = Xpo X X, be a left zero semigroup, a
right zero semigroup and a rectangular band, respectively. One can check
that X, ,. = (X,,F) is a rectangular dimonoid. We call this dimonoid
as a left zero and right zero dimonoid. We will call a left zero and right
zero dimonoid also a left and right diband.

Lemma 2.3 ([11], Lemma 5). Ewvery left zero and right zero dimonoid
15 the free left zero and right zero dimonoid.

2.4. Construct the free (left, right) normal band [5]. Let B(X) be
the semilattice of all nonempty finite subsets of X with respect to the
operation of the set theoretical union and

Bpy(X) = {((z,y), A) € Xpp x B(X) |2,y € A},

B(X) = {(1,A) € X, x B(X) |z € A},

B,.(X) = {(z, A) € X,.. x B(X)|z € A}.
It is clear that B,4(X), Be.(X), B,.(X) are subsemigroups of X,;,x B(X),
Xp.xB(X), X,.xB(X), respectively. By [5] By4(X), Be.(X) and B,,(X)
are the free normal band, the free left normal band and the free right
normal band, respectively.

2.5. Construct the free (¢z,rb)-dimonoid [11]. Let (D, ) be a left zero
semigroup and (D, F) be a rectangular band. Then (D, -, F) is a rectan-
gular dimonoid. We call this rectangular dimonoid a (¢z, rb)-dimonoid.

Let X be an arbitrary nonempty set. Define operations 4 and F on
X? by

(,y) 4 (a,b0) = (,9), (2,9)F (a,b) = (z,0)

for all (x,y), (a,b) € X?. Tt is clear that (X?, ) is a left zero semigroup,
(X2 1) is a rectangular band and (X2, -, F) is a (£z,rb)-dimonoid. We
denote this dimonoid by Xp, ,s.
Lemma 2.4 ([11], Lemma 7). Xy, is the free ({z,rb)-dimonoid.

2.6. Construct the free (rb,rz)-dimonoid [11]. Let (D,) be a rect-
angular band and (D,F) be a right zero semigroup. Then (D, F) is
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a rectangular dimonoid. We call this rectangular dimonoid a (rb,rz)-
dimonoid.

Let X be an arbitrary nonempty set. Define operations 4 and F on
X2 by

(x,y) 4 (a,b) = (x,b), (x,y)F (a,b) = (a,b)

for all (z,y),(a,b) € X% Tt is clear that (X2, ) is a rectangular band,
(X2 F) is a right zero semigroup and (X?,4,F) is a (rb, rz)-dimonoid.
We denote the obtained dimonoid by X4 ..
Lemma 2.5 ([11], Lemma 6). X, is the free (rb, rz)-dimonoid.

2.7. Construct the free normal diband [13]. A dimonoid is called a
normal diband, if its both semigroups are normal bands.
Let F'Ret(X) be the free rectangular dimonoid (see item 2.2) and
FND(X)={((x,y,2),A) € FRct(X) x B(X)|z,y,z € A}.

Theorem 2.6 ([13], Th. 2). FND(X) is the free normal diband.

2.8. Construct the free (¢n,n)-diband [13]. A dimonoid (D, -, ) is
called a (¢n,n)-diband, if (D, ) is a left normal band and (D,F) is a
normal band.

Let Bgzﬂ,b(X) = {((l’,y),A) € Xﬂz,rb X B(X) |m,y S A}
Lemma 2.7 ([13], Lemma 6). By, .(X) is the free ({n,n)-diband.

2.9. Construct the free (n,rn)-diband [13]. A dimonoid (D, ) is
called a (n,rn)-diband, if (D, ) is a normal band and (D,F) is a right
normal band.

Let By (X) = {((z,y),A) € Xppr. X B(X) |2,y € A}
Lemma 2.8 ([13]|, Lemma 7). Byy,.(X) is the free (n,rn)-diband.

2.10. Construct the free (¢n,rn)-diband [13]. A dimonoid (D, -, ) is
called a (¢n,rn)-diband, if (D, ) is a left normal band and (D,F) is a
right normal band.

Let Brey-(X) = {(z, A) € X.,.. x B(X) |z € A}.

Lemma 2.9 ([13], Lemma 8). By, ,..(X) is the free ({n,rn)-diband.
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2.11. In [7] L. M. Gluskin, B. M. Schein and L. N. Shevrin stated
that the notion of a band of semigroups, which has been playing a very
important role in the semigroup theory, can be naturally extended for any
class of abstract algebras. So, the notion of a diband of subdimonoids for
such a class of abstract algebras as dimonoids, was applied in [8-11], [13],
[14], [17]. This notion is relevant for the study of structural properties of
dimonoids. Recall this definition.

If f: Dy — Dy is a homomorphism of dimonoids, then the cor-
responding congruence on D; will be denoted by Ay.

Let S be an arbitrary dimonoid, J be some idempotent dimonoid.
Let

a:S—=J x—za

be a homomorphism. Then every class of the congruence A, is a subdi-
monoid of the dimonoid S and the dimonoid S itself is a union of such
dimonoids S¢, £ € J, that

ra=§(sreS =A,={teS|(z,t) € A},
Se 4S. C Seqey Se b S C Seres

E£e=5()% =2

In this case we say that S is decomposable into a diband of subdimonoids
(or S is a diband J of subdimonoids Se, £ € J). If J is a band (=idem-
potent semigroup), then we say that S is a band J of subdimonoids
Se, € € J. If J is a semilattice (=commutative band), then we say
that S is a semilattice J of subdimonoids Se, { € J. If J is a left zero
semigroup (respectively, right zero semigroup), then we say that S is a
left band (respectively, right band) J of subdimonoids S¢, & € J.

Note that the notion of a diband of subdimonoids generalizes the
notion of a band of semigroups [2].

3. Diband decompositions of G (D;)iex

In this section we give decompositions of the free product G (D)iex
of dimonoids (D;, ;,F;), i € X, into relatively free dibands of subdi-
monoids.

For every w = 84, ...54,...5,, € Fr[(D;,)]iex assume é(w) =

k "
=U_{sJ%}, where
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i UDi» X :ami ifaeD;ieX.
iex
Let
H(a,b,c) = {[S’Yl"'s“ﬂ”'s’}’k7 m] S G(Dl)leX ’ (S’Ylj*v S’ij*7 S’*/kj*> = (CL, b7 C)}
for (a,b,c¢) € FRet(X);
Hqp) = {[571"'3’n"'37wm] € G(Dy)iex | (545" 5y,3") = (a, )}
for (a,b) € Xz
H[b,C) = {[871"'5“/1"'5%7”1] € é(Di)ieX | (S’ij*78'7kj*) = (ba C)}
for (b, ¢) € Xypre;
Hy = {[85,--5y--530,m] € G(Dy)iex | 54,§" = b}
for b € Xy, ,2;
Hy oy = {153,559, m] € G(Dy)sex]

((871].*7 S’ij*ﬂ S’ij*)v 6(571"‘8%“‘8’71@)) = ((CL? b= C)? Y)}
for ((a,b,¢),Y) € FND(X);
H(E;b] = {[371...5%...5%,771] S é(Dz)zeX|

(59177 85 d"), €(891---85,--84,)) = ((@,0),Y)}
for ((a,0),Y) € B, (X);

H[byﬁ) = {54,895y, m] € G(D;)iex |

((S’ij*> S’ij*)a 6(8’71"‘8’71‘”8’}%)) = ((bv C>> Y)}
for ((b,¢),Y) € Bypr2(X);

H(’;} = {[$91 -89-Sy, m] € G(D;)iex|

(S5 E(81 - 8y-59,)) = (0, V) }
for (b,Y) € By, ,.(X).
Further we will deal with diband decompositions (see item 2.11) of
free products of dimonoids.
The following two structure theorems give decompositions of free
products of dimonoids into relatively free dibands of subdimonoids.

Theorem 3.1. Let CV;(DZ»)Z-GX be the free product of dimonoids. Then

v

(i) G(Di)iex is a normal diband FND(X) of subdimonoids H/,, .,
(a,b,¢),Y) € FND(X);
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(ii) G(Dy)iex is a diband By, (X)) of subdimonoids H( n ((a,0),Y) €
€ Bu.(X). Every dimonoid H(mb}, ((a,0),Y) € Bpw(X), is a
right band Y,, of subdimonoids H(’;bﬂ), ceY,.,;

(iti) G(Dy)iex is a diband Byy,.(X) of subdimonoids H[{C), ((b,c),Y) €
€ Byy,.(X). Every dimonoid H[}bf’c), ((b,¢),Y) € Brpr2(X), is a left
band Y,, of subdimonoids Hé?b’c), a€Yy;

(iv) G(Dy)iex is a diband By.,.(X) of subdimonoids Hgg], (b,Y) €
€ Bi.,.(X). FEuvery dimonoid H(Yb], (b,Y) € Bu,,.(X), is a rect-
angular band Y,y of subdimonoids H(Tl7b7c), (a,c) € Y.

Proof. (i) Define a map npyp : G(D;)iex — FND(X) by
(S oSy oSy s MU 3 (S0 5™ Sy ™5 S T )5 €(Syy oSy oSy ) ),
[Syy 05y, M) € G(Dy)icx .
For arbitrary elements [s,...5,,...5v,, ], [Say-Say--Sap,t] € G(D;)iex,
using (1), we obtain

/

([Sy1---SyeeeSyesm] = [Say--Say---San, t])IFND =
=[Sy eSSy (S T Sar)Sas---Say---Sans MINFND =
((8917% 8y ™ Sard™)s (S oSy eSmyp 1 (S T Sar )San---Say---San)) =
((8919%, Sy ™ Sand ™), €(Syy Sy e ) U E(Saay --Say---San)) =
(851575 Sy ™s 83475 €Sy -8y 28 ))

A ((Sard™s Sard™s Sand™), €(Say---Say---San)) =

=[Sy eSSy MINEND T [Say---Say---Sans UNEND,

!

([Sny eSSy M) F [Say---Say---Saps t])END =

_ SypeSvpe- _
=[Sy eSSy (S = Sar) S-S sar,f(sal —— t)]nFND -

((5419%, S0+ Sard ™), €(Syy -5y, ...sw_l(s% F Say)Sag-+Say-+-Sa,)) =
(89177 80T ™ Sand™ )5 €(Syy oSy Smyy ) U E(Sary -0y -+-5an)) =
(317" 8y ™ 8347 )5 C(Soy a8y eS8y )) 1

F (801" Sard™ Sard "), E(Say +-Say--Sa,)) =
=[Sy eSSy MINEND F [Say---Say---San, NEND-

Thus, npyp is a surjective homomorphism. It is clear that H (’; b

((a,b,¢),Y) € FND(X), is a class of A,,,, which is a subdimonoid
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of G(D;)iex. Hence G(D;)icx is a normal diband FND(X) of subdi-
monoids H(’;bﬁ), ((a,b,¢),Y) GUFND(X).
(ii) Define a map Mot - G(Di)iex — Bop(X) by

(S0 eeSus ] 2 (59057, 89,007) 5 E(8,-085,-85,),

[Sy eSSy ] € G(D;)iex.

Similarly to the proof of (i), the fact that n;, , is a surjective ho-
momorphism can be proved. Clearly, H(E;b], ((a,0),Y) € Bp,rp(X), is a
class of Anz”b which is a subdimonoid of CV?(DZ-)Z-G y. Hence é(Di)iE y i
a diband By, ;(X) of subdimonoids H, ;, ((a,),Y) € By, 3(X). More-
over, it is not difficult to show that for every ((a,b),Y) € By, ,4(X) the
map

H(};,b} — Y 1 [Syy e SyeeaSap, M| > S G
is a homomorphism. Hence H éb] is a right band Y, of subdimonoids
H(x;b’c), ceY,,.
(iii) Define a map Mz - G(Di)iex = Brpr2(X) by
(S e eSmyeeeSmyps MU 5 (S 773 Sy 77 )5 €(Syy e eSS ) ),

[Syy eSSy m] € G(D;)iex.

Similarly to (i), 7y, is a surjective homomorphism. It is evident
that H[};C), ((b;¢),Y) € Bypr2(X), s a class of A, which is a subdi-
monoid of (D;)iex- So, G (D;);ex is a diband B,y,..(X) of subdimonoids
H[}b/,c)ﬂ ((b7 C)v Y) S Brb,rz(X>‘

Moreover, one can show that for every ((b,c),Y) € Byp,.(X) the
map

H[Xc) = Yo 1 [SyyeSmyeeaSmpsm] > Sy 57

is a homomorphism. Hence Hﬁ;’ 0 is a left band Y, of subdimonoids
HY ey @ € Yo

(iv) Define a map 7j, .. : G(D;)iex — Byzr.(X) by

[Syy oSy oSy s MU 5 (S, 775 E(Sy oS08, )
(S eSSy ] € G(D;)iex.

Similarly to (i), 7, ., is a surjective homomorphism and H (3;], (b,Y)e

€ Bp.r.(X), is a class of A,x  which is a subdimonoid of é(Di)iex.
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Thus, G(Dy)icx is a diband By.,.(X) of subdimonoids Hgg], (b,Y) €
By ».(X). Now we shall prove the second part of (iv).
Let

w(Yb} : H(};] — Yo i [Syy-SypeeSp, ] = (54,575 54,77)

for every (b,Y) € By, ,.(X). As
(wou)j* = w5, (wou)Vj* =uj*

for all w,u € Fr[(D;,;))iex and o € {H,F}, then W(Yb} is a homomor-

Y

phism. From here H (’g] is a rectangular band Y, of subdimonoids H, (ab,c)

(a,c) € Yip. O

Take (a,b,c) € FRct(X) (see item 2.2), (b,c) € Xy, (see item
2.6) and b € X, ,. (see item 2.3). Let Q@9 (X) be the set of all finite
subsets Y of X such that a,b,c € Y; Q®9(X) be the set of all finite
subsets Y of X such that b,c € Y; Q°(X) be the set of all finite subsets
Y of X such that b € Y. For every f € {(a,b,c), (b,c),b} assume Q(X)
be a semilattice defined on /(X)) by the operation of the set theoretical
union.

Theorem 3.2. Let é(Di)ieX be the free product of dimonoids. Then

v

(i) G(Di)iex is a rectangular diband F Ret(X) of subdimonoids Hap,),
(a,b,c) € FRct(X). Every dimonoid Hap, (a,b,¢c) € FRct(X),
is a semilattice Qg p.)(X) of subdimonoids H();,b,c); Y € Qape(X);

(ii) C?(Di)iex is a diband Xo. b of subdimonoids H,y, (a,b) € Xp.rp.
Every dimonoid Hqy, (a,b) € Xy, is a semilattice Qqp)(X) of
subdimonoids H), . Y € Qo p)(X);

(iii) é(Di)ieX is a diband Xy, of subdimonoids Hpyy, (b,c) € Xyppe.
Every dimonoid Hy, ), (b,c) € Xyppz, is a semilattice Qg0 (X) of
subdimonoids Hyy ., Y € Q) (X);

(iv) é(Di)iex is a left and right diband Xy.,. of subdimonoids Hy,
be Xy r.. Every dimonoid Hyy, b € Xy, ,2, is a semilattice (X))
of subdimonoids Hgg], Y € Q(X).
Proof. (i) Define a map nppe : G(D;)iex — FRet(X) by

[Sy1 oSy oSy MU = (890575 Sy T3 875" ), [SyreeeSyyee-Sype, M| € G(D,)iex.
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Similarly to (i) from Th. 3.1, npge is a surjective homomorphism.
Then Hqp), (a,b,c) € FRct(X), is a class of A,, . which is a subdi-
monoid of G(D;)sex. Hence G(D;)icx is a rectangular diband FRct(X)
of subdimonoids H,yc), (a,b,c) € FRct(X). Besides, it is not difficult
to show that for every (a,b,c) € FRct(X) the map

Hapey = Qap,e)(X) 1 [SyreaSypeeSmys M 3 E(84,...54,...54, )
is a homomorphism. Hence H(qp,) is a semilattice Qg (X) of subdi-
monoids Hé’b@, Y € Qape)(X).

9

(ii) Define a map 1 b : G(D;)iex — Xezrb by

Sy v eSSy MU 7 (S0 5" ST )5 [SovvSyeee Sy ] € G(D;)iex-
Similarly to (i) from Th. 3.1, 7., is a surjective homomorphism
and Hap), (a,b) € Xpzp, is a class of A, which is a subdimonoid of

é(Di)ieX- It means that é(Di)iex is a diband X/, ,; of subdimonoids
Haz), (a,b) € Xy 5. Moreover, we can show that for every (a,b) € Xo.
the map
Hap) = Qap)(X) 1 [y, 89,85, m] = E(Sy,..54,-..54, )
is a homomorphism. From here H(,) is a semilattice (45 (X) of subdi-
monoids Héb], Y € Qapn(X).
(111) Deﬁne a map nrb,rz . é(Dz)ZEX — Xrb,rz by

[Sy eSSy MU = (8977 87T ) [SyaeeSoyyee-Sp, M) € G(Dy)iex
Similarly to (i) from Th. 3.1, 9,4, is a surjective homomorphism
and Hpy, (b,c) € Xpp,z, is a class of Amb,m which is a subdimonoid
of CU?(DZ-)Z-GX. Hence é(Di)iex is a diband X, of subdimonoids Hy,,
(b,c) € Xypr.. Moreover, it is not hard to verify that for every (b,¢) €
€ X,p,. the map

Hipoy = Qo) (X) 2 [Sy0085,--55,, M + C(Sy,...54,...54,)
is a homomorphism. Then Hp, is a semilattice Q) (X) of subdi-
monoids H[’gc), Y € Qpe)(X).
(iv) Define a map g, . : é(Di)iex — X2z Dy
[Sy oSy oSy MU = S0 57, [Sopy e aSyyeeaSp, | € G(D)iex-
Similarly to (i) from Th. 3.1, 1, is a surjective homomorphism.
It is clear that H, b € Xy, ., is a class of A, which is a subdimonoid

of Cv;(Di)iex. Hence CUJ(DZ»)ZE;( is a left and right diband Xy, ,, of sub-
dimonoids Hy), b € Xy.,.. Except this, one can verify that for every

b e Xy, the map
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Hp = Qp(X) 1 [89,0-55,---57, M) = C(Sq,...54,...54,)

is a homomorphism. Hence we obtain the last statement of (iv). ¢

Note that Thms. 3.1 and 3.2 extend the corresponding parts of
Thms. 3-6 from [10] and [11].

The realization of Th. 3.2 may be shown by the following example.

Let us consider the dimonoid CVJ(DZ-),-e x when —;=F; for all 1 € X.
First observe that if 4;=F; for all + € X, then ~ is the diagonal of
G((Di,:))iex (see item 2.1) and G((D;, ;))iex/ ~ is identified with
G((Dy,))iex. Tt is clear that in this case 4=F and then operations
' on G((D;,4;))icx defined by (2) and (3) take the form:

(wyr,m1) = (wa, M) = (w1 7wy, my),

(wy,my) = (w2, ma) = (w1 H wy, f(wﬁz,mz))‘

Let further X = {z,y} and F* be the free product of singleton
dimonoids {z} and {y} in the variety of dimonoids. Then F Rct(X)
consists of elements

(2,2, 2), (2,2, 9), (2,9, 9), (,9,2), (4,4, 9), (4,9, 2), (y, %, 2), (y, 2, );

Hape) = {(59,-5589,,m) € F*|(54,,54,.,8y,) = (a,b,¢)}
for (a,b,¢) € FRct(X);

Q@o)(X) = {{z,y}, {z}}, QU (X) = {{z, v}, {y}},
Q(m,m,y)<X) — Q(Ly,y)(X) = acya: (X) Q vy, (X) =
= QUmI(X) = QU (X) = {{z,y}}:

k
H(};,b,c) = {(S%...S%...S%, m) < F*| ((8’)/17 Svym s S'Yk)’ U{Sw }> = ((a7 b? C)v Y)}
=1

for Y € Q.0 (X), namely, the following subdimonoids are components

of semilattice decompositions from (i): H({ff;;) H({;;z), H&{;;]?; ¥ H({yy’]?;’y),

plovt pglewy  pgleyt  pglewy o pgleyt o pgpleyd
(@z,y)? " (@yy)? T (@) T (yysa)? T () T (y,ay)”
Substituting obtained expressions to the statement (i) of Th. 3.2
we obtain decompositions of F*. Similarly, the statements (ii) — (iv) of

Th. 3.2 can be applied to the dimonoid F™.
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4. Band decompositions of (V}'(Di)iex

In this section we give decompositions of the free product G (D;)iex
of dimonoids (D;,;,F;), ¢ € X, into relatively free bands of subdi-
monoids.

Let

Hae) = {[8y1---55---57,m] € G(Di)iex | (53,57 $3,.07) = (a,¢)}
for (a’a C) € Xrb;

Hy = {[s5,+-8y--8y,m] € G(Di)iex | 85,5 = a}
for a € Xy.;

Hig = {[87,+-8y--8y,m] € G(Di)iex | 5,,5" = c}
for c € X,.;

H(lc/zc) = {[571"'871"'5%7 ] S é( z)zeXl
) =((a,0),Y)}

(87,77 87,"), €(85y+8y0084,)

for ((a,c),Y) € B (X);
HYy = {[5,-53--59,,m] € G(Dy)iex| (53,57, E(Syy---5y--5,)) = (a,Y)}
for a,Y)GBgZ( );

[

)
(
}c/] { Sy s Sy, T } € é(Dl)lEX‘ (S’ij*u 6(‘9’71"‘3’71"‘3%)) = (Ca Y)}
for (¢,Y) € BTZ(X)

The following two structure theorems give decompositions of free
products of dimonoids into relatively free bands of subdimonoids.

Theorem 4.1. Let CV?(DZ-)Z-GX be the free product of dimonoids. Then

(i) G(Dy)iex is a normal band Bu(X) of subdimonoids H(’;C),

((a,0),Y) € Bup(X). Every dimonoid Hac), ((a,0),Y) € Bp(X),
is a left and right diband Yy, of subdimonoids H, (ab,c)’ be Yy,

(i) G(Dy)iex is a left normal band By.(X) of subdimonoids H(’;),
(a,Y) € By (X). Every dimonoid HY (a,Y) € Bp(X), is a
diband Yy .. of subdimonoids H(abc (b c) € Yoy

(iii) G(D;)iex is a right normal band B,.(X) of subdimonoids H[C],

(¢,Y) € B,.(X). Every dimonoid H[C], (¢,Y) € B,.(X), is a diband
Yoo b of subdimonoids H wbic) (a,b) € Yo, rp.
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Proof. (i) Define a map 77, : G(D;)iex — Bp(X) by

[871...8%...8%7771] = ((871] 8%] ) (8’71 ‘8%))’

[Sy1 -5y e-5p, M) € G(D)iexc-

For arbitrary elements [s,,...5,,...54,, M, [Sa;.-Sa;---Sar, t] € G(D;)iex We
obtain

!

([S,yls,yls,yk,m] _| [Sal"'sal"'sar7t])n:b =

=[Sy S Sy1 (83, T Say)Sag-Say - Sa,, MUy =

= (531575 Sa,J7) s €Sy oSy oSy 1(8')% A Say)Sas--Say--Sa,)) =

= (($3.5", 50,5"), €55, Svk)UC(Sal Say--Sa,)) =

= ((371] Sy d" )y (S eSSy ) ) ((S017™ 5 80, J ), E(Say -+ Sy -8 )) =
= [SyyeeSpeeeSops M ]n:b[sm ar+-Sans Uy,

!

([871...8,”...8719,771] F [Sal---sal---saﬂt])n:b =

— Sype Sy S ko
=[Sy Sy Spy (Syp = Sar)Sas--Say ...soér,f(sa1 e o ol =

= (537" $a,3%), (54, Sy (S 1 Say)Sag-Say--Sa,)) =

= ((83:57, 8a,57), C<571 ka) U &(Say - Say---5a,)) =

= ((371] Sy, )s €Sy o889 ) ) (801 75 800 S ™), (S Sy -8 ) ) =
= [SyyeSype Sy, M ]n:b[sm or++Saus Uy

Consequently, 1, is a surjective homomorphism. It is evident that
H(’; o ((@,0),Y) € Bry(X), is a class of A, which is a subdimonoid of
G(DZ)ZE y. Hence G( i)iex is a normal band B,,(X) of subdimonoids
H, o ((a,0),Y) € By(X). Moreover, one can show that for every
((a,¢),Y) € Byp(X) the map
H(};,c) — Yooz 0 [Syy eSSy, M) > Sa 57

is a homomorphism. Hence H&;C) is a left and right diband Y/, ,. of

subdimonoids H(X;’b&), b€ Yer.
(ii) Analysis similar that in the proof of (i) shows that a map
M.t G(Di)iex — Be(X),
defined by

[Syg Sy oSy MU = (840575 €(Sy -5y -5, )),
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[571...871...8%,77%] S é(Di)ieXu
is a surjective homomorphism. From here H(Z), (a,Y) € B, (X), is a
class of A,. which is a subdimonoid of G(D;)iex. Hence G(D;)iex is a
left normal band By, (X) of subdimonoids H(Z), (a,Y) € By.(X). Besides,

we can verify that for every (a,Y’) € By, (X) the map
H();) = Yibrs o [SyyeeSypeeSmps M) = (89,77 S7,07)
is a homomorphism. Hence H(};) is a diband Yj,, of subdimonoids
HY ey (by¢) € Yoo
(iii) Define a map 7}, : G(D;)iex — B,.(X) by

(81 oSy oSy MU = (84,575 E(Syy -8y 0-5,))

Sy ey en8y s M) € G(Dy)iex-
Similarly to the proof of (i), n;, is a surjective homomorphism.
It is evident that H[Z], (¢,Y) € B,.(X), is a class of A,. which is a
subdimonoid of G(D;);cx. Thus, G(D;)sex is a right normal band B, (X)
of subdimonoids H [Z], (¢,Y) € B,.(X). Except this, it is obvious that for
every (¢,Y) € B,,(X) the map
H[Z] — Yoo rb 1 [SypeeeSyee-Sp, ) > (89,77, 84,,57)

is a homomorphism. Hence H [Z} is a diband Y, ,;, of subdimonoids H, (Z,b’c),
(CL, b) S nz,rb- <>

Theorem 4.2. Let CVJ(DZ-)Z-GX be the free product of dimonoids. Then

(1) G(D;)iex is a rectangular band Xy, of subdimonoids He, (a,c) €
€ Xy Every dimonoid H, .y, (a,c) € Xy, is a semilattice Qg ) (X)
of subdimonoids H, ,, Y € Qa0 (X);

(ii) é(Di)iex is a left band Xy, of subdimonoids H,), a € X,.. Every
dimonoid Hy, a € Xy, is a semilattice Q,(X) of subdimonoids
HY) Y € Q.(X);

(iii) é(Di)iex is a right band X,. of subdimonoids Hy, c € X,.. Every
dimonoid Hy), ¢ € X,., is a semilattice Qc(X) of subdimonoids
HY,Y € Qu(X).

Proof. (i) Define a map 7,4 : é(Di)iex — X, by

(S eSSy MU = (890573 8407 )s (81 eSS ] € G(D;)iex
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Similarly to the proof of (i) from Th. 4.1, 7, is a surjective homo-
morphism. Obviously, H), (a,c) € Xy, is a class of A, , which is a
subdimonoid of é(Di)ie y. Hence é’(Di)ie x 18 a rectangular band X,
of subdimonoids H, ), (a,c) € X,,. Moreover, it is clear that for every
(a,c) € X,p the map

Hae) = Qae)(X) 1 [Sy1-55,--57,, M) = E(Sq,...54,...54,)
is a homomorphism. So, H(, ) is a semilattice Q) (X) of subdimonoids

H(};C), Y € Q(a7c)(X).

(i) Define a map 7y, : é(Di)ieX — Xy, by
[Syy eSSy M) = 89,57, (891 08,-08y,,m] € G(D;)iex.
Similarly to the proof of (i) from Th. 4.1, 7., is a surjective ho-
momorphism. It is evident that H,), a € Xy, is a class of A,, which
is a subdimonoid of G(D;)ex. Hence G(D;)iex is a left band X, of
subdimonoids H,, a € X.. Evidently, for every a € X, the map
Hgy = Qa(X) 0 [Syy085,--5y,, M 5 E(Sy,...84,...54,)
is a homomorphism. Thus, H,) is a semilattice ,(X) of subdimonoids
H(’;), Y € Q.(X).
(iii) Define a map n,, : é(Di)iex — X, by
(S eveSpyeeeSppy MU > Sy 7 [Soyy eSSy M) € G(Dy)jex -
Similarly to the proof of (i) from Th. 4.1, 7, is a surjective homo-
morphism. Then Hg, ¢ € X,., is a class of A, which is a subdimonoid
of é(Di)iGX. So, CU?(Di)iGX is a right band X, of subdimonoids Hjg,
¢ € X,.,. One can check that for every ¢ € X,., the map
Hig = Qe(X) 0[Sy, 8qy00-8y,, M) 5 E(Syy-254,02-5,)
is a homomorphism. Hence we obtain the last statement of (iii). ¢
Note that Thms. 4.1 and 4.2 extend the corresponding parts of

Thms. 7-9 from [10] and [11]. The semilattice decomposition of free
products of dimonoids was described in [17].

5. Free products of left zero and right zero dimonoids

In this section we give a faithful representation of free products of
left zero and right zero dimonoids.

Let {(D;,i,F) }iex be a family of arbitrary pairwise disjoint left
zero and right zero dimonoids (see item 2.3). Denote by F[(D;, i)]iex
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the free product of semigroups (D;, -;),7 € X, and singleton semigroups
{i},i e X.
Let

R(Dz)zeX = {(571...8,”...8,%,711) c F[(Dl, _|i)]i€X x N ‘ k 2 m},

R*(Di)ieX = {(871...571...57]6,771) c R(Dz>7,EX |
Sy €EUiexD; & 1l=m,1 <1 <k},

GEDZ',
a€ X.

.5, will be

JIa (UieXDz'> uXx — (UieXDz'> UX:a— ap = { ;’

If £ = 1, then the sequences s,,...5y,...5, ;; Syp---S5
regarded empty.

Define operations - and F on R*(D;);ex by

1

(SoyyeeSngyee-Sype M) (Sary --Say S, T) =
_J (SyueSape Sy Say e Sy e Sa s ) 5 Sy U F Say fs
(Soyy oo Smpyee Sy g Hew- Sy v -Seup [y TIV) 5 Seyp Jb = Sy [
(Sy1-SmypeeeSoyp, M) (Say ---Say---Saps t) =

_ { (Soyy oSyl Soyy 1S vy ---Say--Sas k + 1) S b 7 Soy [
S M-Sy HeeeSmpe Sy --Saye-Say K HE— 1), Syt = Sa,

for all (s,...54,...5+,, M), (Say---Sa;---Sar, t) € R*(D;)icx. The algebra

(R*(D;)iex, 1, F) will be denoted by R(D;)icx.

Theorem 5.1. The free product é(Di)ZEX of left zero and right zero

dimonoids (D;,=;,;), i € X, is isomorphic to the dimonoid R(D;);cx.

Proof. Observe that u? = ;i and show that }?(Di)ie x 18 a dimonoid.
Let

(Syy w oSy v Sysm), (Say - -+ Sy - - - Says t),

(851 e Sgl e Sﬁg, f) € R(-D'L)zEX
Consider the following four cases.
Case 1: sy, 1t = Sq, 4, Sa, [t = Sp, (. Then

(84 -8y oo Sy m)A(Say -+~ Say - - Sans 1)) (S, - -85, -85, ) =
= (Sy, - Sy SypSaghh- . Sayfh .- Sa, i, m)A(Sp, ... 8, ... 58,, ) =

= (Syy - Sy Sy Sanlhe - Sayfh .- S, USBy - SB[+ .. 53, b, M) =
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= (Syy o Sy Sy Sanhbe - Sayfh - - Sa, S0 . Sg° ... Sg, U0, M) =

= (Sy, - Sy Sy M) Sy - Sy - S0, Syl S - Sp, My t) =

= (Sy, -5y Sy m)((Say -+ Say -+ - Sa,, ) (s, .88, ... 88, f)),

(891 Sy e Sy, m)A((Say -~ Say -+ - Sans ) (88, -+ .88, 58,5 [)) =

(8yy-e-SnyeeeSmpe> M) A(Seuy flen Sy fhen S 153y --55,--83,, T + f—1) =

= (Syy o Sy Sy Sl oo Sa e San  HOSB L Sa ML .. Sgy ) =
(8yp v Sy e v Sy Skl Saylh- - Sap_ HSay USB L - - - SBHL - - . Sg, L, ),

yp oo Sy Sy M) (Say - Say - Sas ) (Spy -85 - 88, f) =

= (S Hor-Soyyflen oSy Sy -5y oS k1 — 1)A(s5,...55,...53,, f) =

= (S, Jew-Seyy oSy Sy Sy S, S @y oSy S, oy K + 1 —1) =

= (Sy, -5y Sy M) (S - Sy -+ S0, Sy fh - S fh- . Sp, s ) =

(8yp v Sy ev Sy, M)F((Say -+ - Sy -+ S ) (88, - .58, ... 88,, f)).

Case 2: S, [t 7 Sq,[t; Sa, it = Sg, v Then

((8yp -8y - 8y m)A(Say -+~ Say - - Sans 1) (Sp, - -85, 88,, f) =
= (Sy, - Sy Sy Sarlhe . Sayfh .- Sa, i, m)A(Sp, ... 5, ... 88, ) =
= (Syy - Sy Sy Sanlhe o Sayfh- - S, USBy - - SB[ . . S, b, M) =
= (Syy Sy oo Sy Sagfbe - Sl - - Sy [ISp 1+ - . S > . ..55g,u2,m) =
= (8y, -5y Sy M) Sy - Sy -+ S0, Sy fh - S Sp, s ) =
= (Sy; - Sy Sy M) ((Say -+ Say -+ - Sa,, ) (s, .. 85,58, f)),
(891 Sy oSy, m)A((Say - Say -+ - Sans E)F (88, -+ .88, .. 88,5 [)) =
(8 -+ SmpeeaSyys M) TSy oSy fhen-S vy 158y 88,58, 7 + [ — 1) =
= (S v e Sy v SmpSanl e Saglt oo Say (JESE - SaHL. .. Sp, [, M) =
(Sqp v Sy ev Sy Sagfbe - Saybh- - Sy HSay USB L - - - SgyJL - . . Sg, Ly M),
yp o Sy Sy M) (Say 2 Say - San t))(Spy .85, .88, f) =
(SM/JJ Soyfbe Sy fSay - Say - Sa, K H ) A(ss, .85, .88, f) =
(37# Sy bl Sy Sy - Say - S Spyfb. - Sp ... Sp, K1) =
= (5, - sw,m)l—(sa1 oSy S0, 8By f . Sa ... Sp, s t) =
= (

Sy - Sy, M)E((Say -+ - Say - - Sa £)A(Sp, -85, 58,, f))-

Case 3: Sy, 1t = Sq, by Sa, it 7 Sp 1. Then

(841 -8y oo Sym)H(Say - - Sy -+ S, t))H(Sp, .- 85, ... 58,, f) =
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Yoo Sy Sy Saghl. . Sayfl. . S, ft,m)(Sg, .88, 88, f) =
Sy oo Sy Sy Saghl- . Sayfl- . Sa, USEL.- SE b .. S, [l ) =
Sy v Sy e SopSanlle - Saghl. . Sa, WSg I+ .. Sp . Sg P m) =
Sy o e Sy oo Sy, M) A(Say oo Say - SanSp b Sp b Sg L T) =
Syp o e Sy oo Sy, M) A((Say - - Sy -+ Saps £) (S8, -+ -85, 58,5 f))s
o8y Sy, m)A((Say - - Sy - Sas t)FE(Spy -85, 88,, f)) =

= (Syy - Sy Sy M) (S fb - Sayft. - Sa, 4Sg, -+ S, .. Sp,, T+ [) =
2 2 2
= (Syy - Sy oo Sy Saghl” o Syl - Sa, WS L. S . Sp, My M) =

By Sy Saghl. o Soqfh - . Sa JUSE L. . SEy L. .. Sg, [l TT),

(84 -8y oo Sy M) (Say - Say - - Saps t)H(Sp, .. 85, ... 85,, f) =

(
=
=
=

Sy Mo Sy oSy oSy Sy --Sap, k1 —1)A(sp,...58,...58,, f) =
Sopfle o Soyfb. . Sey  [Say - Say.--Say Sy M-S [ S, b K+ T—1) =
Sy - S, M) (Say oo Say - SanSp - Sp b . Sg L T) =
Soy - Sy, M)E((Say - - Sy -+ Saps t)A(Sp, - -85, 58,, f))-

Case 4: S, [t # Sa, by Sanft 7 Sp, ft. Then

((Syy oSy v Sy, m)A(Say -+ - Say -+ - Sans 1)) (S5, - -2 55, - - - 58, f)=

=
=
=
=
=

(S - -

Sy -e Sy oo Sy Safb. o Sogfh .. S ftym) (s, .88, ... 85, f) =

Sqp - e Sy oo Sy Sarfbe . Sogfb . S JSEHL. . Sg L. .. S5, [l M) =

Sy e Sy oo S Sayfle e Sagfl- - Sap WSg I . S 7. S, M) =
Sypoe Sy oSy, M)A (Say oo Say - Sa,Sp - Sg .. Sg L) =

Syp e Sy e Sy, M)A((Say - - Sy -+ Saps ) (88, - 58, 88,5 f)),
Sy - Sy M)A((Say - - Sy -+ Saps ) (Sp, - -85, 88,, f)) =

Sy oo Sy Sy M) (S fh o Sayfh- . Sa J1Sg, - S5, .85, T+ f) =
e Sy Sy Sar e Sa e Sa HESa L. L SaHL . .. S,y TR) =
Sy e Sy oo Sy Saq b Soyfb . Sa JUSE L. . SE L. .. Sg, L, M),

((&,1 Sy Sy M) (Say Sy - Says t))(Spy .85, .85, f) =

Syrbb- - Syyphe . Sy [Say -+ Say - Sa,, k1) A(s8, .. 88, ... 88, f) =

Sy s,n Sy MSay - Say - SanSa b Sg .. S bk FT) =
Soy - swwm)l—(sa1 oSy S0 S Sp ... Sp 1, T) =
Sy - Sy M) ((Say - Say -+ San, £) (S, -2 88, - 88, f))-

Comparing these expressions we conclude that the associativity of
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the operation - and two axioms of a dimonoid hold.

Similarly, the associativity of the operation F and the remaining
axiom of a dimonoid can be checked. So, é(Di)ie y 1s a dimonoid.

It is clear that 67 = D; x D; for every (D;, ;,F;), i € X, (see item
2.1) and so, (D;, i, F;)/07 is a singleton dimonoid. Using this fact and
the notation from Sec. 3, one can prove that the map

é(Di)ieX - R(Di>ieX :

(S veSmyeeaSoypy MU 2 (S, 77 o8y 1 5 S Soypna 3 oS 5 )

is an isomorphism. ¢
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