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Abstract: In the author’s preceding paper a free product of dimonoids was
constructed and for such a dimonoid the investigation of the structure was
started. In this paper we continue to study structural properties of free prod-
ucts of dimonoids. The main results are a characterization of basic types of
diband and band decompositions of free products of dimonoids.

1. Introduction

Following J.-L. Loday [4], a dimonoid is a nonempty set equipped
with two binary associative operations a and ` satisfying the axioms
(x a y) a z = x a (y ` z), (x ` y) a z = x ` (y a z), (x a y) ` z =
= x ` (y ` z).

There exist numerous examples of dimonoids showing the consis-
tency of axioms of a dimonoid. So, for example, an arbitrary semigroup S
with operations defined by x a y = x(yf), x ` y = (xf)y for all x, y ∈ S,
where f is an idempotent endomorphism of S, forms a dimonoid. In [8]
it was proved that a system of axioms of a dimonoid is independent.
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For further details and background see [4], [8], [9], [15]. Dialgebras,
which are linear analogs of dimonoids, were studied by many authors
(see, e.g., [1], [3], [4], [6]). A free dimonoid was constructed by J.-L.
Loday [4] and applied to the study of free dialgebras and a cohomology
of dialgebras. Decompositions of free dimonoids into dibands of subdi-
monoids have been studied in [9–11]. The variety theory of dimonoids
was developed in [11–16].

In the author’s preceding paper [17] a free product of dimonoids was
constructed and for such a dimonoid the investigation of the structure
was started. In this paper we continue to study structural properties of
free products of dimonoids.

The paper is organized as follows. In Sec. 2 we give bands and
dimonoid constructions which will be used in the paper. In Sec. 3 we
describe decompositions of free products of dimonoids into relatively free
dibands of subdimonoids. In Sec. 4 we describe decompositions of free
products of dimonoids into relatively free bands of subdimonoids. The
results from Sections 3 and 4 extend the corresponding results from [10]
and [11]. In the final section we give a faithful representation of free
products of left zero and right zero dimonoids.

The obtained results were announced in [18] and they can be applied
in dialgebra theory for obtaining decomposition results.

2. Preliminaries

In this section we give bands and dimonoid constructions which will
be used in the paper.

2.1. Recall the construction of a free product of dimonoids [17]. As
usual, N denotes the set of all positive integers.

Let Fr[Si]i∈X be the free product of arbitrary semigroups Si, i ∈ X.
For every w ∈ Fr[Si]i∈X denote the first (respectively, last) letter of w
by w(0) (respectively, w(1)) and the length of w by lw. Consider the set

G(Si)i∈X = {(w,m) ∈ Fr[Si]i∈X × N | lw ≥ m}.
For all (w,m) ∈ G(Si)i∈X and u ∈ Fr[Si]i∈X assume

fu(w,m) =

{
lu +m, lu(1)w(0) = 2,
lu +m− 1, lu(1)w(0) = 1.

(1)
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For a given relation ρ on a dimonoid (D,a,`), the congruence gen-
erated by ρ is the least congruence on (D,a,`) containing ρ. It will be
denoted by ρ? and can be characterized as the intersection of all congru-
ences on (D,a,`) containing ρ.

Let {(Di,ai,`i)}i∈X be a family of arbitrary pairwise disjoint di-
monoids. Operations on Fr[(Di,ai)]i∈X and Fr[(Di,`i)]i∈X will be de-
noted by a and ` respectively. For every i ∈ X consider a relation

θi = {(a `i b, a ai b) | a, b ∈ Di}
on a dimonoid (Di,ai,`i). It is clear that operations of (Di,ai,`i)/θ?i
coincide and it is a semigroup.

Let ω1 = (x1x2...xk...xs, t), ω2 = (y1y2...yk...yp, r) ∈ G((Di,ai))i∈X ,
where x1, x2, ..., xk, ..., xs, y1, y2, ..., yk, ..., yp ∈

⋃
i∈X Di. Define a relation

∼ on G((Di,ai))i∈X by

ω1 ∼ ω2 ⇔
{
s = p, t = r and xkθ

?
jk
yk for all 1 ≤ k ≤ s and some jk∈X,

at that xt = yr.

It is not hard to check that ∼ is an equivalence relation. Denote
the equivalence class of ∼ containing an element (w,m) ∈ G((Di,ai))i∈X
by [w,m] and the quotient set G((Di,ai))i∈X/ ∼ by G?((Di,ai))i∈X .

Define operations a′ and `′ on G?((Di,ai))i∈X by

[w1,m1] a
′
[w2,m2] = [w1 a w2, m1],

[w1,m1] `
′
[w2,m2] = [w1 ` w2, f

w1

(w2,m2)
]

for all [w1,m1], [w2,m2]∈G?((Di,ai))i∈X . The algebra (G?((Di,ai))i∈X ,
a′ ,`′) will be denoted by Ğ(Di)i∈X .

Theorem 2.1 ([17], Th. 2.3). Ğ(Di)i∈X is the free product of dimonoids
(Di,ai,`i), i ∈ X.

2.2. Construct the free rectangular dimonoid [11]. A dimonoid (D,a,`)
is called a rectangular dimonoid or a rectangular diband (respectively, an
idempotent dimonoid or a diband), if both semigroups (D,a) and (D,`)
are rectangular bands (respectively, idempotent semigroups).

Let X be an arbitrary nonempty set and X3 = X ×X ×X. Define
operations a and ` on X3 by

(x1, x2, x3) a (y1, y2, y3) = (x1, x2, y3),

(x1, x2, x3) ` (y1, y2, y3) = (x1, y2, y3)

for all (x1, x2, x3), (y1, y2, y3) ∈ X3. Denote the algebra (X3,a,`) by
FRct(X).
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Theorem 2.2 ([11], Th. 1). FRct(X) is the free rectangular dimonoid.

2.3. Construct the free left zero and right zero dimonoid [11]. Let
X`z = (X,a), Xrz = (X,`), Xrb = X`z ×Xrz be a left zero semigroup, a
right zero semigroup and a rectangular band, respectively. One can check
that X`z,rz = (X,a,`) is a rectangular dimonoid. We call this dimonoid
as a left zero and right zero dimonoid. We will call a left zero and right
zero dimonoid also a left and right diband.

Lemma 2.3 ([11], Lemma 5). Every left zero and right zero dimonoid
is the free left zero and right zero dimonoid.

2.4. Construct the free (left, right) normal band [5]. Let B(X) be
the semilattice of all nonempty finite subsets of X with respect to the
operation of the set theoretical union and

Brb(X) = {((x, y), A) ∈ Xrb ×B(X) |x, y ∈ A},
B`z(X) = {(x,A) ∈ X`z ×B(X) |x ∈ A},
Brz(X) = {(x,A) ∈ Xrz ×B(X) |x ∈ A}.

It is clear that Brb(X), B`z(X), Brz(X) are subsemigroups of Xrb×B(X),
X`z×B(X), Xrz×B(X), respectively. By [5] Brb(X), B`z(X) and Brz(X)
are the free normal band, the free left normal band and the free right
normal band, respectively.

2.5. Construct the free (`z, rb)-dimonoid [11]. Let (D,a) be a left zero
semigroup and (D,`) be a rectangular band. Then (D,a,`) is a rectan-
gular dimonoid. We call this rectangular dimonoid a (`z, rb)-dimonoid.

Let X be an arbitrary nonempty set. Define operations a and ` on
X2 by

(x, y) a (a, b) = (x, y), (x, y) ` (a, b) = (x, b)

for all (x, y), (a, b) ∈ X2. It is clear that (X2,a) is a left zero semigroup,
(X2,`) is a rectangular band and (X2,a,`) is a (`z, rb)-dimonoid. We
denote this dimonoid by X`z,rb.

Lemma 2.4 ([11], Lemma 7). X`z,rb is the free (`z, rb)-dimonoid.

2.6. Construct the free (rb, rz)-dimonoid [11]. Let (D,a) be a rect-
angular band and (D,`) be a right zero semigroup. Then (D,a,`) is
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a rectangular dimonoid. We call this rectangular dimonoid a (rb, rz)-
dimonoid.

Let X be an arbitrary nonempty set. Define operations a and ` on
X2 by

(x, y) a (a, b) = (x, b), (x, y) ` (a, b) = (a, b)

for all (x, y), (a, b) ∈ X2. It is clear that (X2,a) is a rectangular band,
(X2,`) is a right zero semigroup and (X2,a,`) is a (rb, rz)-dimonoid.
We denote the obtained dimonoid by Xrb,rz.

Lemma 2.5 ([11], Lemma 6). Xrb,rz is the free (rb, rz)-dimonoid.

2.7. Construct the free normal diband [13]. A dimonoid is called a
normal diband, if its both semigroups are normal bands.

Let FRct(X) be the free rectangular dimonoid (see item 2.2) and

FND(X) = {((x, y, z), A) ∈ FRct(X)×B(X)|x, y, z ∈ A}.

Theorem 2.6 ([13], Th. 2). FND(X) is the free normal diband.

2.8. Construct the free (`n, n)-diband [13]. A dimonoid (D,a,`) is
called a (`n, n)-diband, if (D,a) is a left normal band and (D,`) is a
normal band.

Let B`z,rb(X) = {((x, y), A) ∈ X`z,rb ×B(X)|x, y ∈ A}.
Lemma 2.7 ([13], Lemma 6). B`z,rb(X) is the free (`n, n)-diband.

2.9. Construct the free (n, rn)-diband [13]. A dimonoid (D,a,`) is
called a (n, rn)-diband, if (D,a) is a normal band and (D,`) is a right
normal band.

Let Brb,rz(X) = {((x, y), A) ∈ Xrb,rz ×B(X) |x, y ∈ A}.
Lemma 2.8 ([13], Lemma 7). Brb,rz(X) is the free (n, rn)-diband.

2.10. Construct the free (`n, rn)-diband [13]. A dimonoid (D,a,`) is
called a (`n, rn)-diband, if (D,a) is a left normal band and (D,`) is a
right normal band.

Let B`z,rz(X) = {(x,A) ∈ X`z,rz ×B(X) |x ∈ A}.
Lemma 2.9 ([13], Lemma 8). B`z,rz(X) is the free (`n, rn)-diband.
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2.11. In [7] L. M. Gluskin, B. M. Schein and L. N. Shevrin stated
that the notion of a band of semigroups, which has been playing a very
important role in the semigroup theory, can be naturally extended for any
class of abstract algebras. So, the notion of a diband of subdimonoids for
such a class of abstract algebras as dimonoids, was applied in [8–11], [13],
[14], [17]. This notion is relevant for the study of structural properties of
dimonoids. Recall this definition.

If f : D1 → D2 is a homomorphism of dimonoids, then the cor-
responding congruence on D1 will be denoted by ∆f .

Let S be an arbitrary dimonoid, J be some idempotent dimonoid.
Let

α : S → J : x 7→ xα
be a homomorphism. Then every class of the congruence ∆α is a subdi-
monoid of the dimonoid S and the dimonoid S itself is a union of such
dimonoids Sξ, ξ ∈ J, that

xα = ξ ⇔ x ∈ Sξ = ∆x
α = {t ∈ S | (x, t) ∈ ∆α},

Sξ a Sε ⊆ Sξa ε, Sξ ` Sε ⊆ Sξ `ε,

ξ 6= ε⇒ Sξ
⋂

Sε = ∅.

In this case we say that S is decomposable into a diband of subdimonoids
(or S is a diband J of subdimonoids Sξ, ξ ∈ J). If J is a band (= idem-
potent semigroup), then we say that S is a band J of subdimonoids
Sξ, ξ ∈ J . If J is a semilattice (=commutative band), then we say
that S is a semilattice J of subdimonoids Sξ, ξ ∈ J . If J is a left zero
semigroup (respectively, right zero semigroup), then we say that S is a
left band (respectively, right band) J of subdimonoids Sξ, ξ ∈ J .

Note that the notion of a diband of subdimonoids generalizes the
notion of a band of semigroups [2].

3. Diband decompositions of Ğ(Di)i∈X

In this section we give decompositions of the free product Ğ(Di)i∈X
of dimonoids (Di,ai,`i), i ∈ X, into relatively free dibands of subdi-
monoids.

For every w = sγ1 . . . sγl . . . sγk ∈ Fr[(Di,ai)]i∈X assume c̃(w) =

=
⋃k
l=1{sγlj∗}, where
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j∗ :
⋃
i∈X

Di → X : a 7→ i, if a ∈ Di, i ∈ X.

Let

H(a,b,c) = {[sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X | (sγ1j∗, sγmj∗, sγkj∗) = (a, b, c)}
for (a, b, c) ∈ FRct(X);

H(a,b] = {[sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X | (sγ1j∗, sγmj∗) = (a, b)}
for (a, b) ∈ X`z,rb;

H[b,c) = {[sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X | (sγmj∗, sγkj∗) = (b, c)}
for (b, c) ∈ Xrb,rz;

H(b] = {[sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X | sγmj∗ = b}
for b ∈ X`z,rz;

HY
(a,b,c) = {[sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X |

((sγ1j
∗, sγmj

∗, sγkj
∗), c̃(sγ1 ...sγl ...sγk)) = ((a, b, c), Y )}

for ((a, b, c), Y ) ∈ FND(X);

HY
(a,b] = {[sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X |

((sγ1j
∗, sγmj

∗), c̃(sγ1 ...sγl ...sγk)) = ((a, b), Y )}
for ((a, b), Y ) ∈ B`z,rb(X);

HY
[b,c) = {[sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X |

((sγmj
∗, sγkj

∗), c̃(sγ1 ...sγl ...sγk)) = ((b, c), Y )}
for ((b, c), Y ) ∈ Brb,rz(X);

HY
(b] = {[sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X |

(sγmj
∗, c̃(sγ1 ...sγl ...sγk)) = (b, Y )}

for (b, Y ) ∈ B`z,rz(X).

Further we will deal with diband decompositions (see item 2.11) of
free products of dimonoids.

The following two structure theorems give decompositions of free
products of dimonoids into relatively free dibands of subdimonoids.

Theorem 3.1. Let Ğ(Di)i∈X be the free product of dimonoids. Then

(i) Ğ(Di)i∈X is a normal diband FND(X) of subdimonoids HY
(a,b,c),

((a, b, c), Y ) ∈ FND(X);
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(ii) Ğ(Di)i∈X is a diband B`z,rb(X) of subdimonoids HY
(a,b], ((a, b), Y ) ∈

∈ B`z,rb(X). Every dimonoid HY
(a,b], ((a, b), Y ) ∈ B`z,rb(X), is a

right band Yrz of subdimonoids HY
(a,b,c), c ∈ Yrz;

(iii) Ğ(Di)i∈X is a diband Brb,rz(X) of subdimonoids HY
[b,c), ((b, c), Y ) ∈

∈ Brb,rz(X). Every dimonoid HY
[b,c), ((b, c), Y ) ∈ Brb,rz(X), is a left

band Y`z of subdimonoids HY
(a,b,c), a ∈ Y`z;

(iv) Ğ(Di)i∈X is a diband B`z,rz(X) of subdimonoids HY
(b], (b, Y ) ∈

∈ B`z,rz(X). Every dimonoid HY
(b], (b, Y ) ∈ B`z,rz(X), is a rect-

angular band Yrb of subdimonoids HY
(a,b,c), (a, c) ∈ Yrb.

Proof. (i) Define a map ηFND : Ğ(Di)i∈X → FND(X) by

[sγ1 ...sγl ...sγk ,m] 7→ ((sγ1j
∗, sγmj

∗, sγkj
∗), c̃(sγ1 ...sγl ...sγk)),

[sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X .

For arbitrary elements [sγ1 ...sγl ...sγk ,m], [sα1 ...sαl ...sαr , t] ∈ Ğ(Di)i∈X ,
using (1), we obtain

([sγ1 ...sγl ...sγk ,m] a′ [sα1 ...sαl ...sαr , t])ηFND =

= [sγ1 ...sγl ...sγk−1
(sγk a sα1)sα2 ...sαl ...sαr ,m]ηFND =

= ((sγ1j
∗, sγmj

∗, sαrj
∗), c̃(sγ1 ...sγl ...sγk−1

(sγk a sα1)sα2 ...sαl ...sαr)) =

= ((sγ1j
∗, sγmj

∗, sαrj
∗), c̃(sγ1 ...sγl ...sγk) ∪ c̃(sα1 ...sαl ...sαr)) =

= ((sγ1j
∗, sγmj

∗, sγkj
∗), c̃(sγ1 ...sγl ...sγk)) a

a ((sα1j
∗, sαtj

∗, sαrj
∗), c̃(sα1 ...sαl ...sαr)) =

= [sγ1 ...sγl ...sγk ,m]ηFND a [sα1 ...sαl ...sαr , t]ηFND,

([sγ1 ...sγl ...sγk ,m] `′ [sα1 ...sαl ...sαr , t])ηFND =

= [sγ1 ...sγl ...sγk−1
(sγk ` sα1)sα2 ...sαl ...sαr , f

sγ1 ...sγl ...sγk
(sα1 ...sαl ...sαr ,t)

]ηFND =

= ((sγ1j
∗, sαtj

∗, sαrj
∗), c̃(sγ1 ...sγl ...sγk−1

(sγk ` sα1)sα2 ...sαl ...sαr)) =

= ((sγ1j
∗, sαtj

∗, sαrj
∗), c̃(sγ1 ...sγl ...sγk) ∪ c̃(sα1 ...sαl ...sαr)) =

= ((sγ1j
∗, sγmj

∗, sγkj
∗), c̃(sγ1 ...sγl ...sγk)) `

` ((sα1j
∗, sαtj

∗, sαrj
∗), c̃(sα1 ...sαl ...sαr)) =

= [sγ1 ...sγl ...sγk ,m]ηFND ` [sα1 ...sαl ...sαr , t]ηFND.

Thus, ηFND is a surjective homomorphism. It is clear that HY
(a,b,c),

((a, b, c), Y ) ∈ FND(X), is a class of ∆ηFND which is a subdimonoid



Decompositions of free products of dimonoids 79

of Ğ(Di)i∈X . Hence Ğ(Di)i∈X is a normal diband FND(X) of subdi-
monoids HY

(a,b,c), ((a, b, c), Y ) ∈ FND(X).

(ii) Define a map η∗`z,rb : Ğ(Di)i∈X → B`z,rb(X) by

[sγ1 ...sγl ...sγk ,m] 7→ ((sγ1j
∗, sγmj

∗), c̃(sγ1 ...sγl ...sγk)),

[sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X .

Similarly to the proof of (i), the fact that η∗`z,rb is a surjective ho-
momorphism can be proved. Clearly, HY

(a,b], ((a, b), Y ) ∈ B`z,rb(X), is a

class of ∆η∗`z,rb
which is a subdimonoid of Ğ(Di)i∈X . Hence Ğ(Di)i∈X is

a diband B`z,rb(X) of subdimonoids HY
(a,b], ((a, b), Y ) ∈ B`z,rb(X). More-

over, it is not difficult to show that for every ((a, b), Y ) ∈ B`z,rb(X) the
map

HY
(a,b] → Yrz : [sγ1 ...sγl ...sγk ,m] 7→ sγkj

∗

is a homomorphism. Hence HY
(a,b] is a right band Yrz of subdimonoids

HY
(a,b,c), c ∈ Yrz.

(iii) Define a map η∗rb,rz : Ğ(Di)i∈X → Brb,rz(X) by

[sγ1 ...sγl ...sγk ,m] 7→ ((sγmj
∗, sγkj

∗), c̃(sγ1 ...sγl ...sγk)),

[sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X .

Similarly to (i), η∗rb,rz is a surjective homomorphism. It is evident
that HY

[b,c), ((b, c), Y ) ∈ Brb,rz(X), is a class of ∆η∗rb,rz
which is a subdi-

monoid of Ğ(Di)i∈X . So, Ğ(Di)i∈X is a diband Brb,rz(X) of subdimonoids
HY

[b,c), ((b, c), Y ) ∈ Brb,rz(X).

Moreover, one can show that for every ((b, c), Y ) ∈ Brb,rz(X) the
map

HY
[b,c) → Y`z : [sγ1 ...sγl ...sγk ,m] 7→ sγ1j

∗

is a homomorphism. Hence HY
[b,c) is a left band Y`z of subdimonoids

HY
(a,b,c), a ∈ Y`z.

(iv) Define a map η∗`z,rz : Ğ(Di)i∈X → B`z,rz(X) by

[sγ1 ...sγl ...sγk ,m] 7→ (sγmj
∗, c̃(sγ1 ...sγl ...sγk)),

[sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X .

Similarly to (i), η∗`z,rz is a surjective homomorphism andHY
(b], (b,Y )∈

∈ B`z,rz(X), is a class of ∆η∗`z,rz
which is a subdimonoid of Ğ(Di)i∈X .
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Thus, Ğ(Di)i∈X is a diband B`z,rz(X) of subdimonoids HY
(b], (b, Y ) ∈

B`z,rz(X). Now we shall prove the second part of (iv).

Let

πY(b] : HY
(b] → Yrb : [sγ1 ...sγl ...sγk ,m] 7→ (sγ1j

∗, sγkj
∗)

for every (b, Y ) ∈ B`z,rz(X). As

(w ◦ u)(0)j∗ = w(0)j∗, (w ◦ u)(1)j∗ = u(1)j∗

for all w, u ∈ Fr[(Di,ai)]i∈X and ◦ ∈ {a,`}, then πY(b] is a homomor-

phism. From here HY
(b] is a rectangular band Yrb of subdimonoids HY

(a,b,c),

(a, c) ∈ Yrb. ♦
Take (a, b, c) ∈ FRct(X) (see item 2.2), (b, c) ∈ Xrb,rz (see item

2.6) and b ∈ X`z,rz (see item 2.3). Let Ω(a,b,c)(X) be the set of all finite
subsets Y of X such that a, b, c ∈ Y ; Ω(b,c)(X) be the set of all finite
subsets Y of X such that b, c ∈ Y ; Ωb(X) be the set of all finite subsets
Y of X such that b ∈ Y . For every f ∈ {(a, b, c), (b, c), b} assume Ωf (X)
be a semilattice defined on Ωf (X) by the operation of the set theoretical
union.

Theorem 3.2. Let Ğ(Di)i∈X be the free product of dimonoids. Then

(i) Ğ(Di)i∈X is a rectangular diband FRct(X) of subdimonoids H(a,b,c),
(a, b, c) ∈ FRct(X). Every dimonoid H(a,b,c), (a, b, c) ∈ FRct(X),
is a semilattice Ω(a,b,c)(X) of subdimonoids HY

(a,b,c), Y ∈ Ω(a,b,c)(X);

(ii) Ğ(Di)i∈X is a diband X`z,rb of subdimonoids H(a,b], (a, b) ∈ X`z,rb.
Every dimonoid H(a,b], (a, b) ∈ X`z,rb, is a semilattice Ω(a,b)(X) of
subdimonoids HY

(a,b], Y ∈ Ω(a,b)(X);

(iii) Ğ(Di)i∈X is a diband Xrb,rz of subdimonoids H[b,c), (b, c) ∈ Xrb,rz.
Every dimonoid H[b,c), (b, c) ∈ Xrb,rz, is a semilattice Ω(b,c)(X) of
subdimonoids HY

[b,c), Y ∈ Ω(b,c)(X);

(iv) Ğ(Di)i∈X is a left and right diband X`z,rz of subdimonoids H(b],
b ∈ X`z,rz. Every dimonoid H(b], b ∈ X`z,rz, is a semilattice Ωb(X)
of subdimonoids HY

(b], Y ∈ Ωb(X).

Proof. (i) Define a map ηFRct : Ğ(Di)i∈X → FRct(X) by

[sγ1 ...sγl ...sγk ,m] 7→ (sγ1j
∗, sγmj

∗, sγkj
∗), [sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X .
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Similarly to (i) from Th. 3.1, ηFRct is a surjective homomorphism.
Then H(a,b,c), (a, b, c) ∈ FRct(X), is a class of ∆ηFRct which is a subdi-

monoid of Ğ(Di)i∈X . Hence Ğ(Di)i∈X is a rectangular diband FRct(X)
of subdimonoids H(a,b,c), (a, b, c) ∈ FRct(X). Besides, it is not difficult
to show that for every (a, b, c) ∈ FRct(X) the map

H(a,b,c) → Ω(a,b,c)(X) : [sγ1 ...sγl ...sγk ,m] 7→ c̃(sγ1 ...sγl ...sγk)

is a homomorphism. Hence H(a,b,c) is a semilattice Ω(a,b,c)(X) of subdi-
monoids HY

(a,b,c), Y ∈ Ω(a,b,c)(X).

(ii) Define a map η`z,rb : Ğ(Di)i∈X → X`z,rb by

[sγ1 ...sγl ...sγk ,m] 7→ (sγ1j
∗, sγmj

∗), [sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X .

Similarly to (i) from Th. 3.1, η`z,rb is a surjective homomorphism
and H(a,b], (a, b) ∈ X`z,rb, is a class of ∆η`z,rb which is a subdimonoid of

Ğ(Di)i∈X . It means that Ğ(Di)i∈X is a diband X`z,rb of subdimonoids
H(a,b], (a, b) ∈ X`z,rb. Moreover, we can show that for every (a, b) ∈ X`z,rb

the map
H(a,b] → Ω(a,b)(X) : [sγ1 ...sγl ...sγk ,m] 7→ c̃(sγ1 ...sγl ...sγk)

is a homomorphism. From here H(a,b] is a semilattice Ω(a,b)(X) of subdi-
monoids HY

(a,b], Y ∈ Ω(a,b)(X).

(iii) Define a map ηrb,rz : Ğ(Di)i∈X → Xrb,rz by

[sγ1 ...sγl ...sγk ,m] 7→ (sγmj
∗, sγkj

∗), [sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X .

Similarly to (i) from Th. 3.1, ηrb,rz is a surjective homomorphism
and H[b,c), (b, c) ∈ Xrb,rz, is a class of ∆ηrb,rz which is a subdimonoid

of Ğ(Di)i∈X . Hence Ğ(Di)i∈X is a diband Xrb,rz of subdimonoids H[b,c),
(b, c) ∈ Xrb,rz. Moreover, it is not hard to verify that for every (b, c) ∈
∈ Xrb,rz the map

H[b,c) → Ω(b,c)(X) : [sγ1 ...sγl ...sγk ,m] 7→ c̃(sγ1 ...sγl ...sγk)

is a homomorphism. Then H[b,c) is a semilattice Ω(b,c)(X) of subdi-
monoids HY

[b,c), Y ∈ Ω(b,c)(X).

(iv) Define a map η`z,rz : Ğ(Di)i∈X → X`z,rz by

[sγ1 ...sγl ...sγk ,m] 7→ sγmj
∗, [sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X .

Similarly to (i) from Th. 3.1, η`z,rz is a surjective homomorphism.
It is clear that H(b], b ∈ X`z,rz, is a class of ∆η`z,rz which is a subdimonoid

of Ğ(Di)i∈X . Hence Ğ(Di)i∈X is a left and right diband X`z,rz of sub-
dimonoids H(b], b ∈ X`z,rz. Except this, one can verify that for every
b ∈ X`z,rz the map
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H(b] → Ωb(X) : [sγ1 ...sγl ...sγk ,m] 7→ c̃(sγ1 ...sγl ...sγk)

is a homomorphism. Hence we obtain the last statement of (iv). ♦
Note that Thms. 3.1 and 3.2 extend the corresponding parts of

Thms. 3–6 from [10] and [11].

The realization of Th. 3.2 may be shown by the following example.

Let us consider the dimonoid Ğ(Di)i∈X when ai=`i for all i ∈ X.
First observe that if ai=`i for all i ∈ X, then ∼ is the diagonal of
G((Di,ai))i∈X (see item 2.1) and G((Di,ai))i∈X/ ∼ is identified with
G((Di,ai))i∈X . It is clear that in this case a=` and then operations a′ ,
`′ on G((Di,ai))i∈X defined by (2) and (3) take the form:

(w1,m1) a
′
(w2,m2) = (w1 a w2, m1),

(w1,m1) `
′
(w2,m2) = (w1 a w2, f

w1

(w2,m2)
).

Let further X = {x, y} and F ∗ be the free product of singleton
dimonoids {x} and {y} in the variety of dimonoids. Then FRct(X)
consists of elements

(x, x, x), (x, x, y), (x, y, y), (x, y, x), (y, y, y), (y, y, x), (y, x, x), (y, x, y);

H(a,b,c) = {(sγ1 ...sγl ...sγk ,m) ∈ F ∗ | (sγ1 , sγm , sγk) = (a, b, c)}
for (a, b, c) ∈ FRct(X);

Ω(x,x,x)(X) = {{x, y}, {x}}, Ω(y,y,y)(X) = {{x, y}, {y}},
Ω(x,x,y)(X) = Ω(x,y,y)(X) = Ω(x,y,x)(X) = Ω(y,y,x)(X) =

= Ω(y,x,x)(X) = Ω(y,x,y)(X) = {{x, y}};

HY
(a,b,c) =

{
(sγ1 ...sγl ...sγk ,m)∈F ∗|

(
(sγ1 , sγm , sγk),

k⋃
l=1

{sγl}
)

=((a, b, c), Y )
}

for Y ∈ Ω(a,b,c)(X), namely, the following subdimonoids are components

of semilattice decompositions from (i): H
{x,y}
(x,x,x), H

{x}
(x,x,x), H

{x,y}
(y,y,y), H

{y}
(y,y,y),

H
{x,y}
(x,x,y), H

{x,y}
(x,y,y), H

{x,y}
(x,y,x), H

{x,y}
(y,y,x), H

{x,y}
(y,x,x), H

{x,y}
(y,x,y).

Substituting obtained expressions to the statement (i) of Th. 3.2
we obtain decompositions of F ∗. Similarly, the statements (ii) – (iv) of
Th. 3.2 can be applied to the dimonoid F ∗.
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4. Band decompositions of Ğ(Di)i∈X

In this section we give decompositions of the free product Ğ(Di)i∈X
of dimonoids (Di,ai,`i), i ∈ X, into relatively free bands of subdi-
monoids.

Let

H(a,c) = {[sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X | (sγ1j∗, sγkj∗) = (a, c)}
for (a, c) ∈ Xrb;

H(a) = {[sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X | sγ1j∗ = a}
for a ∈ X`z;

H[c] = {[sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X | sγkj∗ = c}
for c ∈ Xrz;

HY
(a,c) = {[sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X |

((sγ1j
∗, sγkj

∗), c̃(sγ1 ...sγl ...sγk)) = ((a, c), Y )}
for ((a, c), Y ) ∈ Brb(X);

HY
(a) = {[sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X | (sγ1j∗, c̃(sγ1 ...sγl ...sγk)) = (a, Y )}

for (a, Y ) ∈ B`z(X);

HY
[c] = {[sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X | (sγkj∗, c̃(sγ1 ...sγl ...sγk)) = (c, Y )}

for (c, Y ) ∈ Brz(X).

The following two structure theorems give decompositions of free
products of dimonoids into relatively free bands of subdimonoids.

Theorem 4.1. Let Ğ(Di)i∈X be the free product of dimonoids. Then

(i) Ğ(Di)i∈X is a normal band Brb(X) of subdimonoids HY
(a,c),

((a, c), Y ) ∈ Brb(X). Every dimonoid HY
(a,c), ((a, c), Y ) ∈ Brb(X),

is a left and right diband Y`z,rz of subdimonoids HY
(a,b,c), b ∈ Y`z,rz;

(ii) Ğ(Di)i∈X is a left normal band B`z(X) of subdimonoids HY
(a),

(a, Y ) ∈ B`z(X). Every dimonoid HY
(a), (a, Y ) ∈ B`z(X), is a

diband Yrb,rz of subdimonoids HY
(a,b,c), (b, c) ∈ Yrb,rz;

(iii) Ğ(Di)i∈X is a right normal band Brz(X) of subdimonoids HY
[c],

(c, Y ) ∈ Brz(X). Every dimonoid HY
[c], (c, Y ) ∈ Brz(X), is a diband

Y`z,rb of subdimonoids HY
(a,b,c), (a, b) ∈ Y`z,rb.



84 A. V. Zhuchok

Proof. (i) Define a map η∗rb : Ğ(Di)i∈X → Brb(X) by

[sγ1 ...sγl ...sγk ,m] 7→ ((sγ1j
∗, sγkj

∗), c̃(sγ1 ...sγl ...sγk)),

[sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X .

For arbitrary elements [sγ1 ...sγl ...sγk ,m], [sα1 ...sαl ...sαr , t] ∈ Ğ(Di)i∈X we
obtain

([sγ1 ...sγl ...sγk ,m] a′ [sα1 ...sαl ...sαr , t])η
∗
rb =

= [sγ1 ...sγl ...sγk−1
(sγk a sα1)sα2 ...sαl ...sαr ,m]η∗rb =

= ((sγ1j
∗, sαrj

∗), c̃(sγ1 ...sγl ...sγk−1
(sγk a sα1)sα2 ...sαl ...sαr)) =

= ((sγ1j
∗, sαrj

∗), c̃(sγ1 ...sγl ...sγk) ∪ c̃(sα1 ...sαl ...sαr)) =

= ((sγ1j
∗, sγkj

∗), c̃(sγ1 ...sγl ...sγk))((sα1j
∗, sαrj

∗), c̃(sα1 ...sαl ...sαr)) =

= [sγ1 ...sγl ...sγk ,m]η∗rb[sα1 ...sαl ...sαr , t]η
∗
rb,

([sγ1 ...sγl ...sγk ,m] `′ [sα1 ...sαl ...sαr , t])η
∗
rb =

= [sγ1 ...sγl ...sγk−1
(sγk ` sα1)sα2 ...sαl ...sαr , f

sγ1 ...sγl ...sγk
(sα1 ...sαl ...sαr ,t)

]η∗rb =

= ((sγ1j
∗, sαrj

∗), c̃(sγ1 ...sγl ...sγk−1
(sγk ` sα1)sα2 ...sαl ...sαr)) =

= ((sγ1j
∗, sαrj

∗), c̃(sγ1 ...sγl ...sγk) ∪ c̃(sα1 ...sαl ...sαr)) =

= ((sγ1j
∗, sγkj

∗), c̃(sγ1 ...sγl ...sγk))((sα1j
∗, sαrj

∗), c̃(sα1 ...sαl ...sαr)) =

= [sγ1 ...sγl ...sγk ,m]η∗rb[sα1 ...sαl ...sαr , t]η
∗
rb.

Consequently, η∗rb is a surjective homomorphism. It is evident that
HY

(a,c), ((a, c), Y ) ∈ Brb(X), is a class of ∆η∗rb
which is a subdimonoid of

Ğ(Di)i∈X . Hence Ğ(Di)i∈X is a normal band Brb(X) of subdimonoids
HY

(a,c), ((a, c), Y ) ∈ Brb(X). Moreover, one can show that for every

((a, c), Y ) ∈ Brb(X) the map

HY
(a,c) → Y`z,rz : [sγ1 ...sγl ...sγk ,m] 7→ sγmj

∗

is a homomorphism. Hence HY
(a,c) is a left and right diband Y`z,rz of

subdimonoids HY
(a,b,c), b ∈ Y`z,rz.

(ii) Analysis similar that in the proof of (i) shows that a map

η∗`z : Ğ(Di)i∈X → B`z(X),

defined by

[sγ1 ...sγl ...sγk ,m] 7→ (sγ1j
∗, c̃(sγ1 ...sγl ...sγk)),
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[sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X ,

is a surjective homomorphism. From here HY
(a), (a, Y ) ∈ B`z(X), is a

class of ∆η∗`z
which is a subdimonoid of Ğ(Di)i∈X . Hence Ğ(Di)i∈X is a

left normal band B`z(X) of subdimonoids HY
(a), (a, Y ) ∈ B`z(X). Besides,

we can verify that for every (a, Y ) ∈ B`z(X) the map

HY
(a) → Yrb,rz : [sγ1 ...sγl ...sγk ,m] 7→ (sγmj

∗, sγkj
∗)

is a homomorphism. Hence HY
(a) is a diband Yrb,rz of subdimonoids

HY
(a,b,c), (b, c) ∈ Yrb,rz.

(iii) Define a map η∗rz : Ğ(Di)i∈X → Brz(X) by

[sγ1 ...sγl ...sγk ,m] 7→ (sγkj
∗, c̃(sγ1 ...sγl ...sγk)),

[sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X .

Similarly to the proof of (i), η∗rz is a surjective homomorphism.
It is evident that HY

[c], (c, Y ) ∈ Brz(X), is a class of ∆η∗rz which is a

subdimonoid of Ğ(Di)i∈X . Thus, Ğ(Di)i∈X is a right normal bandBrz(X)
of subdimonoids HY

[c], (c, Y ) ∈ Brz(X). Except this, it is obvious that for

every (c, Y ) ∈ Brz(X) the map

HY
[c] → Y`z,rb : [sγ1 ...sγl ...sγk ,m] 7→ (sγ1j

∗, sγmj
∗)

is a homomorphism. Hence HY
[c] is a diband Y`z,rb of subdimonoids HY

(a,b,c),

(a, b) ∈ Y`z,rb. ♦

Theorem 4.2. Let Ğ(Di)i∈X be the free product of dimonoids. Then

(i) Ğ(Di)i∈X is a rectangular band Xrb of subdimonoids H(a,c), (a, c) ∈
∈ Xrb. Every dimonoid H(a,c), (a, c) ∈ Xrb, is a semilattice Ω(a,c)(X)
of subdimonoids HY

(a,c), Y ∈ Ω(a,c)(X);

(ii) Ğ(Di)i∈X is a left band X`z of subdimonoids H(a), a ∈ X`z. Every
dimonoid H(a), a ∈ X`z, is a semilattice Ωa(X) of subdimonoids
HY

(a), Y ∈ Ωa(X);

(iii) Ğ(Di)i∈X is a right band Xrz of subdimonoids H[c], c ∈ Xrz. Every
dimonoid H[c], c ∈ Xrz, is a semilattice Ωc(X) of subdimonoids
HY

[c], Y ∈ Ωc(X).

Proof. (i) Define a map ηrb : Ğ(Di)i∈X → Xrb by

[sγ1 ...sγl ...sγk ,m] 7→ (sγ1j
∗, sγkj

∗), [sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X .
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Similarly to the proof of (i) from Th. 4.1, ηrb is a surjective homo-
morphism. Obviously, H(a,c), (a, c) ∈ Xrb, is a class of ∆ηrb which is a

subdimonoid of Ğ(Di)i∈X . Hence Ğ(Di)i∈X is a rectangular band Xrb

of subdimonoids H(a,c), (a, c) ∈ Xrb. Moreover, it is clear that for every
(a, c) ∈ Xrb the map

H(a,c) → Ω(a,c)(X) : [sγ1 ...sγl ...sγk ,m] 7→ c̃(sγ1 ...sγl ...sγk)

is a homomorphism. So, H(a,c) is a semilattice Ω(a,c)(X) of subdimonoids
HY

(a,c), Y ∈ Ω(a,c)(X).

(ii) Define a map η`z : Ğ(Di)i∈X → X`z by

[sγ1 ...sγl ...sγk ,m] 7→ sγ1j
∗, [sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X .

Similarly to the proof of (i) from Th. 4.1, η`z is a surjective ho-
momorphism. It is evident that H(a), a ∈ X`z, is a class of ∆η`z which

is a subdimonoid of Ğ(Di)i∈X . Hence Ğ(Di)i∈X is a left band X`z of
subdimonoids H(a), a ∈ X`z. Evidently, for every a ∈ X`z the map

H(a) → Ωa(X) : [sγ1 ...sγl ...sγk ,m] 7→ c̃(sγ1 ...sγl ...sγk)

is a homomorphism. Thus, H(a) is a semilattice Ωa(X) of subdimonoids
HY

(a), Y ∈ Ωa(X).

(iii) Define a map ηrz : Ğ(Di)i∈X → Xrz by

[sγ1 ...sγl ...sγk ,m] 7→ sγkj
∗, [sγ1 ...sγl ...sγk ,m] ∈ Ğ(Di)i∈X .

Similarly to the proof of (i) from Th. 4.1, ηrz is a surjective homo-
morphism. Then H[c], c ∈ Xrz, is a class of ∆ηrz which is a subdimonoid

of Ğ(Di)i∈X . So, Ğ(Di)i∈X is a right band Xrz of subdimonoids H[c],
c ∈ Xrz. One can check that for every c ∈ Xrz the map

H[c] → Ωc(X) : [sγ1 ...sγl ...sγk ,m] 7→ c̃(sγ1 ...sγl ...sγk)

is a homomorphism. Hence we obtain the last statement of (iii). ♦
Note that Thms. 4.1 and 4.2 extend the corresponding parts of

Thms. 7–9 from [10] and [11]. The semilattice decomposition of free
products of dimonoids was described in [17].

5. Free products of left zero and right zero dimonoids

In this section we give a faithful representation of free products of
left zero and right zero dimonoids.

Let {(Di,ai,`i)}i∈X be a family of arbitrary pairwise disjoint left
zero and right zero dimonoids (see item 2.3). Denote by F [(Di,ai)]i∈X
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the free product of semigroups (Di,ai), i ∈ X, and singleton semigroups
{i}, i ∈ X.

Let

R(Di)i∈X = {(sγ1 ...sγl ...sγk ,m) ∈ F [(Di,ai)]i∈X × N | k ≥ m},
R?(Di)i∈X = {(sγ1 ...sγl ...sγk ,m) ∈ R(Di)i∈X |

sγl ∈ ∪i∈XDi ⇔ l = m, 1 ≤ l ≤ k},

µ : (∪i∈XDi) ∪X → (∪i∈XDi) ∪X : a 7→ aµ =

{
i, a ∈ Di,
a, a ∈ X.

If k = 1, then the sequences sγ1 ...sγl ...sγk−1
, sγ2 ...sγl ...sγk will be

regarded empty.

Define operations a and ` on R?(Di)i∈X by

(sγ1 ...sγl ...sγk ,m)a(sα1 ...sαl ...sαr , t) =

=

{
(sγ1 ...sγl ...sγksα1µ...sαlµ...sαrµ,m) , sγkµ 6= sα1µ,
(sγ1 ...sγl ...sγksα2µ...sαlµ...sαrµ,m) , sγkµ = sα1µ,

(sγ1 ...sγl ...sγk ,m)`(sα1 ...sαl ...sαr , t) =

=

{
(sγ1µ...sγlµ...sγkµsα1 ...sαl ...sαr , k + t) , sγkµ 6= sα1µ,(
sγ1µ...sγlµ...sγk−1

µsα1 ...sαl ...sαr , k + t− 1
)
, sγkµ = sα1µ

for all (sγ1 ...sγl ...sγk ,m), (sα1 ...sαl ...sαr , t) ∈ R?(Di)i∈X . The algebra

(R?(Di)i∈X ,a,`) will be denoted by R̆(Di)i∈X .

Theorem 5.1. The free product Ğ(Di)i∈X of left zero and right zero
dimonoids (Di,ai,`i), i ∈ X, is isomorphic to the dimonoid R̆(Di)i∈X .

Proof. Observe that µ2 = µ and show that R̆(Di)i∈X is a dimonoid.

Let
(sγ1 . . . sγl . . . sγk ,m), (sα1 . . . sαl . . . sαr , t),

(sβ1 . . . sβl . . . sβg , f) ∈ R̆(Di)i∈X .

Consider the following four cases.

Case 1: sγkµ = sα1µ, sαrµ = sβ1µ. Then

((sγ1 . . . sγl . . . sγk ,m)a(sα1 . . . sαl . . . sαr , t))a(sβ1 . . . sβl . . . sβg , f) =

= (sγ1 . . . sγl . . . sγksα2µ . . . sαlµ . . . sαrµ,m)a(sβ1 . . . sβl . . . sβg , f) =

= (sγ1 . . . sγl . . . sγksα2µ . . . sαlµ . . . sαrµsβ2µ . . . sβlµ . . . sβgµ,m) =
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= (sγ1 . . . sγl . . . sγksα2µ . . . sαlµ . . . sαrµsβ2µ
2 . . . sβlµ

2 . . . sβgµ
2,m) =

= (sγ1 . . . sγl . . . sγk ,m)a(sα1 . . . sαl . . . sαrsβ2µ . . . sβlµ . . . sβgµ, t) =

= (sγ1 . . . sγl . . . sγk ,m)a((sα1 . . . sαl . . . sαr , t)a(sβ1 . . . sβl . . . sβg , f)),

(sγ1 . . . sγl . . . sγk ,m)a((sα1 . . . sαl . . . sαr , t)`(sβ1 . . . sβl . . . sβg , f)) =

= (sγ1 ...sγl ...sγk ,m)a(sα1µ...sαlµ...sαr−1µsβ1 ...sβl ...sβg , r + f−1)=

= (sγ1 . . . sγl . . . sγksα2µ
2 . . . sαlµ

2 . . . sαr−1µ
2sβ1µ . . . sβlµ . . . sβgµ,m) =

= (sγ1 . . . sγl . . . sγksα2µ . . . sαlµ . . . sαr−1µsαrµsβ2µ . . . sβlµ . . . sβgµ,m),

((sγ1 . . . sγl . . . sγk ,m)`(sα1 . . . sαl . . . sαr , t))a(sβ1 . . . sβl . . . sβg , f) =

= (sγ1µ...sγlµ...sγk−1
µsα1 ...sαl ...sαr , k + t− 1)a(sβ1 ...sβl ...sβg , f)=

= (sγ1µ...sγlµ...sγk−1
µsα1 ...sαl ...sαrsβ2µ...sβlµ...sβgµ, k + t−1)=

= (sγ1 . . . sγl . . . sγk ,m)`(sα1 . . . sαl . . . sαrsβ2µ . . . sβlµ . . . sβgµ, t) =

= (sγ1 . . . sγl . . . sγk ,m)`((sα1 . . . sαl . . . sαr , t)a(sβ1 . . . sβl . . . sβg , f)).

Case 2: sγkµ 6= sα1µ, sαrµ = sβ1µ. Then

((sγ1 . . . sγl . . . sγk ,m)a(sα1 . . . sαl . . . sαr , t))a(sβ1 . . . sβl . . . sβg , f) =

= (sγ1 . . . sγl . . . sγksα1µ . . . sαlµ . . . sαrµ,m)a(sβ1 . . . sβl . . . sβg , f) =

= (sγ1 . . . sγl . . . sγksα1µ . . . sαlµ . . . sαrµsβ2µ . . . sβlµ . . . sβgµ,m) =

= (sγ1 . . . sγl . . . sγksα1µ . . . sαlµ . . . sαrµsβ2µ
2 . . . sβlµ

2 . . . sβgµ
2,m) =

= (sγ1 . . . sγl . . . sγk ,m)a(sα1 . . . sαl . . . sαrsβ2µ . . . sβlµ . . . sβgµ, t) =

= (sγ1 . . . sγl . . . sγk ,m)a((sα1 . . . sαl . . . sαr , t)a(sβ1 . . . sβl . . . sβg , f)),

(sγ1 . . . sγl . . . sγk ,m)a((sα1 . . . sαl . . . sαr , t)`(sβ1 . . . sβl . . . sβg , f)) =

= (sγ1 . . . sγl ...sγk ,m)a(sα1µ...sαlµ...sαr−1µsβ1 ...sβl ...sβg , r + f − 1) =

= (sγ1 . . . sγl . . . sγksα1µ
2 . . . sαlµ

2 . . . sαr−1µ
2sβ1µ . . . sβlµ . . . sβgµ,m) =

= (sγ1 . . . sγl . . . sγksα1µ . . . sαlµ . . . sαr−1µsαrµsβ2µ . . . sβlµ . . . sβgµ,m),

((sγ1 . . . sγl . . . sγk ,m)`(sα1 . . . sαl . . . sαr , t))a(sβ1 . . . sβl . . . sβg , f) =

= (sγ1µ . . . sγlµ . . . sγkµsα1 . . . sαl . . . sαr , k + t)a(sβ1 . . . sβl . . . sβg , f) =

= (sγ1µ . . . sγlµ . . . sγkµsα1 . . . sαl . . . sαrsβ2µ . . . sβlµ . . . sβgµ, k + t) =

= (sγ1 . . . sγl . . . sγk ,m)`(sα1 . . . sαl . . . sαrsβ2µ . . . sβlµ . . . sβgµ, t) =

= (sγ1 . . . sγl . . . sγk ,m)`((sα1 . . . sαl . . . sαr , t)a(sβ1 . . . sβl . . . sβg , f)).

Case 3: sγkµ = sα1µ, sαrµ 6= sβ1µ. Then

((sγ1 . . . sγl . . . sγk ,m)a(sα1 . . . sαl . . . sαr , t))a(sβ1 . . . sβl . . . sβg , f) =
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= (sγ1 . . . sγl . . . sγksα2µ . . . sαlµ . . . sαrµ,m)a(sβ1 . . . sβl . . . sβg , f) =

= (sγ1 . . . sγl . . . sγksα2µ . . . sαlµ . . . sαrµsβ1µ . . . sβlµ . . . sβgµ,m) =

= (sγ1 . . . sγl . . . sγksα2µ . . . sαlµ . . . sαrµsβ1µ
2 . . . sβlµ

2 . . . sβgµ
2,m) =

= (sγ1 . . . sγl . . . sγk ,m)a(sα1 . . . sαl . . . sαrsβ1µ . . . sβlµ . . . sβgµ, t) =

= (sγ1 . . . sγl . . . sγk ,m)a((sα1 . . . sαl . . . sαr , t)a(sβ1 . . . sβl . . . sβg , f)),

(sγ1 . . . sγl . . . sγk ,m)a((sα1 . . . sαl . . . sαr , t)`(sβ1 . . . sβl . . . sβg , f)) =

= (sγ1 . . . sγl . . . sγk ,m)a(sα1µ . . . sαlµ . . . sαrµsβ1 . . . sβl . . . sβg , r + f) =

= (sγ1 . . . sγl . . . sγksα2µ
2 . . . sαlµ

2 . . . sαrµ
2sβ1µ . . . sβlµ . . . sβgµ,m) =

= (sγ1 . . . sγl . . . sγksα2µ . . . sαlµ . . . sαrµsβ1µ . . . sβlµ . . . sβgµ,m),

((sγ1 . . . sγl . . . sγk ,m)`(sα1 . . . sαl . . . sαr , t))a(sβ1 . . . sβl . . . sβg , f) =

= (sγ1µ...sγlµ...sγk−1
µsα1 ...sαl ...sαr , k + t− 1)a(sβ1 ...sβl ...sβg , f)=

= (sγ1µ . . . sγlµ . . . sγk−1
µsα1 ...sαl ...sαrsβ1µ...sβlµ...sβgµ, k + t−1)=

= (sγ1 . . . sγl . . . sγk ,m)`(sα1 . . . sαl . . . sαrsβ1µ . . . sβlµ . . . sβgµ, t) =

= (sγ1 . . . sγl . . . sγk ,m)`((sα1 . . . sαl . . . sαr , t)a(sβ1 . . . sβl . . . sβg , f)).

Case 4: sγkµ 6= sα1µ, sαrµ 6= sβ1µ. Then

((sγ1 . . . sγl . . . sγk ,m)a(sα1 . . . sαl . . . sαr , t))a(sβ1 . . . sβl . . . sβg , f) =

= (sγ1 . . . sγl . . . sγksα1µ . . . sαlµ . . . sαrµ,m)a(sβ1 . . . sβl . . . sβg , f) =

= (sγ1 . . . sγl . . . sγksα1µ . . . sαlµ . . . sαrµsβ1µ . . . sβlµ . . . sβgµ,m) =

= (sγ1 . . . sγl . . . sγksα1µ . . . sαlµ . . . sαrµsβ1µ
2 . . . sβlµ

2 . . . sβgµ
2,m) =

= (sγ1 . . . sγl . . . sγk ,m)a(sα1 . . . sαl . . . sαrsβ1µ . . . sβlµ . . . sβgµ, t) =

= (sγ1 . . . sγl . . . sγk ,m)a((sα1 . . . sαl . . . sαr , t)a(sβ1 . . . sβl . . . sβg , f)),

(sγ1 . . . sγl . . . sγk ,m)a((sα1 . . . sαl . . . sαr , t)`(sβ1 . . . sβl . . . sβg , f)) =

= (sγ1 . . . sγl . . . sγk ,m)a(sα1µ . . . sαlµ . . . sαrµsβ1 . . . sβl . . . sβg , r + f) =

= (sγ1 . . . sγl . . . sγksα1µ
2 . . . sαlµ

2 . . . sαrµ
2sβ1µ . . . sβlµ . . . sβgµ,m) =

= (sγ1 . . . sγl . . . sγksα1µ . . . sαlµ . . . sαrµsβ1µ . . . sβlµ . . . sβgµ,m),

((sγ1 . . . sγl . . . sγk ,m)`(sα1 . . . sαl . . . sαr , t))a(sβ1 . . . sβl . . . sβg , f) =

= (sγ1µ . . . sγlµ . . . sγkµsα1 . . . sαl . . . sαr , k + t)a(sβ1 . . . sβl . . . sβg , f) =

= (sγ1µ . . . sγlµ . . . sγkµsα1 . . . sαl . . . sαrsβ1µ . . . sβlµ . . . sβgµ, k + t) =

= (sγ1 . . . sγl . . . sγk ,m)`(sα1 . . . sαl . . . sαrsβ1µ . . . sβlµ . . . sβgµ, t) =

= (sγ1 . . . sγl . . . sγk ,m)`((sα1 . . . sαl . . . sαr , t)a(sβ1 . . . sβl . . . sβg , f)).

Comparing these expressions we conclude that the associativity of
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the operation a and two axioms of a dimonoid hold.

Similarly, the associativity of the operation ` and the remaining
axiom of a dimonoid can be checked. So, R̆(Di)i∈X is a dimonoid.

It is clear that θ?i = Di ×Di for every (Di,ai,`i), i ∈ X, (see item
2.1) and so, (Di,ai,`i)/θ?i is a singleton dimonoid. Using this fact and
the notation from Sec. 3, one can prove that the map

Ğ(Di)i∈X → R̆(Di)i∈X :

[sγ1 ...sγl ...sγk ,m] 7→ (sγ1j
∗...sγm−1j

∗sγmsγm+1j
∗...sγkj

∗,m)

is an isomorphism. ♦
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