THE CONCEPT OF ORTHOGONALITY IN CARTAN'S GEOMETRY BASED ON THE NOTION OF AREA

Imsatfia Moheddine
Institut Mathématiques de Jussieu, UMR 7586, Université Paris
Diderot - Paris 7, Bâtiment Sophie Germain, Bureau 751, Case 7012 - 75205 Paris Cedex 13, France

Received: March 2013
MSC 2010: Primary 53 C 60; secondary 58 E 30
Keywords: Grassmannian bundle, areal space, calculus of variations.

Abstract

In 1933 Elie Cartan defined an infinitesimal metric $d s$ starting from a variational problem on hypersurfaces in an n-dimensional manifold \mathcal{M}. This metric depends not only on the point $\mathrm{m} \in \mathcal{M}$ but also on the orientation of a hyperplane in the tangent space $T_{\mathrm{M}} \mathcal{M}$. His work is based in a natural definition of the orthogonal direction to such tangent hyperplane. In this paper we extend this orthogonality to an oriented vector subspace in $T_{\mathrm{M}} \mathcal{M}$ by using calculus of variation.

1. Introduction

Riemann considered the possibility to give to $d s$, the distance between two infinitesimally close points, a more general expression than $\sqrt{g_{\imath \jmath}\left(d x^{2}, d x^{\jmath}\right)}$ namely to choose any function of x and $d x$ which is homogeneous of degree 1 in $d x$. P. Finsler defined this geometry in his thesis in 1917. It was later developed by E. Cartan [3], Chern [4] and Bryant [1]... .

In [2] Cartan proposed another generalisation of Riemannian geom-
E-mail address: imsatfia@math.jussieu.fr
etry where the distance between two infinitesimally closed points in \mathcal{M} depends on the point m and on the choice of a hyperplane in the tangent space to the manifold, this geometry was latter studied by R. Debever in $[8,7]$, after some years Kawaguchi and Davies introduce the notion of areal spaces in [10, 5], more recently, in 2010 by Morales and Vilches in [11]. In the modern language, this amounts to define a metric on the vector bundle over the Grassmannian bundle of oriented hyperplanes, $G r_{n-1}(\mathcal{M})$ whose fiber at $\mathrm{m} \in E$ is the set of oriented hyperplanes in $T_{\mathrm{M}} \mathcal{M}$ (where $\mathrm{m} \in \mathcal{M}$ and E called "element" by Cartan, denotes an oriented hyperplane in $T_{\mathrm{M}} \mathcal{M}$). Moreover Cartan found a way to canonically derive such a metric from a variational problem on hypersurfaces in \mathcal{M}. He simultaneously defined a connection on this bundle, more general explained in $[6,12]$. The first step consists in choosing a natural definition for the orthogonal complement of an element E and the metric in the normal direction: The idea is to require that, for any extremal hypersurface \mathcal{H} of \mathcal{M} and any compact subset with a smooth boundary $\Sigma \in \mathcal{H}$ if we perform a deformation of $\partial \Sigma$ in the normal direction to Σ and with an arbitrary intensity and consider the family of extremal hypersurfaces whose boundaries are the images of $\partial \Sigma$ by this deformations, then the area of hypersurfaces is stationary. This uses a formula of De Donder (which is basically an extension to variational problems with several variables of a basic formula in the theory of integral invariants). Let us now present this idea for submanifolds of arbitrary codimension $n-p$. Such variational problem can be described as follows. Let β be a p-form which, in local coordinates x^{1}, \ldots, x^{n}, reads $\beta=d x^{1} \wedge \cdots \wedge d x^{p}$. Any p-dimensional oriented submanifold \mathcal{N} such that $\left.\beta\right|_{\mathcal{N}}>0$ can be locally represented as the graph of a function $f=\left(f^{1}, \ldots, f^{n-p}\right)$ of the variables $\left(x^{1}, \ldots, x^{p}\right)$. We consider functional \mathcal{L} of the form $\mathcal{L}(f):=\int_{\Omega \subset T_{x} \mathcal{N}} d \sigma$, when

$$
d \sigma=L\left(x^{1}, \ldots, x^{p}, f^{1}, . . f^{n-p}, \nabla f\right) \beta .
$$

Let \mathcal{N} be the critical point of \mathcal{L}. To define the orthogonal subspaces to all tangent subspaces to \mathcal{N} the idea is to consider a 1-parameter family $\left(\mathcal{N}_{t}\right)_{t}$ of submanifolds which forms locally a foliation of $(p+1)$-dimensional submanifold U of \mathbb{R}^{n} and such that $\mathcal{N}_{0}=\mathcal{N}$. Consider a vector field X on U witch induces the variation from \mathcal{N}_{t} to $\mathcal{N}_{t+d t}$ and denote

$$
\mathcal{A}(t)=\mathcal{L}\left(f_{t}\right) .
$$

According to Cartan [2] the condition for X to be orthogonal to $\mathcal{N}=\mathcal{N}_{0}$ is that the derivative of $\mathcal{A}(t)$ with respect to t at $t=0$ is
zero. The definition of the orthogonality actually dose not depend on the choice of \mathcal{N} but uniquely on $E \in G r_{p}^{\mathrm{M}} \mathcal{M}$.

2. Cartan geometry based on the notion of area

Let \mathcal{M} be a manifold of n-dimensional, then we define the Grassmannian bundle or Grassmannian by

$$
\begin{aligned}
G r_{p} \mathcal{M}=\{ & (\mathrm{M}, E) \mid \mathrm{M} \in \mathcal{M} ; E \text { an oriented } \\
& \left.p \text {-dimensional vector subspace in } T_{\mathrm{M}} \mathcal{M}\right\} .
\end{aligned}
$$

If β is a p-form which in local coordinates $\left(x^{1}, \ldots, x^{n}\right)$, reads $\beta=d x^{1} \wedge$ $\cdots \wedge d x^{p}$ where $1 \leq p \leq n-1$, then

$$
G r_{p}^{\beta} \mathcal{M}=\left\{(\mathrm{M}, E) \in T_{\mathrm{M}} \mathcal{M}\left|\beta=d x^{1} \wedge \cdots \wedge d x^{p}\right|_{E}>0\right\} .
$$

Let $\left(p^{\jmath}\right)_{1 \leq \jmath \leq p(n-p)}$ be coordinate functions on $G r_{p}^{\beta} \mathcal{M}$ such that $\left(x^{2}, p^{\jmath}\right)$ are local coordinates on $G r_{p}^{\beta} \mathcal{M}$. We denote the projection π by:

$$
\begin{aligned}
\pi: G r_{p}^{\beta} \mathcal{M} & \longrightarrow \mathcal{M} \\
(\mathrm{M}, E) & \longmapsto \mathrm{M} .
\end{aligned}
$$

We consider $\pi^{*} T \mathcal{M}$ the bundle over the Grassmannian whose fiber at (м, E) is $T_{\mathrm{M}} \mathcal{M}$, we denote a metric g on $\pi^{*} T \mathcal{M}$ by

$$
g_{(\mathrm{M}, E)}=g_{\imath \jmath}\left(x^{k}, p^{k}\right) d x^{\imath} d x^{\jmath}
$$

We see that the coefficients $g_{\imath \jmath}$ not only depend on coordinates of m, but they also depend on the orientation of the element at m.
Remark 2.1. If $p=n-1$, then

$$
G r_{n-1}(\mathcal{M}) \sim\left(T^{*} \mathcal{M} \backslash\{0\}\right) / \mathbb{R}^{*}
$$

Definition 2.2. A geometry based on the notion of area (\mathcal{M}, F) is a differential manifold \mathcal{M} equipped with a function F defined over $T^{*} \mathcal{M}$ with values in $\mathbb{R}+$

$$
F: T^{*} \mathcal{M} \rightarrow \mathbb{R}+
$$

which satisfies the following conditions:

1. F is \mathcal{C}^{∞} over $T^{*} \mathcal{M} \backslash\{0\}:=\bigcup_{\mathrm{M} \in \mathcal{M}} T_{\mathrm{M}}^{*} \mathcal{M} \backslash\{0\}$.
2. F is homogeneous of degree one in p^{k}

$$
F\left(x^{k}, \lambda p^{k}\right)=\lambda F\left(x^{k}, p^{k}\right)
$$

3. The Hessian matrix defined by

$$
\left(g_{\imath \jmath}\right):=\left[\frac{1}{2}\left(F^{2}\right)_{p^{\imath} p^{\jmath}}\right]
$$

is positive definite at any point of $G r_{p}(\mathcal{M})$.
In other words, $\left.F\right|_{T_{\mathrm{M}}^{*} \mathcal{M}}$ is a Minkowski norm for all $\mathrm{M} \in \mathcal{M}$.
Remark 2.3. Catan's spaces are the dual of Finsler spaces under the Legendre transformation. Both are generalized by Kawaguchi by introducing the notion of AREAL SPACES [10].

3. The concept of orthogonality in Cartan's space

In the following, since we work locally we shall identify \mathcal{M} with \mathbb{R}^{n} to the coordinate system $\left(x^{\imath}\right)_{2}$.

3.1. Lagrangian formulation

Let $L: G r_{p}^{\beta}\left(\mathbb{R}^{p} \times \mathbb{R}^{n-p}\right):=\left\{\left(x^{1}, \ldots, x^{n},\left(p_{\jmath}^{\imath}\right)_{\substack{1 \leq \imath \leq n-p \\ 1<\jmath \leq p}}\right) \longrightarrow \mathbb{R}\right\}$ be the Lagrangian function. For any function $f: \Omega \subset \mathbb{R}^{p} \rightarrow \mathbb{R}^{n-p}$ of class \mathcal{C}^{∞}, we denote by Γ_{f} its graph. A point $x \in \Gamma_{f}$ is defined by $\left(x^{p+1}, \ldots, x^{n}\right)=\left(f^{1}\left(x^{1}, \ldots, x^{p}\right), \ldots, f^{n-p}\left(x^{1}, \ldots, x^{p}\right)\right)$ and values of the coordinates $\left(p_{\jmath}^{\imath}\right)$ at the tangent space to Γ_{f} are given by $(\nabla f)(x)$. Let $\beta=d x^{1} \wedge \cdots \wedge d x^{p}$ be a p-form, the action integral [9] is given by

$$
\mathcal{L}(f)=\int_{\Omega} L\left(x^{1}, \ldots, x^{p}, f^{1}, \ldots, f^{n-p}, \nabla f\right) \beta=\int_{\Omega} L(x, f, \nabla f) \beta
$$

The bundle over the Grassmannian of Γ_{f} given by

$$
G r_{p}^{\beta}\left(\Gamma_{f}\right):=\left\{(x, E) ; x \in \Gamma_{f}, \quad E=T_{x} \Gamma_{f}\right\}
$$

Definition 3.1. Let Γ be an oriented p-dimensional submanifold of \mathcal{M} with boundary Γ_{0} which is a critical point of \mathcal{L}. A distribution of vector lines \mathcal{D} in $T \mathcal{M}$ along Γ_{0} is called normal if for any vector field N defined along Γ_{0} such that $\forall \mathrm{M} \in \Gamma_{0}, \quad N(\mathrm{M}) \in \mathcal{D}(\mathrm{M})$, and if

$$
\partial \Gamma_{t}:=\left\{e^{t N}(\mathrm{M}) \mid \mathrm{M} \in \partial \Gamma, t \in(-\varepsilon, \varepsilon)\right\}
$$

and $\mathcal{A}(t):=\mathcal{L}\left(\Gamma_{t}\right)$, then $\left.\frac{d}{d t}(\mathcal{A}(t))\right|_{t=0}=0$.
Theorem 3.2. There exists a vector subbundle $\pi^{*} T^{\perp} \mathcal{M}$ of $\pi^{*} T \mathcal{M}$ of rank $n-p$ whose fiber at (x, E) is denoted by $\left(\pi^{*} T^{\perp} \mathcal{M}\right)_{(x, E)}$ such that for
any oriented p-dimensional critical point Γ of \mathcal{L}, a vector field N along $\partial \Gamma$ is normal if and only if $N_{x} \in\left(\pi^{*} T^{\perp} \mathcal{M}\right)_{\left(x, T_{x} \Gamma\right)}$. In the following we write $\left(\pi^{*} T^{\perp} \mathcal{M}\right)_{\left(x, T_{x} \Gamma\right)}=\left(T_{x} \Gamma\right)^{\perp}$. Moreover $\left(T_{x} \Gamma\right)^{\perp}$ is spanned by $\left(v^{1}, \ldots v^{n-p}\right)$, where

$$
\begin{gathered}
v^{1}=\left(\begin{array}{l}
\frac{\partial L}{\partial p_{1}^{1}} \\
\vdots \\
\frac{\partial L}{\partial p_{p}^{1}} \\
-L+p_{J}^{1} \frac{\partial L}{\partial p_{j}^{1}} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right), v^{2}=\left(\begin{array}{l}
\frac{\partial L}{\partial p_{1}^{2}} \\
\vdots \\
\frac{\partial L}{\partial p_{p}^{2}} \\
0 \\
-L+p_{\jmath}^{2} \frac{\partial L}{\partial p_{j}^{2}} \\
0 \\
\vdots \\
0 \\
v^{n-p}=\left(\begin{array}{l}
\frac{\partial L}{\partial p_{1}^{n-p}} \\
\vdots \\
\frac{\partial L}{\partial p_{p}^{n-p}} \\
0 \\
0 \\
\vdots \\
0 \\
-L+p_{J}^{n-p} \frac{\partial L}{\partial p_{J}^{n-p}}
\end{array}\right),
\end{array}\right)
\end{gathered}
$$

Proof. Consider first the case $p=2$ and $n=3$.
The Grassmannian bundle is of dimension 5, the Lagrangian

$$
(x, y, z, p, q) \mapsto L(x, y, z, p, q):=L(x, y, f(x, y), \nabla f(x, y))
$$

and the action integral is given by

$$
\mathcal{L}(f)=\int_{\mathbb{R}^{2}} L(x, y, f(x, y), \nabla f(x, y)) \beta .
$$

Suppose that this integral is extended to a portion of extremal surface Σ limited by a contour \mathcal{C}, deform slightly Σ to a surface Σ^{\prime} limited by a contour \mathcal{C}^{\prime}. This amounts to change in the preceding integral f into $f+\varepsilon g$ where g has not necessarily a compact support. Then we consider a family $\left(\Sigma_{t}\right)_{t}$ of surfaces with boundary which forms locally a foliation of a domain $U \subset \mathbb{R}^{3}$ which coincides in $t=0$ with Σ and in $t=1$ with Σ^{\prime}, depending on a real parameter $t \in[0,1]$. We suppose that for all t,
$\left(\Sigma_{t}\right)_{t}$ is a critical point of \mathcal{L} that we will represent by the graph Σ_{t} of a function $f_{t}: \Omega_{t} \rightarrow \mathbb{R}$

$$
\Sigma_{t}=\left\{\left(x, y, f_{t}(x, y)\right) \backslash(x, y) \in \Omega_{t}\right\}
$$

Let X be a vector field defined on U such that, if $e^{s X}$ is the flow of X, then

$$
e^{s X}\left(\Sigma_{t}\right)=\Sigma_{t+s}
$$

Note that

$$
\left\{\begin{aligned}
f(t, x, y) & =f_{t}(x, y) \\
f(x, y) & =f(0, x, y)=f_{0}(x, y) \\
\Phi(t, x, y) & =e^{t X}(x, y, f(x, y))
\end{aligned}\right.
$$

If $t=0$ we have $\Phi=f=f_{0}$ and $\left.\left.\forall t \in\right] 0,1\right]$, the function $(x, y) \mapsto$ $\Phi(t, x, y)$ is a parametrization of Σ_{t}, we denote by $\Phi=\left(\phi^{1}, \phi^{2}, \phi^{3}\right)$ and $\phi^{3}(t, x, y)=f\left(t, \phi^{1}(t, x, y), \phi^{2}(t, x, y)\right)$ so, if we derive with respect to t, then

$$
\frac{\partial \phi^{3}}{\partial t}=\frac{\partial f}{\partial t}\left(t, \phi^{1}, \phi^{2}\right)+\frac{\partial f}{\partial x}\left(t, \phi^{1}, \phi^{2}\right) \frac{\partial \phi^{1}}{\partial t}+\frac{\partial f}{\partial y}\left(t, \phi^{1}, \phi^{2}\right) \frac{\partial \phi^{2}}{\partial t} .
$$

which gives for $t=0$
$X^{3}(x, y, f)=\frac{\partial f}{\partial t}(0, x, y)+\frac{\partial f}{\partial x}(0, x, y) X^{1}(x, y, f)+\frac{\partial f}{\partial y}(0, x, y) X^{2}(x, y, f)$.
Thus along $\Sigma=\Sigma_{0}$, we have:

$$
\begin{equation*}
\frac{\partial f}{\partial t}=X^{3}-X^{1} \frac{\partial f}{\partial x}-X^{2} \frac{\partial f}{\partial y} \tag{1}
\end{equation*}
$$

Let the Lagrangian $(x, y, z, p, q) \mapsto L(x, y, z, p, q)$ and we consider

$$
\mathcal{A}(t)=\int_{\Omega_{t}} L\left(x, y, f_{t}(x, y), \frac{\partial f_{t}}{\partial x}(x, y), \frac{\partial f_{t}}{\partial y}(x, y)\right) d x d y
$$

Assuming that Ω_{t} is regular (i.e., $\partial \Omega_{t}$ is a curve \mathcal{C}^{1} of plan \mathbb{R}^{2}), then we have

$$
\begin{aligned}
& \frac{d \mathcal{A}(t)}{d t}= \int_{\Omega_{t}} \\
& \frac{\partial}{\partial t} L\left(x, y, f_{t}, \frac{\partial f_{t}}{\partial x}, \frac{\partial f_{t}}{\partial y}\right) d x d y+ \\
&+\int_{\partial \Omega_{t}} L\left(x, y, f_{t}, \frac{\partial f_{t}}{\partial x}, \frac{\partial f_{t}}{\partial y}\right)\left\langle\left(X^{1}, X^{2}\right), \nu\right\rangle d \ell
\end{aligned}
$$

where ν is a exterior normal of Ω_{t} in \mathbb{R}^{2} and $\left\langle\left(X^{1}, X^{2}\right), \nu\right\rangle$ is the horizontal change in the area of Ω_{t} and $d \ell$ is a measure of one dimension $\partial \Omega$, hence

$$
\begin{aligned}
\left.\frac{d \mathcal{A}(t)}{d t}\right|_{t=0}= & \int_{\Omega_{0}} \frac{\partial}{\partial t} L\left(x, y, f_{t}, \frac{\partial f_{t}}{\partial x}, \frac{\partial f_{t}}{\partial y}\right) d x d y+ \\
& +\int_{\partial \Omega_{0}} L\left(x, y, f_{t}, \frac{\partial f_{t}}{\partial x}, \frac{\partial f_{t}}{\partial y}\right)\left\langle\left(X^{1}, X^{2}\right), \nu\right\rangle d \ell= \\
= & \int_{\Omega} \frac{\partial L}{\partial z} \frac{\partial f}{\partial t}+\frac{\partial L}{\partial p} \frac{\partial^{2} f}{\partial x \partial t}+\frac{\partial L}{\partial q} \frac{\partial^{2} f}{\partial y \partial t}+\int_{\partial \Omega} L\left\langle\left(X^{1}, X^{2}\right), \nu\right\rangle d \ell= \\
= & \int_{\Omega} \frac{\partial L}{\partial z} \frac{\partial f}{\partial t}+\frac{\partial}{\partial x}\left(\frac{\partial L}{\partial p} \frac{\partial f}{\partial t}\right)+\frac{\partial}{\partial y}\left(\frac{\partial L}{\partial q} \frac{\partial f}{\partial t}\right)- \\
& -\frac{\partial f}{\partial t}\left[\frac{\partial}{\partial x}\left(\frac{\partial L}{\partial p}\right)+\frac{\partial}{\partial y}\left(\frac{\partial L}{\partial q}\right)\right]+ \\
& +\int_{\partial \Omega} L\left\langle\left(X^{1}, X^{2}\right), \nu\right\rangle d \ell= \\
= & \int_{\Omega} \frac{\partial f}{\partial t}\left[\frac{\partial L}{\partial z}-\frac{\partial}{\partial x}\left(\frac{\partial L}{\partial p}\right)-\frac{\partial}{\partial y}\left(\frac{\partial L}{\partial q}\right)\right]+ \\
& +\int_{\partial \Omega}\left\langle\left(\frac{\partial L}{\partial p} \frac{\partial f}{\partial t}, \frac{\partial L}{\partial q} \frac{\partial f}{\partial t}\right), \nu\right\rangle d \ell+\int_{\partial \Omega} L\left\langle\left(X^{1}, X^{2}\right), \nu\right\rangle d \ell= \\
= & \int_{\Omega} \frac{\partial f}{\partial t}\left[\frac{\partial L}{\partial z}-\frac{\partial}{\partial x}\left(\frac{\partial L}{\partial p}\right)-\frac{\partial}{\partial y}\left(\frac{\partial L}{\partial q}\right)\right]+ \\
& +\int_{\partial \Omega}\left\langle\left(\frac{\partial L}{\partial p} \frac{\partial f}{\partial t}+L X^{1}, \frac{\partial L}{\partial q} \frac{\partial f}{\partial t}+L X^{2}\right), \nu\right\rangle d \ell .
\end{aligned}
$$

But we know that $\Sigma=\Sigma_{0}$ is a critical point of $\int_{\Omega} L$, then the EulerLagrange equations are satisfied, thus

$$
\left.\frac{d \mathcal{A}(t)}{d t}\right|_{t=0}=\int_{\partial \Omega}\left\langle\left(\frac{\partial L}{\partial p} \frac{\partial f}{\partial t}+L X^{1}, \frac{\partial L}{\partial q} \frac{\partial f}{\partial t}+L X^{2}\right), \nu\right\rangle d l .
$$

We now assume that $\left.X\right|_{\partial \Gamma}$ has the form $\psi N_{0} \in \mathcal{D}$ where $\psi \in \mathcal{C}^{\infty}(\partial \Gamma)$ with values in \mathbb{R} and where N_{0} is a fixed non-vanishing tangent defined along $\partial \Gamma$, to be determined we seek a condition to N_{0} such that for any regular function $\psi,\left.\frac{d \mathcal{A}(t)}{d t}\right|_{t=0}=0$. We can choose a function f_{t} depends on ψ such that $\left.\frac{\partial f_{t, \psi}}{\partial t}\right|_{t=0}=\left.\psi \frac{\partial f_{t}}{\partial t}\right|_{t=0}$, thus

$$
\left.\frac{d \mathcal{A}(t)}{d t}\right|_{t=0}=\int_{\partial \Gamma}\left\langle\left(\frac{\partial L}{\partial p} \psi \frac{\partial f}{\partial t}+\psi L N_{0}^{1}, \psi \frac{\partial L}{\partial q} \frac{\partial f}{\partial t}+\psi L N_{0}^{2}\right), \nu\right\rangle d l=
$$

$$
=\int_{\partial \Gamma} \psi\left\langle\left(\frac{\partial L}{\partial p} \frac{\partial f}{\partial t}+L N_{0}^{1}, \frac{\partial L}{\partial q} \frac{\partial f}{\partial t}+L N_{0}^{2}\right), \nu\right\rangle d l .
$$

The condition for $\left.\frac{d \mathcal{A}(t)}{d t}\right|_{t=0}=0$ for all ψ regular function on $\partial \Gamma$ and ν exterior normal of Γ is that $\left\langle\left(\frac{\partial L}{\partial p} \frac{\partial f}{\partial t}+L N_{0}^{1}, \frac{\partial L}{\partial q} \frac{\partial f}{\partial t}+L N_{0}^{2}\right), \nu\right\rangle=0$. If we denote by $\lambda=\frac{-\frac{\partial f}{\partial t}}{L}$, then

$$
\left\{\begin{array}{l}
N_{0}^{1}=\lambda \frac{\partial L}{\partial p}, \\
N_{0}^{2}=\lambda \frac{\partial L}{\partial q} .
\end{array}\right.
$$

From (1), we have

$$
N_{0}^{3}=-\lambda L+\lambda \frac{\partial L}{\partial p} \frac{\partial f}{\partial x}+\lambda \frac{\partial L}{\partial q} \frac{\partial f}{\partial y} .
$$

Hence,

$$
X=\left(\frac{\partial L}{\partial p}, \frac{\partial L}{\partial q}, p \frac{\partial L}{\partial p}+q \frac{\partial L}{\partial q}-L\right)
$$

Let now $n>0$ and $p=n-1$. The Grassmannian bundle is of dimension $2 n-1$. By same as previous, thus the orthogonal of $\pi^{*} T \mathcal{M}$ of rank $n-1$ is spanned by

$$
\begin{equation*}
X=\left(\frac{\partial L}{\partial p^{1}}, \ldots, \frac{\partial L}{\partial p^{n-1}}, \sum_{i=1}^{n-1} p^{2} \frac{\partial L}{\partial p^{2}}-L\right) \tag{2}
\end{equation*}
$$

where $p^{\imath}=\frac{\partial f}{\partial x_{2}}$ for $\imath=1, \ldots n-1$, and L be the Lagrangian on $G r_{n-1}(\Sigma)$.
Now the case $n>3$ and $p<n$. For $1 \leq p \leq n-1$ let Ω be a regular open set of \mathbb{R}^{p} and $f=\left(f^{1}, \ldots f^{n-p}\right): \Omega \longrightarrow \mathbb{R}^{n-p}$, we denote its graph by

$$
\mathcal{N}:=\{(x, f(x)) \mid x \in \Omega\} .
$$

Let $\beta=d x^{1} \wedge \cdots \wedge d x^{p}$ be a p-form, and L be the Lagrangian on $G r_{p}^{\beta}(\mathcal{N})$, thus for an open set $\Omega \in T_{x} \mathcal{N}$ the action integral is given by

$$
\mathcal{L}(f):=\int_{\Omega} L\left(x^{1}, \ldots, x^{p}, f^{1}, \ldots, f^{n-p}, \nabla f\right) \beta
$$

The family $\left(\mathcal{N}_{t}\right)_{t}$ of submanifolds with boundary forms locally a foliation in a $(p+1)$-dimensional submanifold U of \mathbb{R}^{n}, we suppose that for all t, \mathcal{N}_{t} is a critical point of \mathcal{L}. Let X be a vector field defined on U such that, if $e^{s X}$ is the flow of X, then $e^{s X}\left(\mathcal{N}_{t}\right)=\mathcal{N}_{t+s}$, denote

$$
\left\{\begin{aligned}
f\left(t, x^{1}, \ldots, x^{p}\right)= & f_{t}\left(x^{1}, \ldots x^{p}\right) \Leftrightarrow f^{\imath}\left(t, x^{1}, \ldots, x^{p}\right)=\left(f^{\imath}\right)_{t}\left(x^{1}, \ldots x^{p}\right) \\
& \forall \imath=1, \ldots n-p \\
f\left(x^{1}, \ldots, x^{p}\right)= & f\left(0, x^{1}, \ldots, x^{p}\right)=f_{0}\left(x^{1}, \ldots x^{p}\right) \Leftrightarrow \forall \imath=1, \ldots n-p \\
& \text { we have } \\
f^{\imath}\left(x^{1}, \ldots, x^{p}\right)= & f^{\imath}\left(0, x^{1}, \ldots, x^{p}\right)=\left(f^{\imath}\right)_{0}\left(x^{1}, \ldots x^{p}\right) \\
\Phi\left(t, x^{1}, \ldots, x^{p}\right)= & e^{t X}\left(x^{1}, \ldots, x^{p}, f^{1}, \ldots, f^{n-p}\right)
\end{aligned}\right.
$$

The function Φ is a parametrization of \mathcal{N}_{t}, we denote:

$$
\left\{\begin{aligned}
\Phi & =\left(\varphi^{1}, \ldots, \varphi^{p}, \varphi^{p+1}, \ldots, \varphi^{n}\right) \\
\varphi^{p+\imath}\left(t, x^{1}, \ldots, x^{p}\right) & =f_{t}^{\imath}\left(\varphi^{1}, \ldots, \varphi^{p}\right) \text { for } \imath=1, \ldots n-p
\end{aligned}\right.
$$

where f_{t} is defined on a domain $\Omega_{t} \subset \mathbb{R}^{p}$. Thus, $\forall \imath=1, \ldots n-p$:

$$
\frac{\partial \varphi^{p+\imath}}{\partial t}=\frac{\partial f^{\imath}}{\partial t}\left(t, \varphi^{1}, \ldots, \varphi^{p}\right)+\sum_{\jmath=1}^{p} \frac{\partial f^{\imath}}{\partial x^{\jmath}}\left(t, \varphi^{1}, \ldots, \varphi^{p}\right) \frac{\partial \varphi^{\jmath}}{\partial t} .
$$

For $t=0, \forall \imath=1, \ldots n-p$, thus

$$
X^{p+\imath}(x, f)=\frac{\partial f^{\imath}}{\partial t}\left(0, x^{1}, \ldots, x^{p}\right)+\sum_{\jmath=1}^{p} \frac{\partial f^{\imath}}{\partial x^{\jmath}}\left(0, x^{1}, \ldots, x^{p}\right) X^{\jmath}(x, f),
$$

which gives along $\mathcal{N}=\mathcal{N}_{0}$ and $\forall \imath=1, \ldots n-p$

$$
\begin{equation*}
\frac{\partial f^{\imath}}{\partial t}=X^{p+\imath}-\sum_{\jmath=1}^{p} \frac{\partial f^{\imath}}{\partial x^{\jmath}} X^{\jmath} \tag{3}
\end{equation*}
$$

We have

$$
\mathcal{A}(t)=\mathcal{L}\left(f_{t}\right)=\int_{\Omega_{t}} L\left(x^{1}, \ldots, x^{p},\left(f^{1}\right)_{t}, \ldots,\left(f^{n-p}\right)_{t}, \nabla f_{t}\right) \beta
$$

thus

$$
\begin{aligned}
\frac{d \mathcal{A}(t)}{\partial t}= & \int_{\Omega_{t}} \frac{\partial}{\partial t} L\left(x^{1}, \ldots, x^{p},\left(f^{1}\right)_{t}, \ldots,\left(f^{n-p}\right)_{t}, \nabla f_{t}\right) \beta+ \\
& +\int_{\partial \Omega_{t}} L\left(x^{1}, \ldots, x^{p},\left(f^{1}\right)_{t}, \ldots,\left(f^{n-p}\right)_{t}, \nabla f_{t}\right)\left\langle\left(X^{1}, \ldots, X^{p}\right), \nu\right\rangle d \ell
\end{aligned}
$$

where ν is the exterior normal to Ω_{t} in $\mathbb{R}^{p},\left\langle\left(X^{1}, \ldots, X^{p}\right), \nu\right\rangle$ represents the horizontal change in volume of Ω_{t} and $d \ell$ is a measure of $p-1$ dimension $\partial \Omega_{t}$. Thus for $t=0$ we have

$$
\begin{aligned}
\left.\frac{d \mathcal{A}(t)}{\partial t}\right|_{t=0}= & \int_{\Omega_{t}} \frac{\partial}{\partial t} L\left(x^{1}, \ldots, x^{p},\left(f^{1}\right)_{t}, \ldots,\left(f^{n-p}\right)_{t}, \nabla f_{t}\right) \beta+ \\
& +\int_{\partial \Omega_{t}} L\left\langle\left(X^{1}, \ldots, X^{p}\right), \nu\right\rangle d \ell
\end{aligned}
$$

We calculate $\left.\frac{d \mathcal{A}(t)}{\partial t}\right|_{t=0}$

$$
\begin{aligned}
& \int_{\Omega} \frac{\partial}{\partial t} L\left(x, f_{t}, \nabla f_{t}\right) \beta= \\
& =\int_{\Omega}\left(\sum_{\imath=1}^{n-p} \frac{\partial L}{\partial x^{2}} \frac{\partial f^{\imath}}{\partial t}+\sum_{\substack{1 \leq \jmath \leq p \\
1<\imath \leq n-p}} \frac{\partial F}{\partial p_{\jmath}^{2}} \frac{\partial^{2} f^{\imath}}{\partial x^{\jmath} \partial t}\right) \beta= \\
& =\sum_{\imath=1}^{n-p} \int_{\Omega}\left(\frac{\partial L}{\partial x^{\imath}} \frac{\partial f^{\imath}}{\partial t}+\sum_{\jmath=1}^{p} \frac{\partial}{\partial x^{\jmath}}\left(\frac{\partial L}{\partial p_{\jmath}^{\imath}} \frac{\partial f^{\imath}}{\partial t}\right)-\frac{\partial f^{\imath}}{\partial t} \sum_{\jmath=1}^{p} \frac{\partial}{\partial x^{\jmath}}\left(\frac{\partial L}{\partial p_{j}^{\imath}}\right)\right) \beta= \\
& =\sum_{\imath=1}^{n-p} \int_{\Omega} \frac{\partial f^{\imath}}{\partial t}\left[\frac{\partial L}{\partial x^{\imath}}-\sum_{\jmath=1}^{p} \frac{\partial}{\partial x^{\jmath}}\left(\frac{\partial L}{\partial p_{\jmath}^{2}}\right)\right] \beta+ \\
& \quad+\sum_{\imath=1}^{n-p} \int_{\partial \Omega}\left\langle\left(\frac{\partial L}{\partial p_{1}^{2}} \frac{\partial f^{\imath}}{\partial t}, \ldots, \frac{\partial L}{\partial p_{p}^{2}} \frac{\partial f^{\imath}}{\partial t}\right), \nu\right\rangle d \ell .
\end{aligned}
$$

We have that $\mathcal{N}=\mathcal{N}_{0}$ is a critical point of \mathcal{L}, thus the Euler-Lagrange equations are satisfied $\frac{\partial L}{\partial x^{a}}-\sum_{\jmath=1}^{p} \frac{\partial}{\partial x^{\jmath}}\left(\frac{\partial L}{\partial p_{\jmath}^{2}}\right)=0$ which gives

$$
\left.\frac{d \mathcal{A}(t)}{\partial t}\right|_{t=0}=\sum_{\imath=1}^{n-p} \int_{\partial \Omega}\left\langle\left(\frac{\partial L}{\partial p_{1}^{2}} \frac{\partial f^{\imath}}{\partial t}+L X^{1}, \ldots, \frac{\partial L}{\partial p_{p}^{2}} \frac{\partial f^{\imath}}{\partial t}+L X^{p}\right), \nu\right\rangle d \ell
$$

Using Def. 3.1 we can consider a regular function ψ changing X in ψX, where $\psi: \partial \mathcal{N} \rightarrow \mathbb{R}$ and hence $\frac{\partial f_{t, t}^{2}}{\partial t}=\psi \frac{\partial f_{t}^{2}}{\partial t}$. By the same as previous, so that $\left.\frac{d \mathcal{A}(t)}{\partial t}\right|_{t=0}=0$, it suffices that for all $\jmath=1, \ldots p$ we have

$$
\sum_{\imath=1}^{n-p} \frac{\partial L}{\partial p_{\jmath}^{\imath}} \frac{\partial f^{\imath}}{\partial t}+L X^{\jmath}=0
$$

if we denote by $\lambda_{\imath}=\frac{-\frac{\partial f^{2}}{\partial t}}{L}$ and $\nabla f:=\left(\frac{\partial f^{2}}{\partial x^{\jmath}}\right)_{\substack{\begin{subarray}{c}{1<\imath \leq n-p \\ 1 \leq \jmath \leq p} }}\end{subarray}}=\left(p_{\jmath}^{2}\right)_{\substack{1<1 \leq n-p \\ 1 \leq \jmath \leq p}}$, then

$$
X^{\jmath}=\sum_{\imath=1}^{n-p} \lambda_{\imath} \frac{\partial L}{\partial p_{\jmath}^{\imath}} \quad \text { for all } \jmath=1, \ldots p
$$

from (3), for $\imath=1, \ldots n-p$ thus

$$
X^{p+\imath}=-\lambda_{\imath} L+\sum_{\jmath=1}^{p} \lambda_{\imath} p_{J}^{2} \frac{\partial L}{\partial p_{\jmath}^{2}},
$$

which gives

$$
\begin{aligned}
& \int X^{1}=\lambda_{1} \frac{\partial L}{\partial p_{1}^{1}}+\lambda_{2} \frac{\partial L}{\partial p_{1}^{2}}+\cdots+\lambda_{n-p} \frac{\partial L}{\partial p_{1}^{n-p}} \\
& X^{p}=\lambda_{1} \frac{\partial L}{\partial p_{p}^{1}}+\lambda_{2} \frac{\partial L}{\partial p_{p}^{2}}+\cdots+\lambda_{n-p} \frac{\partial L}{\partial p_{p}^{n-p}} \\
& X^{p+1}=\lambda_{1}\left(-L+p_{1}^{1} \frac{\partial L}{\partial p_{1}^{1}}+\cdots+p_{p}^{1} \frac{\partial L}{\partial p_{p}^{1}}\right) \\
& X^{n}=\lambda_{n-p}\left(-L+p_{1}^{n-p} \frac{\partial L}{\partial p_{1}^{n-p} 1}+\cdots+p_{p}^{n-p} \frac{\partial L}{\partial p_{p}^{n-p}}\right) \\
& =\lambda_{1}\left(\begin{array}{l}
\frac{\partial L}{\partial p_{1}^{1}} \\
\vdots \\
\frac{\partial L}{\partial p_{p}^{1}} \\
-L+p_{\jmath}^{1} \frac{\partial L}{\partial p_{J}^{1}} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)+\lambda_{2}\left(\begin{array}{l}
\frac{\partial L}{\partial p_{1}^{2}} \\
\vdots \\
\frac{\partial L}{\partial p_{p}^{2}} \\
0 \\
-L+p_{\jmath}^{2} \frac{\partial L}{\partial p_{J}^{2}} \\
0 \\
\vdots \\
0
\end{array}\right)+\cdots \\
& \cdots+\lambda_{n-p}\left(\begin{array}{l}
\frac{\partial L}{\partial p_{1}^{n-p}} \\
\vdots \\
\frac{\partial L}{\partial p_{p}^{n-p}} \\
0 \\
0 \\
\vdots \\
0 \\
-L+p_{\jmath}^{n-p} \frac{\partial L}{\partial p_{J}^{n-p}}
\end{array}\right) \\
& =\lambda_{1} v^{1}+\lambda_{2} v^{2}+\cdots+\lambda_{n-p} v^{n-p} \text {, }
\end{aligned}
$$

so the theorem is proved. \diamond
Example 3.3. We take $n=4$ and $p=2$, then $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \Sigma_{t}$ are a domains with boundary of dimension 2 in \mathbb{R}^{4}, we define the functional area by

$$
\begin{aligned}
& L\left(x, y, f^{1}, f^{2}, p_{1}^{1}, p_{2}^{1}, p_{1}^{2}, p_{2}^{2}\right):= \\
& :=\sqrt{1+\left(p_{1}^{1}\right)^{2}+\left(p_{2}^{1}\right)^{2}+\left(p_{1}^{2}\right)^{2}+\left(p_{2}^{2}\right)^{2}+\left(p_{1}^{1} p_{2}^{2}-p_{2}^{1} p_{1}^{2}\right)^{2}}
\end{aligned}
$$

hence the normal subspace to \mathcal{N}_{x} is $\mathcal{V}=\left(v^{1}, v^{2}\right)$ with

$$
\mathcal{V}=\frac{1}{L}\left(\left(\begin{array}{c}
p_{1}^{1}+p_{2}^{2}\left(p_{1}^{1} p_{2}^{2}-p_{2}^{1} p_{1}^{2}\right) \\
p_{2}^{1}-p_{1}^{2}\left(p_{1}^{1} p_{2}^{2}-p_{2}^{1} p_{1}^{2}\right) \\
-1-\left(p_{2}^{2}\right)^{2}-\left(p_{1}^{2}\right)^{2} \\
0
\end{array}\right),\left(\begin{array}{c}
p_{1}^{2}-p_{2}^{1}\left(p_{1}^{1} p_{2}^{2}-p_{2}^{1} p_{1}^{2}\right) \\
p_{2}^{2}+p_{1}^{1}\left(p_{1}^{1} p_{2}^{2}-p_{2}^{1} p_{1}^{2}\right) \\
0 \\
-1-\left(p_{1}^{1}\right)^{2}-\left(p_{2}^{1}\right)^{2}
\end{array}\right)\right)
$$

Remark 3.4. In Euclidean case, the subspace orthogonal to the tangent space to Σ_{M} is spanned by

$$
\left(T \Sigma_{\mathrm{M}}\right)^{\perp}=\left\langle\left(\begin{array}{c}
p_{1}^{1} \\
p_{2}^{1} \\
-1 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
p_{1}^{2} \\
p_{2}^{2} \\
0 \\
-1
\end{array}\right)\right\rangle
$$

which coincides with our result when

$$
\left(\begin{array}{cc}
p_{1}^{1} & p_{2}^{1} \\
p_{1}^{2} & p_{2}^{2}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

4. Determination of the normal unit vector to a hypersurface

Definition 4.1. We denote by $\left(e_{1}^{*}, \ldots, e_{n}^{*}\right)$ the dual basis of a vector space E of n dimension. We consider that $1 \leq \imath_{1}<\cdots<\imath_{p} \leq n$. Note $\xi_{\jmath}=\left(\xi_{j}^{\imath_{k}}\right)$, we have

$$
e_{\imath_{1}}^{*} \wedge \cdots \wedge e_{\imath_{p}}^{*}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{p}\right)=\left|\begin{array}{ccc}
\xi_{1}^{\imath_{1}} & \ldots & \xi_{p}^{\imath_{1}} \\
\vdots & \ddots & \vdots \\
\xi_{1}^{\imath_{p}} & \ldots & \xi_{p}^{\imath_{p}}
\end{array}\right| .
$$

Theorem 4.2. The length ℓ of the normal vector v to the hypersurface Σ is given by

$$
\sqrt{g}
$$

Proof. We recall that locally the tangent space of hypersurface Σ_{M} generated by $n-1$ vectors $p_{\imath}=\left(p_{\imath}^{1}, \ldots, p_{\imath}^{n}\right)$ for $\imath=1, \ldots, n-1$. Note by $d \sigma$ the volume of the parallelepiped of n dimension spanned by $p_{\imath}=$ $\left(p_{\imath}^{1}, \ldots, p_{\imath}^{n}\right)$ and v. We have $\mathcal{V}=\ell d \sigma$, we introduce the variables ξ_{1}, \ldots, ξ_{n} such that $\xi_{n}=-\frac{\xi_{1}}{p_{1}}=\cdots=-\frac{\xi_{n-1}}{p_{n-1}}$. We define a function F by

$$
F\left(x^{1}, \ldots, x^{n} ; \xi_{1}, \ldots \xi_{n}\right)=\xi_{n} L\left(x^{1}, \ldots, x^{n} ; \frac{\xi_{1}}{\xi_{n}}, \ldots,-\frac{\xi_{n-1}}{\xi_{n}}\right) .
$$

F is homogeneous of degree 1 in ξ_{2}, then

$$
\begin{equation*}
v=\left(\frac{\partial F}{\partial \xi_{1}}, \ldots, \frac{\partial F}{\partial \xi_{n}}\right) . \tag{4}
\end{equation*}
$$

But we know that

$$
\mathcal{V}=\sqrt{g}\left|\begin{array}{ccc}
\frac{\partial F}{\partial \xi_{1}} & \ldots & \frac{\partial F}{\partial \xi_{n}} \\
\xi_{1}^{1} & \ldots & \xi_{1}^{n} \\
\vdots & \ddots & \vdots \\
\xi_{n-1}^{1} & \cdots & \xi_{n-1}^{n}
\end{array}\right|
$$

and $d \sigma=\sum_{\imath=1}^{n}(-1)^{\imath-1} \frac{\partial F}{\partial \xi_{2}} e_{1}^{*} \wedge \cdots \wedge e_{\imath-1}^{*} \wedge e_{\imath+1}^{*} \cdots \wedge e_{n}^{*}$. Now it remains to calculate

$$
\begin{aligned}
d \sigma\left(\xi_{1}, \ldots, \xi_{n-1}\right) & =\sum_{\imath=1}^{n} \frac{\partial F}{\partial \xi_{\imath}} e_{1}^{*} \wedge \cdots \wedge e_{\imath-1}^{*} \wedge e_{\imath+1}^{*} \cdots \wedge e_{n}^{*}\left(\xi_{1}, \ldots, \xi_{n-1}\right)= \\
& =\sum_{\imath=1}^{n}(-1)^{\imath-1} \frac{\partial F}{\partial \xi_{2}}\left|\begin{array}{ccc}
\xi_{1}^{1} & \ldots & \xi_{n-1}^{1} \\
\vdots & \ddots & \vdots \\
\xi_{1}^{\imath-1} & \ldots & \xi_{n-1}^{\imath-1} \\
\xi_{1}^{2+1} & \ldots & \xi_{n-1}^{\imath+1} \\
\vdots & \ddots & \vdots \\
\xi_{1}^{n} & \ldots & \xi_{n-1}^{n}
\end{array}\right|=\left|\begin{array}{ccc}
\frac{\partial F}{\partial \xi_{1}} & \ldots & \frac{\partial F}{\partial \xi_{n}} \\
\xi_{1}^{1} & \ldots & \xi_{1}^{n} \\
\vdots & \ddots & \vdots \\
\xi_{n-1}^{1} & \ldots & \xi_{n-1}^{n}
\end{array}\right|
\end{aligned}
$$

which gives $\ell=\sqrt{g}$. \diamond
Consequence 4.3. The components of ν on the dual basis are:

$$
\sqrt{g}\left(\frac{\xi_{1}}{F}, \ldots, \frac{\xi_{n}}{F}\right) .
$$

Proof. Denote respectively ℓ^{2} and ℓ_{2} the components of ν in the basis and in the dual basis, then by using (4) we have $\ell^{2}=\frac{1}{\sqrt{g}} \frac{\partial F}{\partial \xi_{2}}$. We recall
that ν is normal hence $\ell^{2} \ell_{\imath}=1$. Since F is homogeneous of degree one in ξ_{2}, then

$$
\frac{1}{\sqrt{g}} \frac{\partial F}{\partial \xi_{2}} \xi_{2}=\frac{1}{\sqrt{g}} F \Rightarrow \frac{1}{\sqrt{g}} \frac{\partial F}{\partial \xi_{2}} \sqrt{g} \frac{\xi_{2}}{F}=1
$$

which gives the normal component of unit vector in the dual basis. \diamond
Acknowledgement. I am grateful to Frédéric Hélein who suggested to me this problem as a part of my Ph.D.

References

[1] BRYANT, R. L.: Some remarks on Finsler manifolds with constant flag curvature, Houston J. Math. 28 (2) (2002), 221-262. Special issue for S. S. Chern.
[2] CARTAN, E.: Les espaces métriques fondés sur la notion d'aire, Hermann, 6, rue de la Sorbonne, Paris, 1933.
[3] CARTAN, E.: Les espaces de Finsler, Hermann, 6, rue de la Sorbonne, 1934.
[4] CHERN, SHIING SHEN: On Finsler geometry, C. R. Acad. Sci. Paris Sér. I Math. 314 (10) (1992), 757-761.
[5] DAVIES, E. T.: Areal spaces, Ann. Mat. Pura Appl. (4) 55 (1961), 63-76.
[6] DAVIES, E. T.: On the notion of Euclidean connection in areal spaces, Tensor (N.S.) 24 (1972), 53-59. Commemoration volumes for Prof. Dr. Akitsugu Kawaguchi's seventieth birthday, Vol. I.
[7] DEBEVER, ROBERT: Une classe d'espaces à connexion euclidienne, PhD thesis, La faculté des sciences de l'Université libre de Bruxelles.
[8] DEBEVER, ROBERT: Sur une classe de formes quadratiques extérieures et la géométrie fondée sur la notion d'aire, C. R. Acad. Sci. Paris 224 (1947), 12691271.
[9] HÉLEIN, FRÉDÉRIC: Hamiltonian formalisms for multidimensional calculus of variations and perturbation theory, in: Non-compact problems at the intersection of geometry, analysis, and topology, Contemp. Math. 350, pp. 127-147, Amer. Math. Soc., Providence, RI, 2004.
[10] KAWAGUCHI, A.: On areal spaces, I. Metric tensors in n-dimentional spaces based on the notion of two-dimentional area, Tensor N.S., 1 (1950), 14-45.
[11] MORALES, C. and VILCHES, M.: On 2-Riemannian manifolds, SUT J. Math. 46 (1) (2010), 119-153.
[12] TAMÁSSY, LAJOS and KOZMA, LÁSZLÓ: Connections in k-vector bundles, Math. Pannon. 6 (1) (1995), 105-114.

