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Abstract: Let S be a subset of a poset P , and let g : S → Z be a strictly
order-preserving map into the linearly ordered set of integers. Necessary and
sufficient conditions are found for there to be a strictly order-preserving map
Ψ : P → Z extending g. This solves a problem of Daykin from the 1984 Banff
Conference on Graphs and Order. In 1985, Daykin and Daykin asked for a
solution to the extension problem both for the case where g and Ψ are strictly
order-preserving maps – which is settled in this note – and for the case where
g and Ψ are one-to-one order-preserving maps – which remains unsettled, but
regarding which the following is shown in the present work:
Let P be a poset and S a subset such that P is the convex hull of S. Let
g : S → Z be an injective order-preserving map. Necessary and sufficient
conditions are found for when g : S → Z has an injective order-preserving
extension Ψ : P → Z to all of P . The task of trying to prove this theorem was
set by Skilton in 1985.
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1. Motivation

Let P and Q be posets. A function f : P → Q is strictly order-
preserving if whenever p, p′ ∈ P and p < p′, then f(p) < f(p′).

Suppose P is a poset, S a subset and g : S→ Z a strictly order-
preserving map from S into the linearly ordered set of integers. At the
1984 Banff Conference on Graphs and Order, David Daykin, of the cele-
brated Ahlswede–Daykin “Four Functions” Theorem [1], asked for neces-
sary and sufficient conditions (assuming P is countable and locally finite)
for there to exist a strictly order-preserving map Ψ: P→Z extending g.

We solve this problem without any cardinality assumptions (Th.
4.12).

If g is in addition one-to-one, Daykin asked for necessary and suf-
ficient conditions guaranteeing that g has an extension to P that is also
one-to-one. (See [3], Problem 8.1 and [8], pp. 532–533. While in [8], p.
532, Daykin says, “There are really two problems here. . . ,” note that in
[3], the two questions were posed as a single problem and also posed “for
P countably infinite and for P noncountably infinite.” Also note that
Daykin’s terminology is different than ours.1)

If `P [p, q] is the length of the interval [p, q] in the poset P (the
cardinality of the largest chain in the interval, minus 1), then an obvious
necessary condition is that every interval must have finite length, and
that, morever, for all s, t ∈ S such that s < t

`P [s, t] ≤ |g(t)− g(s)|.
Daykin and Daykin proved that this condition is sufficient for finite P
for the first problem.

If we assume that g is injective, and we wish to extend it to an
injective order-preserving map, we might first ask: When is it the case
that there exists some injective order-preserving map from P to Z? Skil-
ton [9], Th. 1 has shown that such a map exists if and only if P is

1Daykin [8], p. 532 refers to “strict order-preserving maps” and “arbitrary order-
preserving maps,” whereas Daykin and Daykin [3] use the terms “order preserving
injection” and “order preserving map,” specifying that, by the latter expression, they
mean a “strict order preserving” map, adding, “[W]e omit the word strict.” The term
“locally finite” is not defined in [8], p. 532.
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Figure 1.1. A poset that admits no injective order-preserving map into Z
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countable and every interval is finite. (For example, there is no injective
order-preserving map from the chain N ∪ {∞} to Z; see Fig. 1.1.)

There are other necessary conditions: Suppose s, s′ ∈ S and s ≤ s′.
Then if an extension Ψ : P → Z of g : S → Z exists, every element
of the interval [s, s′] in P must go to a different element of the interval
[g(s), g(s′)] of Z. So we must have

∣∣[s, s′]∣∣ ≤ ∣∣[g(s), g(s′)]
∣∣.

In general, we must have∣∣∣∣ ⋃
v,v′∈V
v≤v′

[v, v′]

∣∣∣∣ ≤ ∣∣∣∣[min
v∈V

g(v),max
v∈V

g(v)]

∣∣∣∣
for all finite V ⊆ S.

Daykin and Daykin proved that, if P is finite, this condition is also
sufficient [3], Th. 8.1. Skilton proved that the condition is still sufficient
[9], Th. 3 even if P is infinite, provided that S is finite. (We are assuming,
of course, that P can be mapped injectively into Z in an order-preserving
fashion.)

Example 1.1. LetP be the poset {a, b, c, x, y, u, v} where a, u<x<v, b;
u < c < v, y; y < b; and the only other comparabilities are the necessary
ones (Fig. 1.2). Let S = {a, b, c}.

P S = {a, b, c}

a u

x c

v y

b

Figure 1.2. The poset P and the subset S

Suppose g : S → Z is given by g(a) = −1, g(b) = 3, and g(c) = 0
(Fig. 1.3). Then g : S → Z does have an injective order-preserving
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extension; for example, Ψ(x) = 1, Ψ(y) = 2, Ψ(u) =−666, and Ψ(v)=42
(Fig. 1.4).

g(a) = −1 g(b) = 3 g(c) = 0

−1

0

3

Figure 1.3. A partial injective map from P to Z

−1 −666

1 0

42 2

3

Figure 1.4. An injective order-preserving extension

Ψ : P → Z of the map of Figure 1.3

On the other hand, if g : S → Z is given by g(a) = −1, g(b) = 2,
and g(c) = 0 (Fig. 1.5), then g : S → Z has no injective order-preserving
extension Ψ : P → Z: It is easy to see that such a map Ψ : P → Z must
send both x and y to 1.
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g(a) = −1 g(b) = 2 g(c) = 0

Ψ(x) = ? Ψ(y) = ?

−1

x 0

y

2

Figure 1.5. Another partial injective map from P to Z

We can also use the Daykin–Daykin criterion: Letting V = S, we
see that ⋃

v,v′∈V
v≤v′

[v, v′]

has 5 elements ({a, b, c, x, y}), but

[min
v∈V

g(v),max
v∈V

g(v)] = [−1, 2]

has only 4.

As an initial step towards the solution of the general extension
problem, Skilton proposed tackling the case where the entire poset is the
convex hull of S, that is,

P =
⋃
s,s′∈S
s≤s′

[s, s′].

We prove that, in this case, the same conditions used above are
both necessary and sufficient (Th. 5.3).

2. Definitions and notation

See [2] for definitions, notation, and basic results.

Let N0 := {0, 1, 2, . . . } and let 2Z denote the set of even integers
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(and Z \ 2Z the set of odd integers). If S is a set, let |S| denote the
cardinality of S. Given sets T and U and a function f : T → U , let
f [T ] = { f(t) | t ∈ T }.

Let P be a poset. Given p ∈ P , let ↓ p = { q ∈ P | q ≤ p } and let
↑ p = { q ∈ P | p ≤ q }. Given Q ⊆ P , let

↓ Q =
⋃
q∈Q

↓ q

and let

↑ Q =
⋃
q∈Q

↑ q;

if p ∈ P , let ↓Q p = Q∩ ↓ p and let ↑Q p = Q∩ ↑ p; we also define ↓Q R
and ↑Q R for a subset R ⊆ P . For p, q ∈ P with p ≤ q, the interval [p, q]
is the set ↑ p∩ ↓ q. A poset is locally chain-bounded if every interval has
finite length. (If a poset has a strictly order-preserving map into Z, it
must be locally chain-bounded.) A poset is locally finite if every interval
is finite [10], p. 98. Given Q ⊆ P , the convex hull of Q is the set

Q =↑ Q∩ ↓ Q =
⋃

q,q′∈Q
q≤q′

[q, q′].

(We will only use this notation for the convex hull in §5.) A subset S
of P is convex if [p, q] ⊆ S for all p, q ∈ S such that p ≤ q. Note that
Q is a convex subset of P if and only if Q = Q. Skilton calls a subset
Q ⊆ P dense if P = Q. (This is different from some other uses of the
word “dense” in the literature.)

A maximal antichain A ⊆ P is separating if, for all p ∈↓ A and
p′ ∈↑ A, there exists a ∈ [p, p′] ∩ A whenever p ≤ p′.

For p, q ∈ P , we write p l q if p < q and there is no element of P
strictly between p and q.

Figure 2.1. The poset Q

s t′

t s′
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Figure 2.2. The poset ν(Q)

s

νst

t

νt′t

t′

νt′s′

s′

Given a locally chain-bounded poset Q, let ν(Q) be a new poset
consisting of Q and the elements

{ νqr | q, r ∈ Q and q l r },
where, for all q, r ∈ Q such that ql r, we have q < νqr < r, and no other
comparabilities hold but the necessary ones. (See Figures 2.1 and 2.2.)

Remark. The diagram for ν(Q) is just a subdivision of the diagram
for Q. Compare this with the construction in the proof of [6], Th. 7.

Let P be a poset. Let S ⊆ P . Let p ∈ P . Let g : S → Z be a
function. Define

gpP = sup{ g(s) + `P [s, p] | s ∈↓S p } ∈ Z ∪ {−∞,∞},
pgP = inf{ g(s)− `P [p, s] | s ∈↑S p } ∈ Z ∪ {−∞,∞}.

If the poset in which gpP and pgP are being calculated is understood,
we will write gp and pg, respectively.

Let MinP and MaxP denote the sets of minimal and maximal el-
ements of a poset P , respectively. A poset in which every element is
minimal or maximal is called bipartite. A braid is obtained from a bipar-
tite poset P such that MinP ∩MaxP = ∅ by replacing every edge with
a finite chain of positive length.

Example 2.1. Let P := {a, b, c, d} be the bipartite poset such that
a, b < c, d with no other non-trivial comparabilities (Fig. 2.3).

Let P ′ := {a, b, c, d, x, y, z} be the braid in which a < x < c; a < d;
b < c; and b < y < z < d, with no other non-trivial comparabilities
(Fig. 2.4).

Let P be a braid. For all p ∈ P , let `pP : MinP → N0 be the partial
function defined for all m ∈ MinP by
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Figure 2.3. The bipartite poset P

a b

c d

Figure 2.4. The braid poset P ′

a b

x

y

z

c d

`pP (m) :=

{
`P [m, p] if m ≤ p,

undefined otherwise.

Let C be a set. Let f : C → N0 be a partial function with domain
Domf and let g : C → N0 be a function. We say f dominates g if

sup{f(c)− g(c)|c ∈ Domf} =∞.
Let B be the class of braid posets P such that, for all g : MinP → N0,
there exists p ∈ P for which `pP dominates g.

Example 2.2 (B. S. W. Schröder, personal communication). Let B be
a braid poset with minimal elements {xn|n ∈ N0} and maximal elements

{yf |f : N0 → N0}.
For n ∈ N0 and f : N0 → N0, suppose xn < yf and let [xn, yf ] be a chain
of length f(n)+1. Let no other non-trivial comparabilities hold. Clearly
B ∈ B, for every g : MinB → N0 may be interpreted as a function
g′ : N0 → N0 which is dominated by f(n) := g′(n) + n. Clearly `

yf
P

dominates g.

3. Posets that admit a strictly order-preserving map
into Z

In our solution to the extension problem for strictly order-preserving
maps, we require the assumption that the poset P have some strictly
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order-preserving map into Z. We do not have a nice characterization of
such posets, but we show that there is a class B of simple posets that
do not admit such maps, and any poset that does not admit such a map
must be related in a clear way to a poset in B. Ways in which our results
ought to be improved will be suggested at the end of the section.

Lemma 3.1. Let Q be a locally chain-bounded poset. Then P := ν(Q) is
locally chain-bounded and every maximal antichain of P is separating.

Proof. Clearly P is locally chain-bounded. Let A be a maximal an-
tichain of P . Assume that p ∈↓ A; p′ ∈↑ A; and p < p′. Suppose for a
contradiction that A ∩ [p, p′] = ∅.

Choose r ∈ P maximal in ↓ A ∩ [p, p′]. Choose s ∈ P minimal in
↑ A ∩ [r, p′]. Then r < s.

If it is false that r l s, then there exists t ∈ P such that r < tl s.
Hence t /∈↑ A, so that t ∈↓ A by the maximality of A, contradicting the
maximality of r. Therefore r l s.

Either r ∈ P \Q or s ∈ P \Q, so that either r ∈ A or s ∈ A, and
A ∩ [p, p′] 6= ∅ after all. ♦

Lemma 3.2. Let C be a set and g : C → N0 a function such that

sup{g(c)|c ∈ C} =∞.
Define f : C → N0 by f(c) := 2g(c) for all c ∈ C.

Then f dominates g.

Here is another characterization of the braids in the class B.

Lemma 3.3. Let P be a braid poset. The following are equivalent:

(1) P ∈ B;

(2) For all g : MinP → N0, there exist p ∈ MaxP and a countably infinite
set C ⊆ Dom`pP such that g(c) ≤ `pP (c) for all c ∈ C and

sup
c∈C

`pP (c) =∞.

Proof. Assume (2). Given g : MinP → N0, let p ∈ P be such that there
exists a countably infinite C ⊆ Dom`pP where 2g(c) ≤ `pP (c) for all c ∈ C
and supc∈C `

p
P =∞. Then supc∈C{`

p
P (c)− g(c)} =∞. ♦
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Lemma 3.4 (cf. B. S. W. Schröder). Let Q be a poset such that Q=↑MinQ.
The following are equivalent:

(1) There exists a strictly order-preserving map Φ : Q→ Z.

(2) There exists a map g : MinQ→Z such that, for all q∈Q, gq<∞.

In case (2), we may define Φ : Q → Z for all q ∈ Q by Φ(q) := gq; in
case (1), we may define g : MinQ→ Z by g := Φ � MinQ.

Lemma 3.5. Let P be a braid. If Φ : P → Z is a strictly order-preserving
map, then there exists a strictly order-preserving map Ψ : P → Z such
that Ψ[MinP ] ⊆ {−1,−2,−3, . . . } and Ψ[MaxP ] ⊆ {1, 2, 3, . . . }.

Corollary 3.6. Let P ∈ B. Then there is no strictly order-preserving
map from P to Z.

Proof. The corollary follows from Lemma 3.4(1) and Lemma 3.5. ♦

The following lemma is essentially due to B. S. W. Schröder.

Lemma 3.7. Let Q be a poset. Let A ⊆ Q be a separating antichain.
The following are equivalent:

(1) There exists a strictly order-preserving map Φ : Q→ Z.

(2) There exists a map g : A → Z such that gq < ∞ if q ∈↑ A, and
qg > −∞ if q ∈↓ A.

In case (2), for all q ∈ Q, let

Φ(q) =

{
gq if q ∈↑ A,

qg if q ∈↓ A.

In case (1), let g := Φ � A.

Lemma 3.8. Let Q be a poset. Let A ⊆ Q be a separating antichain.
Define a new poset P as follows. Let P have ↑ A as a subposet; order
D := Q\ ↑ A as an antichain. For all a ∈ A, d ∈ D such that d ≤ a,
add a chain from d to a of length `Q[d, a] whose elements (except for the
endpoints) are disjoint from the rest of the poset; if `Q[d, a] =∞, let this
chain (minus the endpoints) be order-isomorphic to the poset of negative
integers.

The following are equivalent:
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(1) There exists a strictly order-preserving map Φ : Q→ Z.

(2) There exists a strictly order-preserving map Ψ : P → Z.

Lemma 3.9. Let Q be a poset. Let p, q ∈ Q be such that `[p, q] = ∞.
Then there exist B ∈ B and a strictly order-preserving map Ψ : B → Q.
Moreover, there is no strictly order-preserving map from Q to Z.

Proof. Take any B ∈ B (for instance, the braid of Ex. 2.2) and send
the minimal elements to p, the maximal elements to q, and the internal
chains to chains in [p, q] that are long enough. ♦

Proposition 3.10. Let Q be a poset with a separating antichain. The
following are equivalent:

(1) There is no strictly order-preserving map from Q to Z.

(2) For some B ∈ B, there exists a strictly order-preserving map
Ψ : B → Q.

Proof. Cor. 3.6 shows that (2) implies (1). Now assume (1). If `[p, q]=∞
for some p, q ∈ Q with p ≤ q, use Lemma 3.9. Otherwise, form the
poset P of Lemma 3.8. Now, considering MinP = D ∪ (A ∩ MinQ)
as the separating antichain in Lemma 3.7, we see that for any function
g : MinP → Z, there exists p ∈ P such that gpP = ∞; it is clear that
p ∈ (↑Q A) \MinQ. Also, for all q ∈ (↑Q A) \MinQ, gqP ≤ gqQ. Now
form the braid B such that

MinB = MinP and MaxB = Q \MinP,
and for m ∈ MinB, n ∈ MaxB such that m ≤Q n, there is a chain of
length `Q[m,n]. If f : MinB → N0, let g := −f . Then there exists
p ∈ MaxB and a countably infinite set C ⊆ Dom`pB such that

sup
c∈C
{g(c) + `Q[c, p]} =∞,

so without loss of generality `B[c, p]− f(c) ≥ 0 and supc∈C `B[c, p] =∞.
By Lemma 3.3, B ∈ B. Clearly there is a strictly order-preserving map
from B to Q. ♦

Lemma 3.11. Let Q be a locally chain-bounded poset. The following are
equivalent:

(1) For some C∈B, there exists a strictly order-preserving map Φ: C→Q.

(2) For some B∈B, there exists a strictly order-preserving map Ψ: B →
→ ν(Q).
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Proof. Assume (2). Without loss of generality Ψ[MaxB],Ψ[MinB] ⊆ Q.
Construct the braid C by letting MinC := MinB and MaxC := MaxB,
only remove every other node of the “internal” chains. Each chain of C
is therefore at least half the size of the corresponding chain of B. The
map Φ can then be constructed using Ψ so that Φ[C] ⊆ Q. Lemma 3.3
tells us that C ∈ B. ♦

Lemma 3.12. Let Q be a locally chain-bounded poset. Let P := ν(Q).
The following are equivalent:

(1) There exists a strictly order-preserving map Φ : Q→ Z.

(2) There exists a strictly order-preserving map Ψ : P → Z.

Moreover, we can assume Ψ[Q] ⊆ 2Z and Ψ[P \Q] ⊆ Z \ 2Z.

Proof. Assume (1). We may assume Φ[Q] ⊆ 2Z. Then, for all p, q ∈ Q
such that pl q in Q, we may let Ψ(p) = Φ(p) and Ψ(νpq) = Φ(p) + 1. ♦

Theorem 3.13. Let P be a poset. The following are equivalent:

(1) There is no strictly order-preserving map from P to Z.

(2) For some B∈B there exists a strictly order-preserving map Ψ:B→P .

Proof. If P is not locally chain-bounded, use Lemma 3.9. Otherwise,
use Lemma 3.1, Prop. 3.10, Lemma 3.11, and Lemma 3.12. ♦

Th. 3.13 is admittedly unsatisfactory. It would be better (if possi-
ble) to have a forbidden subposet characterization, or to find a class C
that could serve in place of B in that theorem, but which consists of a
nicer class of posets, perhaps even a single poset.

4. The extension problem for strictly order-preserv-
ing maps into Z

Lemma 4.1. Let Q be a poset; let Φ̂ : Q → 2Z be a strictly order-pre-
serving map. Let P := ν(Q). Let S ⊆ Q and let g : S → 2Z be a strictly
order-preserving map.

The following are equivalent:

(1) There exists a strictly order-preserving map Φ : Q→ 2Z extending g.
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(2) There exists a strictly order-preserving map Ψ : P → Z extending g
such that Ψ[Q] ⊆ 2Z.

Proof. Clearly (2) implies (1).

Assume (1). For every p, q ∈ Q such that p l q in Q, we have
Φ(p) < Φ(p) + 1 < Φ(q) since Φ(p),Φ(q) ∈ 2Z, so let

Ψ(νpq) = Φ(p) + 1 ∈ Z \ 2Z.
For every p ∈ Q, let Ψ(p) = Φ(p).

Since S ⊆ Q, for all s ∈ S, Ψ(s) = Φ(s) = g(s). Hence Ψ ex-
tends g. Since Φ[Q] ⊆ 2Z, then Ψ[Q] ⊆ 2Z. Let p, p′ ∈ P be such that
p < p′. If p, p′ ∈ Q, then Ψ(p) = Φ(p) < Φ(p′) = Ψ(p′). If p ∈ Q,
p′ ∈ P \ Q, then assume p′ = νtu where t l u in Q; then p ≤ t, so
Ψ(p) = Φ(p) ≤ Φ(t) < Ψ(νtu) = Ψ(p′). If p ∈ P \Q, p′ ∈ Q, then assume
p = νtu where tlu in Q; then u ≤ p′, so Ψ(p) < Φ(u) ≤ Φ(p′) = Ψ(p′). If
p, p′ ∈ P \Q, then assume p = νtu and p′ = νvw where tlu in Q and vlw
in Q; then u ≤ v, so Ψ(p) = Ψ(νtu) < Φ(u) ≤ Φ(v) < Ψ(νvw) = Ψ(p′).
Hence Ψ is strictly order-preserving. ♦

Lemma 4.2. Let all be as in Lemma 4.1. Assume S is a convex subset
of Q. Let R := S ∪ {νst|s l t in Q and s, t ∈ S}. Let f : R → Z be a
strictly order-preserving extension of g.

Then R is a convex subset of P , and the following are equivalent:

(1) There exists a strictly order-preserving map Φ : Q→ 2Z extending g.

(2) There exists a strictly order-preserving map Ψ : P → Z extending f
such that Ψ[Q] ⊆ 2Z.

Proof. Let r, r′ ∈ R and let p ∈ P be such that r < p < r′. There exist
s, s′ ∈ S such that s ≤ r and r′ ≤ s′. If p ∈ Q, then, since S is convex
in Q, p ∈ S; hence p ∈ R. So assume p /∈ Q. Let p = νtu where t, u ∈ Q
and tlu in Q. Hence s ≤ t ≤ u ≤ s′ and t, u ∈ S by convexity, so p ∈ R.
Thus R is a convex subset of P .

Assume (2). Let Φ : Q → Z be the restriction of Ψ to Q. By
hypothesis, Φ maps into 2Z. It is of course strictly order-preserving. Let
s ∈ S. Then s ∈ R, so Φ(s) = Ψ(s) = f(s) = g(s). Hence (1) holds.

Now assume (1). Let p, q ∈ Q be such that p l q in Q. We have
Φ(p) < Φ(p) + 1 < Φ(q) since Φ(p),Φ(q) ∈ 2Z. If p, q ∈ S, then Φ(p) =
= g(p) = f(p) < f(νpq) < f(q) = g(q) = Φ(q). Thus, let
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Ψ(νpq) :=

{
f(νpq) if p, q ∈ S,

Φ(p) + 1 otherwise.

For every p ∈ Q, let Ψ(p) = Φ(p). We note that for all p, q ∈ Q such
that pl q in Q, Φ(p) = Ψ(p) < Ψ(νpq) < Ψ(q) = Φ(q).

The previous proof shows that Ψ : P → Z is strictly order-preserv-
ing, Ψ[Q] ⊆ 2Z, and Ψ extends g.

Let r ∈ R. If r ∈ S, then Ψ(r) = Φ(r) = g(r) = f(r). If r /∈ S,
then let r = νst where s, t ∈ S and slt in Q. Then Ψ(r) = f(νst) = f(r).
Hence Ψ extends f . ♦

Lemma 4.3. Let all be as in Lemma 4.1. Let R ⊆ P be a convex subset.
Assume Ψ̂ : P → Z is a strictly order-preserving map. Let f : R→ Z be
a strictly order-preserving map. Assume

Ψ̂[Q], f [Q ∩R] ⊆ 2Z,
Ψ̂[P \Q], f [R \Q] ⊆ Z \ 2Z.

Let A be a maximal antichain of P \(↑ R∪ ↓ R) and let R̃ := A∪R.

Define f̃ : R̃→ Z for all r̃ ∈ R̃ by

f̃(r̃) :=

{
f(r̃) if r̃ ∈ R,

Ψ̂(r̃) if r̃ ∈ A.

The following are equivalent:

(1) There exists a strictly order-preserving map Ψ: P→Z extending f .

(2) There exists a strictly order-preserving map Ψ̃ : P→Z extending f̃ .

(3) For all p ∈ P , f̃pP <∞ if p ∈↑ R̃, and pf̃P > −∞ if p /∈↑ R̃.

Moreover, we may choose Ψ̃ so that Ψ̃[Q] ⊆ 2Z.

Proof. Assume (3). Define Ψ̃ : P → Z for all p ∈ P by

Ψ̃(p) :=

{
f̃pP if p ∈↑ R̃,

pf̃P if p /∈↑ R̃.

We show that Ψ̃ is strictly order-preserving. Let p1, p2 ∈ P be such
that p1 l p2. Without loss of generality, p1 /∈↑ R̃ and p2 ∈↑ R̃; also
|Q ∩ {p1, p2}| = 1; now use the convexity of R̃. Hence (2) holds. ♦

Corollary 4.4. Let all be as in Lemma 4.3. The following are equivalent:
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(1) There exists a strictly order-preserving map Ψ : P → Z extending f .

(2) For all p ∈ P , fpP <∞ and pfP > −∞.

Moreover, we can assume Ψ[Q] ⊆ 2Z.

Corollary 4.5. Let all be as in Lemma 4.2. The following are equivalent:

(1) There exists a strictly order-preserving map Ψ: Q→2Z extending g.

(2) For all q ∈ Q, gqP <∞ and qgP > −∞.

Proof. Clearly (1) implies (2). Now assume (2). By Lemma 3.12, there

exists a strictly order-preserving map Ξ̂ : P → Z such that Ξ̂[Q] ⊆ 2Z
and Ξ̂[P \ Q] ⊆ Z \ 2Z. Let us assume that f : R → Z is a strictly
order-preserving extension of g such that f [R \S] ⊆ Z \ 2Z. We have (1)
by Cor. 4.4. ♦

Corollary 4.6. Let Q be a poset. Let S ⊆ Q be a convex subset of Q.
Let Φ̂ : Q → Z be a strictly order-preserving map. Let g : S → Z be a
strictly order-preserving map.

The following are equivalent:

(1) There exists a strictly order-preserving map Ψ : Q→ Z extending g.

(2) For all q ∈ Q, gqQ <∞ and qgQ > −∞.

Proof. Assume (2). Define Ω̂ : Q→ 2Z by Ω̂ := 2Φ̂. Define g : S → 2Z
by g := 2g. Define P := ν(Q). For all q ∈ Q and all s ∈↓S q, we
have g(s) + `P [s, q] = 2g(s) + 2`Q[s, q]. Hence for all q ∈ Q, gqP < ∞
and qgP > −∞. By Cor. 4.5, there exists a strictly order-preserving map
Ψ : Q→ 2Z extending g. Let Ψ := 1

2
Ψ. ♦

Lemma 4.7. Let n∈N0. Let Q be a poset. Let S⊆Q. Let T :=↑ S∩ ↓ S.
Let Φ̂ : Q → Z be a strictly order-preserving map. Let g : S → Z
be a strictly order-preserving map. Let h : T → Z be a strictly order-
preserving map extending g. Let p ∈ (↑ S) \ T be such that gp <∞.

Define k : T → Z as follows: For all t ∈ T , let

k(t) :=

{
max{n, gp} − `[t, p] if t ≤ p and h(t) + `[t, p] > max{n, gp},
h(t) otherwise.

Then k : T → Z is a strictly order-preserving map extending g and
k(t) ≤ h(t) for all t ∈ T . Moreover, for all q ∈ (↑ S) \T , if hq <∞ then
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kq <∞; and for all q ∈ (↓ S) \ T , if qh > −∞, then qk > −∞. Finally,

kp <∞.

Lemma 4.8. Let α be an ordinal. Let Q be a poset. Let S ⊆ Q. Let
T :=↑ S∩ ↓ S.

Let (pβ)β<α be a sequence in (↑ S) \ T . Let Φ̂ : Q → Z be a strictly
order-preserving map. Let g : S → Z be a strictly order-preserving map.
Let h0 : T → Z be a strictly order-preserving map extending g. Assume
that for all q ∈ (↑ S) \ T we have gq <∞ and that for all q ∈ (↓ S) \ T
we have qg > −∞.

If (nβ)β<α is a sequence in N0, define a sequence of functions

(hβ : T → Z)β≤α

as follows:

Assume β < α and hβ : T → Z is defined.

Case (a) hβpβ <∞. Let hβ+1 := hβ.

Case (b) hβpβ =∞. Define hβ+1 : T → Z for all t ∈ T by

hβ+1(t) :=


max{nβ, gpβ} − `[t, pβ] if t ≤ pβ and

hβ(t) + `[t, pβ] > max{nβ, gpβ},
hβ(t) otherwise.

Assume β ≤ α is a limit ordinal and hγ : T → Z is defined for all γ < β.
Define hβ : T → Z for all t ∈ T by hβ(t) := limγ→β hγ(t).

Then for all β ≤ α:

(1β) hβ : T → Z is a strictly order-preserving map extending g. If β
is a limit ordinal, then for all t ∈ T there exists γ < β such that
hβ(t) = hδ(t) whenever γ ≤ δ < β.

(2β) For all γ ≤ β, the following holds: if q ∈ (↑ S) \ T and hγq < ∞,
then hβq <∞.

(3β) If β < α then hβ+1
pβ <∞.

Proof. By hypothesis (10) and (20) hold, and (30) holds by Lemma 4.7.
Now assume β < α and (1γ)–(3γ) hold for all γ ≤ β.

Case (a) hβpβ < ∞. Since hβ+1 = hβ, then (1β+1) and (2β+1)
hold. By Lemma 4.7, (3β+1) holds.



34 J. D. Farley

Case (b) hβpβ = ∞. By Lemma 4.7, (1β+1) and (2β+1) hold. If
β + 1 < α but hβ+2

pβ+1 = ∞, then hβ+1
pβ+1 = ∞ so by Lemma 4.7,

hβ+2
pβ+1 <∞, a contradiction. Thus (3β+1) holds.

Now assume β ≤ α is a limit and (1γ)–(3γ) hold for all γ < β.
Then hβ : T → Z is well defined by local chain-boundedness and the
fact that, for all γ < β and for all t ∈ T , there exists s ∈ S such that
s ≤ t and hγ(t) ≥ hγ(s) = g(s) ∈ Z. Indeed, for all t ∈ T , there exists
γ < β such that hβ(t) = hδ(t) whenever γ ≤ δ < β. Clearly (1β) holds.
Also (2β) holds since for all γ < β and for all t ∈ T , hβ(t) ≤ hγ(t). If
β < α and hβ+1

pβ = ∞, then hβpβ = ∞, so by Lemma 4.7, hβ+1
pβ < ∞,

a contradiction. Hence (3β) holds. ♦

Lemma 4.9. Let all be as in Lemma 4.8. Let q ∈ (↓ S) \ T . Assume
qh0 > −∞ but qhβ = −∞ for some β ≤ α.

Then there exist a strictly increasing sequence (βi)i<ω of ordinals
less than β and a sequence (ti)i<ω of elements of T with ti ∈ [q, pβi ] for
i < ω such that

(1) limi→ω `[q, pβi ] =∞ and

(2) for all i < ω, `[q, pβi ] > nβi.

Proof. Let β be the least ordinal γ ≤ α such that qhγ = −∞. By
Lemma 4.7, β is a limit. There exist t0, t1, t2, . . . in (↑T q) \ S such that

inf{hβ(ti)− `[q, ti]|i < ω} = −∞.
Without loss of generality, (hβ(ti) − `[q, ti])i<ω is a strictly decreasing
sequence of negative integers less than qh0 . As qh0 > −∞, for each i < ω,
there exists βi < β such that hβi(ti) 6= hβi+1(ti) = hβ(ti); this means
ti ≤ pβi . No ordinal can appear infinitely often in the sequence (βi)i<ω by
the minimality of β. Thus without loss of generality β0 < β1 < β2 < · · ·
[4], Lemma 6.8.

For i < ω,

hβ(ti) + `[ti, pβi ] ≥ nβi
and

hβ(ti)− `[q, ti] < 0
so

`[q, ti] + `[ti, pβi ] > nβi
and thus

`[q, pβi ] > nβi .
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If M := sup{`[q, pβi ]|i < ω} <∞, then infi<ω hβ(ti) = −∞; but then

hβ(ti) = max{nβi , gpβi} − `[ti, pβi ] ≥
≥ nβi −M ≥ −M,

a contradiction. ♦

Corollary 4.10. Let all be as in Lemma 4.8. Then there exists a se-
quence (nβ)β<α in N0 such that, for all q ∈ (↓ S) \ T , if qh0 > −∞ then
qhα > −∞.

Proof. Suppose not. Consider the braid B formed in a certain way from
the sets Y = (↓ S) \ T and Z = {pβ|β < α}, where MaxB as a set is
Y ∩ ↓Q Z and MinB as a set is Z∩ ↑Q Y , but both are of course ordered
as antichains, and for y ∈ MaxB and z ∈ MinB such that y ≤ z in Q,
there is a chain in B of length `Q[y, z].

Every function from the set MinB to N0 “extends” to a sequence
(nβ)β<α in N0. But for every sequence (nβ)β<α in N0, there is a q ∈
∈ (↓ S) \ T such that qh0 > −∞ but qhα = −∞ (so q ∈ MaxB as well).
By Lemma 4.9, there exists a countably infinite subset {βi}i<ω of ordinals
less than α such that `qB(pβi) > nβi for all i < ω and supi<ω `

q
B(pβi) =∞.

By Lemma 3.3, B∈B. Since there is obviously a strictly order-pre-
serving map from B into the dual of Q, this contradicts Th. 3.13. ♦

Corollary 4.11. Let Q be a poset. Let S ⊆ Q. Let T :=↑ S∩ ↓ S. Let
Φ̂ : Q→ Z be a strictly order-preserving map. Let g : S → Z be a strictly
order-preserving map. Assume that for all q ∈ (↑ S) \T we have gq <∞
and for all q ∈ (↓ S) \ T we have qg > −∞.

Then the following are equivalent:

(1) There exists a strictly order-preserving map h0 : T → Z extending g.

(2) There exists a strictly order-preserving map h : T → Z extend-
ing g such that, for all q ∈ (↑ S) \ T we have hq < ∞ and for all
q ∈ (↓ S) \ T we have qh > −∞.

Proof. Assume (1) holds. Let α equal

|{q ∈ (↑ S) \ T : h0q =∞}|+ ω

(if there is a q ∈ (↑ S) \ T such that h0q = ∞). By Cor. 4.10, there is a
sequence (nβ)β<α in N0 such that for all q ∈ (↓ S) \ T , if qh0 > −∞ then
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qhα > −∞. By Lemma 4.8, hα : T → Z is a strictly order-preserving
map extending g and for all q ∈ (↑ S) \ T , we have hαq <∞.

Now do the same for {q ∈ (↓ S) \ T |qhα = −∞}. ♦

Theorem 4.12. Let Q be a poset. Let S ⊆ Q. Let g : S → Z be a
strictly order-preserving map.

Then (1) and (2) are equivalent:

(1) There exists a strictly order-preserving map Ψ : Q→ Z extending g.

(2)(a) There exists a strictly order-preserving map from Q to Z.

(2)(b) For all s, t ∈ S such that s < t, `Q[s, t] ≤ g(t)− g(s).

(2)(c) For all q ∈ Q, gq <∞ and qg > −∞.

Proof. Assume (2). Let T :=↑ S∩ ↓ S. Define h0 : T → Z for all t ∈ T
by h0(t) := gt. By (2)(a) and (b), h0 is well defined, is strictly order-
preserving, and extends g. By Cor. 4.11, there exists a strictly order-
preserving map h : T → Z extending g such that, for all q ∈ (↑ S) \T we
have hq < ∞ and for all q ∈ (↓ S) \ T we have qh > −∞. By Cor. 4.6,
there exists a strictly order-preserving map Ψ : Q → Z extending h,
hence g. ♦

As stated earlier, one defect of our theorem is (2)(a). Also, given
the simplicity of the statement of the result – the “obvious” necessary
conditions are also sufficient – it would not surprise us if there were a
one-line proof of our theorem, which avoids altogether the use of the
ancillary poset ν(Q) or transfinite induction.

5. Extending injective order-preserving maps into Z
to convex hulls

We will use the following result.

Theorem 5.1 (Skilton [9], Th. 1). Let P be a poset. There exists an
injective order-preserving map Ψ : P → Z if and only if P is countable
and locally finite.

[Mathematical Reviews 86b:06002 erroneously states that every
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countable poset admits such an injection.]

Theorem 5.2 (Skilton [9], Th. 3). Let P be a countable locally finite
poset. Let S ⊆ P be a finite subset and suppose g : S → Z is an injective
order-preserving map. Then g : S → Z has an injective order-preserving
extension Ψ : P → Z if and only if, for all V ⊆ S,∣∣V ∣∣ ≤ ∣∣g[V ]

∣∣.
Th. 5.2 extends a result of Daykin and Daykin for finite posets [3],

Th. 8.1.

Skilton has suggested that “one might consider the problem of ex-
tending an [injective order-preserving map from] a dense subposet. . . ”
[9], §4.

In this section, we solve the problem suggested by Skilton.

Theorem 5.3. Let P be a countable locally finite poset. Let S ⊆ P
be such that P = S. Let g : S → Z be a one-to-one order-preserving
map. Then there exists a one-to-one order-preserving map Ψ : P → Z
extending g if and only if, for all finite subsets V ⊆ S, we have

|V | ≤ |g[V ]|.

Proof. Necessity is clear. Now suppose the condition holds. For all
p ∈ P , choose s, t ∈ S such that p ∈ [s, t] and let Ap := [g(s), g(t)]. For
any finite J ⊆ P , by Th. 5.2 there exists an injective order-preserving
map ΘJ : J → Z extending g � S ∩ J . By Rado’s Selection Principle
[7], Th. 4.1.1, there exists a one-to-one map Ψ : P → Z such that, for
all finite J ⊆ P , there exists a finite K ⊆ P such that J ⊆ K and
Ψ � J = ΘK � J .

Let p, q ∈ P be such that p ≤ q. Let J = {p, q}. Then there exists a
finite set K ⊆ P such that J ⊆ K and Ψ(p) = ΘK(p) and Ψ(q) = ΘK(q).
But ΘK(p) ≤ ΘK(q). Thus Ψ is order-preserving.

Let s ∈ S. Let J = {s}. Then there exists a finite set K ⊆ P such
that s ∈ K and Ψ(s) = ΘK(s). But ΘK(s) = g(s). Thus Ψ extends g. ♦

Something akin to the following result may be useful in solving the
general problem.

Corollary 5.4. Let P be a countable locally finite poset. Let S ⊆ P and
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let g : S → Z be a one-to-one order-preserving map. Let E ⊆ Z \ g[S].
Let T := S.

There exists a one-to-one order-preserving map h : T → Z extend-
ing g such that E ∩ h[T ] = ∅ if and only if, for all finite subsets V ⊆ S,

|V | ≤ |g[V ] \ E|.

Proof. Necessity is obvious. Now assume the condition. Let E ′ be a set
{e′|e ∈ E} of cardinality |E| disjoint from P and ordered as an antichain.
Let S ′ := S ∪ E ′ and let g′ : S ′ → Z be defined by g′(s) = g(s) for all
s ∈ S and g′(e′) = e for all e ∈ E. Then S ′ = T ∪ E ′ and for all finite
V ′ ⊆ S ′ – say V := V ′ ∩S and F ′ := V ′ ∩E ′ – we have |V ′| = |V |+ |F ′|.
Letting F := {f ∈ E | f ′ ∈ F ′} and G := F ∩ g[V ], we see that

|V ′| ≤ |g[V ] \ E|+ |g[V ] ∩ F |+ |F \ g[V ]| ⇒
⇒ |V ′| ≤ |g[V ]|+ |F \ g[V ]| ⇒
⇒ |V ′| ≤ |g[V ]|+ |F \G| ⇒
⇒ |V ′| ≤ |g′[V ′]|,

so by Th. 5.3, there exists a one-to-one order-preserving map h′ : T∪E ′ →
→ Z extending g′. Thus h := h′ � T extends g and E ∩ h[T ] = ∅. ♦
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