
Mathematica Pannonica
24/2 (2013), 231–242

DISTRIBUTIVE LATTICES OF SMALL
WIDTH, I
A question of Rosenberg from the 1981 Banff Conference
on Ordered Sets

Jonathan David Farley

Morgan State University, Department of Mathematics, Baltimore,
MD 21251, United States of America

Received : June 2013

MSC 2010 : 06 A 07, 06 B 05, 06 D 05, 06 D 50

Keywords: Partially ordered set, distributive lattice, order ideal, down-set,
antichain, width, finite-state diagram.

Abstract: The finite posets with the same width as their lattices of order
ideals are characterized, answering a question of Ivo Rosenberg from the 1981
Banff Conference on Ordered Sets.

At the 1981 Banff Conference on Ordered Sets, Ivo Rosenberg asked
to describe those finite posets that had the same width as their lattices
of order ideals [4, p. 805]. We answer this question in Cor. 28.

For terminology, notation, and basic facts about lattices, please see
[1], which calls order ideals “down-sets.” We invoke Trotter’s Axiom: All
posets are finite. Let w(Q) be the width of the poset Q; let O(Q) be the
lattice of down-sets of Q. For a distributive lattice L, let J (L) denote
its poset of join-irreducible elements. A poset Q is ranked or graded if
all maximal chains have the same length; the rank of an element x in Q
is one less than the size of the largest chain whose top element is x; the
rank of Q is the rank of a maximal element. If a and b are elements of
a poset, a ≺ b means a is a lower cover of b. Unless otherwise stated,
P is a poset of width w and L ∼= O(P ), so that by Birkhoff’s Theorem
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P ∼= J (L). By interval we mean a set {x ∈ P : a ≤ x ≤ b} for some
a, b ∈ P such that a ≤ b; we denote it “[a, b].”

The ordinal sum of two posets P and Q with disjoint underlying
sets is the poset P ⊕ Q where p < q for all p in P and q in Q, and
the restriction of the partial ordering to P or Q gives you the original
ordering on P or Q, respectively; if P is a poset with a top element 1
and Q has a bottom element 0, the coalesced ordinal sum of P and Q is
the poset P � Q obtained by identifying 1 and 0. We can define both
types of ordinal sum for more than two posets. As one finds in [1], for
any posets P and Q, O(P ⊕ Q) ∼= O(P ) � O(Q). One easily sees that
the width of a non-empty ordinal sum or coalesced ordinal sum equals
the width of one of the summands.

Following an observation of Edelman [5, pp. 156, 177–178], if
w = w(L) then w ≤ 3, for if P has an antichain of size k > 3, then
L has an antichain of size

(
k

b k2c
)
≥

(
k
2

)
> k. So if w = w(L), then L can

have no more than 3 elements of each rank. Thus L will be a coalesced
ordinal sum of copies of the two-element chain 2 and the following sorts
of lattices, whose structure it behooves us to determine:

Definition 1. A 2, 3-lattice L is a distributive lattice of rank n ≥ 2 such
that for 0 < r < n there are exactly 2 or 3 elements of rank r. A segment
of L is the set of all elements of L that have a given rank r < n and their
upper covers, considered as a subposet of L. We will refer to any poset
that can occur as a segment of a 2, 3-lattice as a “segment.”

Note: A segment simply consists of the elements of two consecutive
ranks.

Our argument follows closely that for “3-lattices” in [2].

Definition 2. Let S be a segment of a 2, 3-lattice L. If s is a minimal
element of S and has rank r in L, then we say that S has level r in L and
we write level (S) = r. If T is a segment of L with level (T ) = level(S)+1,
then we say that S precedes T and T follows S in L.

Lemma 3. If L is a 2, 3-lattice of rank n and S is a segment of L with
0 < level(S) < n− 1, then S has the following properties:

(1) S has 2 or 3 minimal elements and 2 or 3 maximal elements.

(2) Every element of S is either minimal or maximal but not both.

(3) For every s in S, there exists t in S such that s 6= t and s is compa-
rable to t.
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Figure 1 Figure 2

(4) For any distinct maximal a, b in S, there is at most one c in S such
that c ≺ a, b and for any distinct minimal a, b in S, there is at most
one c in S such that a, b ≺ c.

Proposition 4. Let L be a 2, 3-lattice of rank n and let S be a segment
of L such that 0 < level S < n−1. For any a in S such that a is minimal
in S, there exists b in S such that b is minimal in S and a, b ≺ a∨b in L.

Proof. See the proof of [2, Lemma 3.2]. ♦

Example 5. Fig. 1 is [2, Fig. A.1(ii)]. Its lattice of down-sets is Fig. 2
[2, Fig. 3].

Example 6. The poset of Fig. 3 has the lattice of down-sets of Fig. 4.

Figure 3 Figure 4

Example 7. The poset of Fig. 5 has the lattice of down-sets of Fig. 6.
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Corollary 8. The posets in Fig. 7 are all the segments.

Proof. Examples 5 through 7 show that the posets sega through segn
are all segments.

First suppose a segment has exactly 1 minimal element. Since the
rank of a 2, 3-lattice is at least 2, the segment must be sega or segh.

Now consider a segment with exactly 2 minimal elements. If it
has exactly 1 maximal element, it is segj. If it has exactly 2 maximal
elements, it is segi by Lemma 3(3), Lemma 3(4), and Prop. 4. Now
assume it has 3 maximal elements. If both minimal elements have exactly
2 upper covers, by Lemma 3(4) we get segl. If one has only 1 upper cover,
the other must have 3 by Lemma 3, so we get segn. If one has 2 or 3
upper covers, the other cannot have 3 by Lemma 3(4).

Since our list sega–segn is self-dual, by duality we need only now
consider a segment with 3 minimal and 3 maximal elements. If one
minimal element has 3 upper covers, then by Lemma 3(3) and Lemma
3(4), the other minimals have exactly 1 upper cover, and we get sege or
segg. So assume no element has 3 upper covers and no element has 3
lower covers. If all three minimals have exactly 2 upper covers, we must
get segb by Lemma 3(4). If exactly two minimals have exactly 2 upper
covers, we get segf . If exactly one minimal has exactly 2 upper covers,
then by Prop. 4 we would get segm (and not 3 maximal elements). By



Distributive lattices of small width, I 235

Figure 7

Prop. 4, all three minimals cannot have exactly 1 upper cover. ♦

Proposition 9. Let S and T be segments of a 2, 3-lattice L. If S has a
minimal element with 3 upper covers, and T follows S in L, then T is
isomorphic to segb.

Proof. See the proof of [2, Lemma 3.3]. ♦

Corollary 10. Let L be a 2, 3-lattice and let S and T be segments of
L with level(T ) = level(S) + 1. If S is isomorphic to sega, sege, segg or
segn, then T is isomorphic to segb. Dually, if T is isomorphic to segc,
segd, sege, or segk, then S is isomorphic to segb.

Proposition 11. Let S and T be segments of a 2, 3-lattice L. If T is
isomorphic to segb, and T follows S in L, then there is a minimal element
of S that has 3 upper covers.

Proof. See the proof of [2, Lemma 3.5]. ♦

Corollary 12. Let L be a 2, 3-lattice and let S and T be segments of
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L with level(T ) = level(S) + 1. If S is isomorphic to segb, then T is
isomorphic to segc, segd, sege, or segk. Dually, if T is isomorphic to
segb, then S is isomorphic to sega, sege, segg, or segn.

Proposition 13. Let S and T be segments of a 2, 3-lattice L and let T
follow S in L. If S has maximal elements a, b such that a ∧ b /∈ S, then
T is isomorphic to segf , segg, or segm.

Proof. See the proof of [2, Lemma 3.7]. ♦

Corollary 14. Let L be a 2, 3-lattice and let S and T be segments of L
with level(T ) = level(S) + 1. If S is isomorphic to segd, segf , or segl,
then T is isomorphic to segf , segg, or segm. Dually, if T is isomorphic
to segf , segg, or segm, then S is isomorphic to segd, segf , or segl.

Proposition 15. Let S and T be segments of a 2, 3-lattice L and sup-
pose T follows S in L. If S has exactly 2 maximal elements, then T is
isomorphic to segi, segj, segl, or segn.

Corollary 16. Let L be a 2, 3-lattice and let S and T be segments of L
with level(T ) = level(S) + 1. If S is isomorphic to segh, segi, segk, or
segm, then T is isomorphic to segi, segj, segl, or segn. Dually, if T is
isomorphic to segi, segj, segl, or segn, then S is isomorphic to segh, segi,
segk, or segm.

Recall the definition of concatenation function [2, pp. 1101–1102].

Lemma 17. Suppose S and T are segments of a 2, 3-lattice L such that

(i) there exist maximal elements s1 and s2 of S that do not have a meet
in S;

(ii) there exist minimal elements t1 and t2 of T that do not have a join
in T ;

(iii) T follows S in L.

Let φ : Smax → Tmin be a concatenation function. If S&φT is isomorphic
to S ∪ T as a subposet of L, then φ[{s1, s2}] = [{t1, t2}].
Proof. See the proof of [2, Lemma 3.9]. ♦

Theorem 18. Every 2, 3-lattice can be constructed via the finite-state
diagram of Fig. 8, where the concatenation functions for successive seg-
ments are given by matching left- and right-most elements.

N.B. To make the picture less cluttered, segj appears twice in the
diagram.

Proof. For the state transitions, use Corollaries 10, 12, 14, and 16.
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Figure 8 Figure 9

Every segment can be put in the orientations shown by rearranging
the maximal elements and using Lemma 17. ♦

Definition 19. A 2, 3-stack is a finite poset constructed via a path in
the state diagram of Fig. 8, using the obvious concatenation function
(left nodes of successive segments are identified, as are right nodes). If
it starts with sega or segh and ends with segc or segj, it is a complete
2, 3-stack.

Note: (1) Every 2, 3-stack is a ranked poset. (2) We can represent
2, 3-stacks as words, each letter representing a segment – or a letter with a
subscript when there is more than one orientation of the segment. Fig. 4
shows hlmi0j.

Corollary 20. For all a, b, and c in a 2, 3-stack P , if a, b ≺ c and a
and b are not minimal, then there is some d ∈ P such that d ≺ a, b, and
dually.

Proof. Use Fig. 8. ♦

Lemma 21. Let P be a 2, 3-stack and let I be an interval in P . If
a, b ∈ I are distinct and have a common upper cover in I, then they have
a common lower cover in I, and dually.

Proof. See the proof of [2, Lemma 3.11], changing “a′, b′ 6≺ a, b” to
“a′ 6≺ a”. ♦

Lemma 22. Let P be a 2, 3-stack and let I = [a, b] be an interval in P .
If I has rank greater than 2, then I \ {a, b} is connected.

Proof. See the proof of [2, Lemma 3.13]. ♦
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Lemma 23. Let P be a 2, 3-stack. If I = [a, b] is an interval in P of
rank 3, then I is a distributive lattice.

Proof. See the proof of [2, Lemma 3.14]. ♦

Theorem 24. A poset is a 2, 3-lattice if and only if it is a complete
2, 3-stack.

Proof. By [3, Th. 5.2], Lemmas 22 and 23, a complete 2, 3-stack of rank
at least 3 is a distributive lattice. The only other complete 2, 3-stack is
22, which is distributive. The converse is Th. 18. ♦

While the 2, 3-stacks only have at most 3 elements of each rank,
they might have width greater than 3. We characterize the ones that do
next.

Proposition 25. Let Q be a 2, 3-stack. The following are equivalent:

(1) The width of Q is at least 4.

(2) The 2, 3-stack uses sege or has a substring of consecutive letters of
the form k0i1

∗n1, k1i1
∗n1, or k2i0

∗n0, where x∗ means zero or more
occurrences of the letter “x.”

Proof. The segment e has width 4. So does any 2, 3-stack of the form
k0i1

∗n1, k1i1
∗n1, or k2i0

∗n0 (Fig. 9).

Let us now assume (2) is false. Note that if two posets can each
be covered by 3 chains, and one has exactly 3 maximal elements and the
other exactly 3 minimal elements, then their concatenation can also be
covered by 3 chains.

Any non-empty 2, 3-stack consisting just of segments that have at
most 2 minimal elements and at most 2 maximal elements can be covered
with 2 chains (one consisting of the left elements and one consisting of
the right elements). If we get a 2, 3-stack by adding to one of this type
a segment with 3 maximal elements, or by preceding it with a segment
having 3 minimal elements, we can cover the resulting 2, 3-stack with 3
chains. Every segment but sege can be covered with 3 chains.

Now let us return to a 2, 3-stack without the forbidden substrings.
We are done if we can show that every such 2, 3-stack of rank at least 2
with 3 minimal elements and 3 maximal elements and having 2 elements
of every other rank can be covered with 3 chains. This 2, 3-stack has the
form {k,m}i∗{l, n}, i.e., it starts with segk or segm, ends with segl or
segn, and has 0 or more segi’s in between.
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Figure 10

First we assume we start with segm. Put its minimals in chains C1,
C2, and C3 from left to right and put the elements in chains C1 and C3 as
we go up. As we emerge into segl or segn, we can put the third maximal
into C2 since it lies above the minimal in C2. If we start with segk and
end with segl we can do something similar, putting the middle maximal
in the unused chain.

So now assume we start with segk and end with segn. There are
3 × 2 = 6 options, and 3 are fine, because the remaining maximal lies
above the minimal in the unused chain (Fig. 10).

Figure 11

In the remaining 3 possibilities, if we have two different orientations
of segi, we are fine, since then we would have a substack like Fig. 11, where
the point x is above the extra minimal and below the extra maximal. We
are also fine if we have one of the situations in Fig. 12, for a similar reason.

Hence Q has width at most 3. ♦

Theorem 26. Let L be a complete 2, 3-stack of width at most 3. Then
w = w(L) if and only if one of the following holds:
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Figure 12

(1) L uses only segh, segi, and segj;

(2) L uses segb.

In case (1), w = 2. In case (2), w = 3.

Proof. If L only uses segh, segi, and segj, then L can be covered by
2 chains. Since L has 2 atoms, P ∼= J (L) has width at least 2, hence
exactly 2.
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Figure 13

If L uses segb, then one of 23, 1 ⊕ 23, 23 ⊕ 1, and 1 ⊕ 23 ⊕ 1 is
a {0, 1}-sublattice of L, where n is the n-element antichain. Hence by
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Figure 14

Priestley duality one of 3, 1⊕3, 3⊕1, and 1⊕3⊕1 is a surjective image of
P under an order-preserving map, so P has a 3-element antichain. Thus
P has width at least 3, so exactly 3.

Conversely, suppose L does not use segb, but does use a segment
other than segh, segi, and segj. Then L must use one of segf , segl, and
segm, and cannot use sega, segb, segc, segd, sege, segg, segk, or segn. We
have the finite-state diagram of Fig. 13. In this case, a join-irreducible
will always be a right or a left node, and the left nodes form a chain, as
do the right nodes. Thus J (L) has width at most 2, but since L uses
segf , segl, or segm, L has width at least 3. ♦

Fig. 14 shows hi0i1lmi0lf0mi1j.

Theorem 27. The width of 2 equals w(1).

Corollary 28. Let P be a finite poset. Let L=O(P ). Then w(P )=w(L)
only if 1 ≤ w(P ) ≤ 3. Also:

(1) w(P ) = 1 = w(L) if and only if P is a non-empty chain;

(2) w(P ) = 2 = w(L) if and only if L is a coalesced ordinal sum of copies
of 2 and complete 2, 3-stacks that only use segh, segi, and segj, with
at least one complete 2, 3-stack;
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(3) w(P ) = 3 = w(L) if and only if L is a coalesced ordinal sum of
copies of 2 and complete 2, 3-stacks such that sege and substacks of
the form k0i1

∗n1, k1i1
∗n1, and k2i0

∗n0 are never used, with at least
one complete 2, 3-stack that uses segb.

Proof. If P = ∅ then w(P ) = 0 < w(L), since L 6= ∅. The other
inequality was proven earlier.

Part (1) is clear.

If w(P ) = w(L), then L is a coalesced ordinal sum of copies of 2
and complete 2, 3-stacks. If w = 2, we use Th. 26. If w = 3, we use
Prop. 25 and Th. 26.

For the other direction of (2), use Prop. 25 and Th. 26. For the
other direction of (3), use Prop. 25 and Th. 26. ♦

Thus we have answered the question of Rosenberg from the 1981
Banff Conference on Ordered Sets.
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