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Abstract: In 1933 Elie Cartan defined an infinitesimal metric ds starting from
a variational problem on hypersurfaces in an n-dimensional manifold M. This
metric depends not only on the point M € M but also on the orientation of a
hyperplane in the tangent space T, M. His work is based in a natural definition
of the orthogonal direction to such tangent hyperplane. In this paper we extend
this orthogonality to an oriented vector subspace in T, M by using calculus of
variation.

1. Introduction

Riemann considered the possibility to give to ds, the distance be-
tween two infinitesimally close points, a more general expression than
Gy;(dx*, dz7) namely to choose any function of z and dx which is homo-
geneous of degree 1 in dx. P. Finsler defined this geometry in his thesis
in 1917. It was later developed by E. Cartan [3], Chern [4] and Bryant

... .

In [2] Cartan proposed another generalisation of Riemannian geom-
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etry where the distance between two infinitesimally closed points in M
depends on the point M and on the choice of a hyperplane in the tangent
space to the manifold, this geometry was latter studied by R. Debever
in [8, 7], after some years Kawaguchi and Davies introduce the notion
of areal spaces in [10, 5], more recently, in 2010 by Morales and Vilches
in [11]. In the modern language, this amounts to define a metric on the
vector bundle over the Grassmannian bundle of oriented hyperplanes,
Gryp—1(M) whose fiber at M € E is the set of oriented hyperplanes in
TuM (where M € M and E called “element” by Cartan, denotes an
oriented hyperplane in T, M). Moreover Cartan found a way to canon-
ically derive such a metric from a variational problem on hypersurfaces
in M. He simultaneously defined a connection on this bundle, more gen-
eral explained in [6, 12]. The first step consists in choosing a natural
definition for the orthogonal complement of an element £ and the metric
in the normal direction: The idea is to require that, for any extremal
hypersurface H of M and any compact subset with a smooth boundary
3 € H if we perform a deformation of 0% in the normal direction to X
and with an arbitrary intensity and consider the family of extremal hy-
persurfaces whose boundaries are the images of 9% by this deformations,
then the area of hypersurfaces is stationary. This uses a formula of De
Donder (which is basically an extension to variational problems with sev-
eral variables of a basic formula in the theory of integral invariants). Let
us now present this idea for submanifolds of arbitrary codimension n — p.
Such variational problem can be described as follows. Let § be a p-form
which, in local coordinates z!,... 2", reads 8 = da' A --- A daP. Any
p-dimensional oriented submanifold N such that |y > 0 can be locally
represented as the graph of a function f = (f!,..., f*"?) of the variables
(x',...,2P). We consider functional £ of the form L(f) := chTﬁN do,
when
do=L(z',....2° f', . .f"" ,Vf)B.

Let NV be the critical point of £. To define the orthogonal subspaces
to all tangent subspaces to N the idea is to consider a 1-parameter family
(NV})¢ of submanifolds which forms locally a foliation of (p+1)-dimensional
submanifold U of R" and such that Ny = N. Consider a vector field X
on U witch induces the variation from N; to N, 4 and denote

A(t) = L(f2)-

According to Cartan [2] the condition for X to be orthogonal to

N = N, is that the derivative of A(t) with respect to t at t = 0 is
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zero. The definition of the orthogonality actually dose not depend on
the choice of A/ but uniquely on E € GryM.

2. Cartan geometry based on the notion of area

Let M be a manifold of n-dimensional, then we define the Grass-
mannian bundle or Grassmannian by

GryM ={(M, E)|M € M; E an oriented
p-dimensional vector subspace in Ty, M}.
If 8 is a p-form which in local coordinates (z!,...,2"), reads § = dz* A
-+ AdxP where 1 < p <n —1, then
Grﬁ/\/l ={(M,E) € TuM|B =da* A+ ANdaP|g > 0}.
Let (p)1<)<p(n—p) be coordinate functions on Grj M such that (2*,p?) are
local coordinates on Grg/\/l. We denote the projection 7 by:
T Grf M — M,
(M, E) — M.
We consider 7*T'M the bundle over the Grassmannian whose fiber at
(M, E) is TyM, we denote a metric g on 7*T'M by
Jon,E) = gzj(xkvpk>dzzd$]'
We see that the coefficients g,, not only depend on coordinates of M, but
they also depend on the orientation of the element at M.

Remark 2.1. If p=n — 1, then
Grpa (M) ~ (T" M\ {0}) /R".
Definition 2.2. A geometry based on the notion of area (M, F) is a

differential manifold M equipped with a function F' defined over T*M

with values in R+
F:T"M — R+,

which satisfies the following conditions:
1. F'is C* over T*" M\ {0} := Uers TuM \ {0}

2. F is homogeneous of degree one in p*
Fla*, ) = AF (2", ).
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3. The Hessian matrix defined by
1
(gw) = [§(F2)p’p3}
is positive definite at any point of Gr,(M).

In other words, F'

1M 1s @ Minkowski norm for all M € M.

Remark 2.3. Catan’s spaces are the dual of Finsler spaces under the
Legendre transformation. Both are generalized by Kawaguchi by intro-
ducing the notion of AREAL SPACES [10].

3. The concept of orthogonality in Cartan’s space

In the following, since we work locally we shall identify M with R"”
to the coordinate system (z*),.

3.1. Lagrangian formulation

Let L : Gri(RP x R"P) := {(a:l,...,x",(pé)l%gz_p) — R} be
the Lagrangian function. For any function f : éjif&p — R"7P of
class C*°, we denote by I'; its graph. A point € I'y is defined by
(Pt o2 = (fY (2t 2P, . fP(2t, L. 2P)) and values of the
coordinates (p}) at the tangent space to I'y are given by (Vf)(x). Let
B =dzt A--- AdaP be a p-form, the action integral [9] is given by

£(f) = /Q L' oo a? f e [P V) = /Q Liz, f,V f)5.

The bundle over the Grassmannian of I'y given by

Gri(Ty) :={(z,E);z €Ty, E=T,I;}.
Definition 3.1. Let I' be an oriented p-dimensional submanifold of M
with boundary I'y which is a critical point of £. A distribution of vector

lines D in T'M along Ty is called normal if for any vector field N defined
along I'g such that VM € I'y, N(M) € D(M), and if

ol == {e™M(M)|M € OT',t € (—¢,¢)}
and A(t) := L(T;), then & (A(t)) |0 = 0.
Theorem 3.2. There exists a vector subbundle 7*T+M of m*TM of
rank n—p whose fiber at (x, E) is denoted by (7*T*+M ), gy such that for
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any oriented p-dimensional critical point I of L, a vector field N along O’
is normal if and only if N, € (7*T*+* M) 1,r). In the following we write
(T*T*+ M) @rry = (T.D)*+. Moreover (T,I')* is spanned by (v*,...v"7P),
where

oL oL
8p% ap%
oL oL
dp}, p?
1 0L
vt = —L 450 vi = 0
— ] ) - L+ 2 9L PRI
O pj (9[)?
0 0
0 0
oL
8p;”_p
oL
6pg’_p
VP — 0
0
0
_ n—p_OL
L+ p, PR

Proof. Consider first the case p =2 and n = 3.
The Grassmannian bundle is of dimension 5, the Lagrangian

(z,9,2,p,9) = L(z,y,2,p,q) = L(z,y, f(x,y), Vf(z,9)),

and the action integral is given by
L) = [ Ll f(e0). T )
RQ

Suppose that this integral is extended to a portion of extremal surface
Y limited by a contour C, deform slightly 3 to a surface X' limited by
a contour C’. This amounts to change in the preceding integral f into
f +eg where g has not necessarily a compact support. Then we consider
a family (X,;); of surfaces with boundary which forms locally a foliation
of a domain U C R? which coincides in ¢t = 0 with ¥ and in ¢ = 1 with
Y, depending on a real parameter t € [0,1]. We suppose that for all ¢,
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(34); is a critical point of £ that we will represent by the graph ¥; of a
function f; : Q2 — R
Ee={(z,y, filz,y)\(z,y) € Qu}.
Let X be a vector field defined on U such that, if e*X is the flow of X,
then
X () = Siys.
Note that
f(t,:C, y) = ft(:cay)v
flzy) = f(0,2,y) = folz,y),
Ot x,y) = e (2,y, f(2,y)).
If t =0 we have ® = f = f; and Vt €]0,1], the function (z,y) —
®(t,x,y) is a parametrization of ¥;, we denote by ® = (¢!, ¢?, ¢*) and
O3 (t,z,y) = f(t, o' (t, x,y), 9*(t, z,y)) so, if we derive with respect to t,
then

9¢°  Of of o¢'  Of 04"

i (¢¢2) (¢1¢)at (¢1¢)at
which gives for t=20

0 0 0
X5y, ) = G 0..9) + 5 0.00)X . )+ 5 (0.0,9) X0, )
Thus along ¥ = ¥;, we have:
af af of

o Yewenorl

Let the Lagrangian (z,vy, z,p, q) — L(z,y, z,p, q) and we consider

A = [ Ly o). G o), G )y

Assuming that € is regular (i.e., 9Q; is a curve C' of plan R?), then we

have
dA(t) [ 0 fi Of;
dt _/Qtat (yft’a 8)dd+

aft 8ft 1 2
+/th(xyft,a ay><<X X2), v,

where v is a exterior normal of Q; in R? and ((X!, X?), v} is the horizontal
change in the area of {2; and d/ is a measure of one dimension 02, hence
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dA(t) B 0 Ofr Of:
dt |t=0 /(;Oat ( yfta 78y>d d+

aft aft 1 9 B
+/890 < © Y Jo 5o ’ay) (X, X%),v)ydl =

_[oLos ooy oo
"~ Jq 0z 0t OpOoxdt  Oq 8y3t

8_L%+£ OLOf L9 8L 8f
g 0z Ot Ox ap ot 8y 8q ot
_o LY 2 (08| 4

ot 890 8p dy \ Jq

+/89L<(X1’X2)7V>d€=

of Jd (0L 9 [OL

Jale 5 (5w )]

i /39<(?9—§%’ %%) ’V> dt + /89 L{(X', X?),v)dl =
LR S0

q Ot |0z Ox \ Op oy \ dq

AL Of | OLOf ,
+/ <(8p8t FLX G X de.

But we know that X = X is a critical point of fQ L, then the Euler—
Lagrange equations are satisfied, thus
dA(t) oL Of , OLOf
pn li=0= [99<(a_pE+LX a—qa—+LX ) >dl.

We now assume that X|gr has the form )Ny € D where ¢ € C>(dT)
with values in R and where Ny is a fixed non-vanishing tangent defined
along 0T, to be determmed we seek a condition to Ny such that for any
regular function w, dA) ]t 0 0. We can choose a function f; depends

on 1 such that ftw |t 0= |t:0, thus

d (9 0L O
= [ (5 w—f e L

+ L<(X1,X2),y>cw -
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_ OLOS | i OLOS s
—/8Fw<(apat+LN0,aqat+LNo v Yl

The condition for % li—o= 0 for all ¢ regular function on OI'" and v
: : oL df oL df _
exterior normal of T' is that <(a_pﬁ + LNy, 55 + LN(?) ,V> =0. If

_or
we denote by A = —2-, then
_ 0L
{ N} = AGy
_ 0L
Ng = A5e
From (1), we have
oL Of oL Of
N3 = AL+ \——= + \——~.
0 + Op Ox * 0q Oy

Hence,
oL 0L OL oL
= (G5 1, L)
Let now n > 0 and p = n — 1. The Grassmannian bundle is of

dimension 2n — 1. By same as previous, thus the orthogonal of 7*T'M
of rank n — 1 is spanned by

oL OL <= 0L
(2) X_<a_pl77Wazzpapl_L)a

where p' = g—i fore=1,...n—1, and L be the Lagrangian on Gr,,_1(X).

Now the case n >3 and p <n. For 1 <p<n-—11et Q be a
regular open set of R? and f = (f!,... f"P): Q — R"P, we denote its
graph by

N = {(z, f(x)) | z € Q}.
Let 8 = dz' A-- - AdzxP be a p-form, and L be the Lagrangian on G5 (N'),
thus for an open set Q € T, N the action integral is given by

L(f):= /QL(xl,...,xp?fl, L fTEIVB.

The family (NV;); of submanifolds with boundary forms locally a foliation
in a (p + 1)-dimensional submanifold U of R", we suppose that for all
t, N; is a critical point of £. Let X be a vector field defined on U such
that, if 5 is the flow of X, then e**(N;) = Niis, denote
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((f(t, 2", ... 2P) = fi(z", ... 2P) & fi(t, 2t . aP) = (f) (2t ... aP),
Vi=1,...n—p,

flzh, .. 2P = f(0,2%, ..., 2P) = fo(zh,...aP) &Ve=1,...n—p
we have

fixt, ..., aP) = f40,2", ... aP) = (fo(a?, ... 2P),

\¢(t’x17"'7xp) :etX(xlﬁ"'7‘/‘Ep’f17"’7fn_p)'

The function ® is a parametrization of N;, we denote:
p+1

cI)Z(SDIw-'a‘Ppa(P "),
Pttt aP) = it @) fora=1,...n —p,

where f; is defined on a domain §2; C RP. Thus, Ve =1,...n — p:
gt _aft — Of! 0’

= t ce, P —_
TR AL AR >*']:1 D7 ot

(t79017"'7()0p>
Fort=0,Ve=1,...n — p, thus

(2 p (2
XPH (. f) = of 0,2',...,2°) + Z of 0,2, ..., 2°) X (x, f),

Ot = ox?
which gives along N =Ny and Vo =1,...n—p
(3) afZ:Xpﬂ_ p ' v

ot or?~
1=1
We have

thus
dgit) ~ Ja, %L(xl,...,x”,(fl)t,---,(fn_p)tavfthr

+/ Lzt 2P (fYe, . (F7P), VAOUXE, L, XP), v)de,
o

where v is the exterior normal to €; in R?, ((X!,... XP) v) represents
the horizontal change in volume of €2, and df¢ is a measure of p — 1
dimension 0€2;. Thus for ¢ = 0 we have
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dA 0
o = [ LG (P (VRS

+/ LUXY,..., XP), v)de.
o

We calculate ¢AQ |t -0

| gyl 918 =

_/ "*”aLaf Py OF 9% f 5 —
Ja — dx Ot 52 Op, OxI0t N

1<z<n —p

B L O f OL O f Oft = 0 [ OL B

— /(aw ot Z%(g)_pz at)_ ot ;@Qp;))B_
of" "9 [OL

/ [axz gf(apg)

oL of 8L8f2) >
- e =) v ) e
;/BQ <(3PZ1 ot ap,, ot

We have that N' = N is a critical point of £, thus the Euler-Lagrange

equations are satisfied 2 (%Z — le % (gpL > 0 which gives

OL o f' . oLaf
L LXY LXP .
Z/(m<(3p1 ot T opy ot * )V> it

Using Def. 3.1 we can consider a regular function ¢ changing X in ¥ X,

8 3
where w ON — R and hence J;tfjw = af ;- By the same as previous, so

that dA |t o= 0, it suffices that for all ] =1,...p we have

R OLof .
Zapj o HLX =0

+

Il
||M3 i

7
7

_ort
if we denote by A\, = —2- and Vf := (g£]>1<z<n p = (P})1<i<n—p, then
1<5<p 1<9<p

n—p
L
XJ:ZAZE)—Z forall )=1,...p,
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from (3), for e =1,...n — p thus

P
oL
—+7 7
XPH = —\L+) )\ija—pz,
=1 J
which gives
( oL oL oL
X' =M= 4 X5+ -+ Ap——
13p% + Qap% + + pap?,p
oL oL oL
XP=MN—+X—+ "+ N\ p——
18p21) + Qap]% +- 1+ pap;,p

oL oL
XPH N =L+ pt== .. =
1( —|—p18p% + +pp8p}g

oL oL
X' =Xy | L+ e+ 0y P
\ p( Dy apvlz P Dy 8p§f D
oL oL
ap% 6p%
oL oL
s op2
_ 10L
=\ L+pyanr |40, ] O vor |+
0 —L +p]@
0 0
0 0
oL
opy P
' oL
op,~ *
0
cee A
1o
0
n—p OL
_L+p] pap;bfp

= Mo+ A0+ AU,

207
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so the theorem is proved. ¢

Example 3.3. We take n = 4 and p = 2, then f : R? — R?, %, are a
domains with boundary of dimension 2 in R*, we define the functional
area by

L(z,y, ', f2,p1,p3: 01, p3) ==
= \/1 + (p1)? + (p3)? + (p1)* + (93)? + (pip3 — P3p})?,

hence the normal subspace to AV, is V = (vl v?) with

p1 + p5(pips — psp?) P — p3(pips — pip?)
v_ L[| p2—pilpps — popl) P + pi(pip3 — papi)
L 1=’ =) |’ 0
0 —1—(p1)* — (p2)?

Remark 3.4. In Euclidean case, the subspace orthogonal to the tangent
space to X, is spanned by

i Vi
i P %5
(TEM) - _1 I 0 ?
0 -1
which coincides with our result when
pi P 00
i D3 00

4. Determination of the normal unit vector to
a hypersurface

Definition 4.1. We denote by (ej,...,e}) the dual basis of a vector
space E of n dimension. We consider that 1 <12; < --- <1, < n. Note
= (f;k), we have

11 é-“
1 .. p
6;/\"'/\6;(61752,,.,7613):
1 7
1p .. pp

Theorem 4.2. The length ¢ of the normal vector v to the hypersurface
> is given by

NG
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Proof. We recall that locally the tangent space of hypersurface X
generated by n — 1 vectors p, = (p!,...,p") for 2 = 1,...,n — 1. Note
by do the volume of the parallelepiped of n dimension spanned by p, =
(pl,...,p") and v. We have V = {do, we introduce the variables &y, . . ., &,

such that &, = —1% == —iz—j. We define a function F' by
F(x1,7xn’§1’£n) :é—nL (x17‘--7xn;§_17~.-,_€2_1) .

F' is homogeneous of degree 1 in &, then

OF OF
(4) v = (EE;’."7EE;>'

But we know that

OF o

8511 %&

n

1 DY 1

v=vag| . . .
1 n

n—1 -*- n—1

and do =" (=17 12Eer A Aer  Aery -+ Ael. Now it remains to

=1 9,
calculate
n
aF * * * *
d0(§17-~-7€n—1) - Z ag 61 /\ "'/\el_l /\61+1-"/\6n(§1,...,€n_1) =
1=1 i
IR S
. . OF or
. : ) . : ) 3511 T
— — n
:Z(_l)z_la_F i+1 ;;11 = b '
(A (3 . .
= 0&, |&1 R S : s :
. 1 n
. . n—1 - n—1
& o &

which gives £ = /g. O
Consequence 4.3. The components of v on the dual basis are:

Proof. Denote respectively ¢ and ¢, the components of v in the basis

and in the dual basis, then by using (4) we have ¢* = \%g—g. We recall
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that v is normal hence ¢*/, = 1. Since F' is homogeneous of degree one
in &, then

1 OF 1 1 OF &
VIOLT /g V90§ T F
which gives the normal component of unit vector in the dual basis. ¢
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