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Abstract: We present an algorithm for finding unitals as subdesigns of sym-
metric designs. Further, we employ this algorithm to find unitals in symmetric
(66,26,10) designs. This problem is here formulated as a combinatorial op-
timization problem whose solutions are binary matrices. Using the modified
genetic algorithm (MGA) we have found eleven new 2 – (11,5,10) designs (uni-
tals) in the symmetric (66,26,10) design admitting an automorphism of order
55. In addition, we have found 63 new unitals in the symmetric (36,15,6) design
with the full automorphism group of order 42.

1. Introduction

Genetic algorithms (GA) are search and optimization heuristic pop-
ulation based methods which are inspired by the natural evolution pro-
cess. In each step of the algorithm, a subset of the whole solution space,
called population, is being treated. The population consists of individ-
uals – chromosomes. Instead of finding an optimal solution within the
whole solution space, the algorithm concentrates in optimizing the se-
lected population. Every chromosome represents a possible solution (op-
timum), which is evaluated using the fitness function. In each iteration of
the algorithm, a certain number of best-ranked chromosomes (parents)
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is selected to create new better individuals (children, offsprings). Off-
springs are created by a certain type of recombination (crossover) and
they replace the worst-ranked chromosomes of the population, providing
convergence to the local optimum. After the offsprings are obtained, a
mutation operator is allowed to occur (for the purpose to escape from a
local optimum) and the next generation of the population is created. The
process is iterated until the evolution condition terminates. This method
has presented itself as very efficient for solving a variety of optimization
problems, including those NP-hard (see [2]), as well as problems where a
feasible solution is only the optimal solution – as it is in the case of com-
binatorial design construction. The application of metaheuristics seems
to be more appropriate to attack larger problem instances. This paper
provides some steps in this direction.

A balanced incomplete block design D (BIBD) with parameters 2 –
(v, k, λ) is a finite incidence structure (P ,B, I), where P and B are dis-
joint sets and I ⊆ P × B, with the following properties:

1. |P| = v and 1 < k < v − 1,

2. every element (block) of B is incident with exactly k elements
(points) of P ,

3. every pair of points in P is incident with exactly λ blocks of B.

A standard way of representing a BIBD with parameters (v, k, λ)
is in terms of its incidence matrix M ≡ {mij}b×v which is a b× v binary
matrix where b and v are the number of blocks and points respectively,
such that mij = 1 if the point Pj and block xi are incident and mij = 0
otherwise. Incidence matrix M has exactly r ones per column, k ones
per row and a scalar product of λ between any pair of distinct column.
The five parameters defining a 〈v, b, r, k, λ〉-BIBD are related and satisfy
the following two relations: bk = vr and λ(v − 1) = r(k − 1). Thus
parameters b and r are given in terms of the other parameters:

(1.1) b =
v(v − 1)λ

k(k − 1)
, r =

(v − 1)λ

k − 1
.

The case b = v represents a special design called symmetric design. A
direct consequence of the definition of a symmetric design is that r = k.

R. Mathon and Tran van Trung (see [7]) have extended the notion
of unital from projective planes to arbitrary symmetric designs.

Definition 1.1. Let D = (P ,B, I) denote a symmetric (v, k, λ) design.
Let U be a subset of points of D having the property:
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Through each point p ∈ U there are k − 1 blocks of D meeting U
in α points and exactly one meeting U in p. Such a point set U is called
a unital. A block meeting U in one point is called a tangent and block
meeting U in α points a secant.

Here we point out two basic properties of unitals in symmetric
designs which is given in the following lemmas.

Lemma 1.1. Let U be a unital in D. Then

(i) n = k − λ is a square, (ii) α =
√
n+ 1,

(iii) |U| = 1 + (k − 1)
√
n
λ

, in particular 1 + (k − 1)
√
n
λ

is an integer,

(iv) The points of U and its secants form a 2− (1+(k−1)
√
n
λ
,
√
n+1, λ)

design.

Lemma 1.2. Let U be a set of u = 1 + (k − 1)
√
n
λ

points in D. Assume
that any block of D meets U in 1 or

√
n+ 1 points. Then U is a unital.

These lemmas are rather obvious, therefore proofs are omitted.
However, proofs can be found in [11].

The design obtained from U and its secants is called a unital. For a
detailed explanation and further results on unitals in symmetric designs
one can refer to [7]. We shall use this representation of a design D and
a unital U throughout this work.

It is known that there are at least 590 mutually nonisomorphic
symmetric (66,26,10) designs (see [4], [8], [10], [12]). D. Crnković and S.
Rukavina (see [4]) have proved that up to isomorphism there are three
symmetric (66,26,10) designs with automorphism group Frob55 acting
with orbit distribution (11, 55). Let us denote them by D1, D2 and D3.
For one of them, say D3, they have proved that up to isomorphism it is
the only symmetric (66,26,10) design with automorphism group Frob55

acting with orbit distribution (11, 11, 11, 11, 11, 11). Associated orbit
structure for this distribution is (see [4]):

OS 11 11 11 11 11 11
11 1 5 5 5 5 5
11 5 5 5 5 5 1
11 5 5 5 5 1 5
11 5 5 5 1 5 5
11 5 5 1 5 5 5
11 5 1 5 5 5 5
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Elements in this orbit structure represent the number of points
in appropriate point orbit which are incident with the representative of
the appropriate block orbit. The design D3 is isomorphic to the one
constructed by Tran van Trung, which is the first symmetric (66,26,10)
design ever constructed (see [12]).

R. Mathon and Tran van Trung (see [7]) have pointed out that there
are 6 unitals in the design D3, which one can see from Lemma 1.2 and
orbit structure OS. For the same reason it is clear that each of the 6
orbits of points of the corresponding automorphism forms a unital in
the designs D1 and D2 (see [4]). It would be very difficult to find new
possible unitals in a symmetric (66,26,10) designs using exhaustive search
because of a large number

(
66
11

)
of combinations of points in designs with

this parameters. We have found eleven new unitals in the design D3

using modified genetic algorithm. The paper is organized as follows: in
Sec. 2 we describe the developed algorithm, in Sec. 3 we give the obtained
experimental results, in Sec. 4 we give conclusion, while in Appendix A
we correct a lemma from a paper by R. Mathon and T. van Trung ([7]).

2. Algorithm for finding unitals in a symmetric de-
sign

We have used the modified steady-state genetic algorithm (MGA)
updating the population in a piecemeal fashion rather than all at one
time, which is a variation of a genetic algorithm presented in [13]. We
have developed an algorithm with 4-tournament selection and 2-points
crossover. The idea is to iteratively generate two new offsprings in one
tournament and then reintroduce them directly into the population itself,
replacing two of the worst ranked chromosomes in that tournament.

The parameters of the symmetric design D are v, r, k and λ as
described in the previous section. Let us denote by u = |U| the number of
points of unital in the design D which is obtained in the previous section.
Without loss of generality we can denote the point set of the design D as
P = {1, 2, . . . , v}. We shall represent each chromosome of our population
as a b × u binary matrix while its columns are copies of columns of the
incidence matrix M of the symmetric design D. These columns are called
the genes of the chromosomes. We shall denote by POP the number
of chromosomes in the population. The initial population is generated
randomly, namely genes of chromosomes represent the columns that have
been selected randomly from the incidence matrix M . A chromosome
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shall represent a unital in a symmetric design if through each point p ∈ U
there are k−1 secants and exactly one tangent, as considered in Def. 1.1.

The fitness function measures the deviation of chromosome from the
property in Def. 1.1. Let us denote the number of tangents and secants
through each point pi ∈ U by ti and si respectively, for i = 1, 2, ..., u.
We define the fitness value of each chromosome measuring the sum of
average values of its deviation from required number of tangents and
secants at each point. Let us denote by X the set of all chromosomes in
the population. The fitness function that will be utilized here is c :X→
N∪{0},

c(x) =

∑u
i=1 |ti − 1|

u
+

∑u
i=1 |si − (k − 1)|

u
, ∀x ∈ X.

The minimal (optimal) value of the fitness function is zero. If this value
is reached, the searched unital in a symmetric design is found.

In each algorithm iteration, two of the fittest chromosomes out
of four randomly selected ones are chosen. We realized 4-tournament
selection by selecting four neighboring chromosomes. In our algorithm
the positions of chromosomes are mixed before a selection (it is done as
permutation of POP elements), providing that neighboring chromosomes
in the current iteration do not stay neighbors in the next one, which gives
better results.

Selected chromosomes take part as parents in the 2-point crossover
at column level. This means that we randomly choose two columns x
and y in the parents genes, 1 ≤ x ≤ y ≤ u as crossover points. The
genes of both offsprings will be copies of the parents genes in the corre-
sponding locations, as depicted in the following example, where assorted
integers represent the points of a symmetric (66,26,10) design, namely
they represent the indices of columns in its incidence matrix:[

1 2 3 5 | 10 18 29 31 |42 53 66
]

parent 1[
2 4 6 10| 16 25 31 38 |51 61 65

]
parent 2[

1 2 3 5 | 16 25 31 38 |42 53 66
]

offspring 1[
2 4 6 10| 10 18 29 31 |51 61 65

]
offspring 2

In addition, two obtained offsprings are checked by correction op-
erator, that checks the possibly repeated genes. In the case of repeated
genes, this operator replaces the repeated gene by randomly selected one
not present in the considered offspring.
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To keep diversity in the population, the mechanism which checkes
whether two parents are equal is implemented in the algorithm. In the
case of their equality, one parent is replaced by a random one. Besides,
the diversity of genes is also provided by two kind of mutation operators
to act on the obtained offsprings with probability pm. Mutation of the
offspring is also performed on the random basis. One offspring gets possi-
bly a replaced gene, randomly selected column from the incidence matrix
M , while the other child gets possibly two genes replaced. Mutated off-
springs replace two the worst ranked chromosomes in a tournament. The
mutation operators shall occur with a probability pm which is the same
for all described operators, due to some experimental experience.

To make the algorithm as efficient as possible, we forced the muta-
tion of the parents by replacing one of its genes with randomly selected
column from the incidence matrix M and repeating this process for five
times for the parent 1 and four times for the parent 2. Mutated parent
replaces the previous one only if its fitness value is less than previous
(elitism is preserved). That was an optimum number of replacements
based on performing several experiments. Because less number of re-
placements could stuck the algorithm on nearly optimal, but not good
enough solution, namely a nearly optimal solution with a small fitness
value still needs a lot of changes in its genes. Furthermore, the fitness
value for each chromosome in a new generation is calculated and the algo-
rithm is run again from this new generation if no unital is already found
or restarting mechanism is triggered. After many generations there is a
good hope that the fitness bias in the reproduction of chromosomes will
result in a chromosome so fit that it is actually a unital.

A restarting mechanism is introduced to reactivate the search when-
ever the stagnation takes place. This is done by keeping a fraction f%
of the top ranked chromosomes in the current population, and refreshing
the rest of the population with random chromosomes. This procedure is
triggered after a certain number of generations with no further improve-
ment of the current best solution of the fitness function. The algorithm
sometimes gets stuck in a solution with very small fitness value but with
no further improvement in this value. In the case that this happens, we
have introduced an operator which generates new random population.
Pseudocode of the developed algorithm is presented below.
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Algorithm for finding unitals in a symmetric design written in MATLAB:

1: POP ← desired population size

2: for POP times # generate initial population

3: P ← P ∪ {new random individual}
4: end

5: c ← 0 # number of iterations

6: for each individual Pi ∈ P
7: fi ← AssessFitness(Pi)

8: end

9: Best ← min(fi)

10: while Best> 0

11: P ← mix the positions of chromosomes in current population

12: i← 1

13: while i < POP

14: Pa, Pb ← select two of the fittest between the ith and (i+3)th chromosome

15: if Pa == Pb
16: Pb ← new random chromosome

17: Children Ca, Cb ← 2PointCrossover(Copy(Pa), Copy(Pb))

18: Ca, Cb ← CheckRepetition(Ca, Cb) #replace duplicated column

19: Ca ← Mutation(Ca), Cb ← Mutation(Cb)

20: Pc, Pd←Ca, Cb # replace the two remaining chromosomes in a tourna-
ment

21: MPa ← Mutation(Pa), MPb ← Mutation(Pb)

22: if AssessFitness(MPa) < AssessFitness(Pa)

23: Pa ←MPa
24: end

25: if AssessFitness(MPb) < AssessFitness(Pb)

26: Pb ←MPb
27: end

28: i← i+ 4

29: end

30: for each chromosome Pi ∈ P
31: fi ← AssessFitness(Pi)

32: end

33: c← c+ 1

34: Best ← min(fi)

35: if there is stagnation in the best fitness value

36: P ← RestartingOper(P ) #if stagnation occurs

37: end

38: end
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We have used the modified steady-state genetic algorithm for sev-
eral reasons. First, it uses half the memory of a traditional genetic algo-
rithm because there is only one population at a time. Second, the parents
stay around in the population (elitism), potentially for a very long time,
and thus, this runs to the risk of causing the system to prematurely con-
verge to largely copies of a few highly fit individuals. This is avoided by
attempting the mutation of two parents and by checking if parents are
identical, if they are, one is randomly generated.

The running time complexity of genetic algorithms depends on the
genetic operators, their implementation (which may have a very signifi-
cant effect on overall complexity), the representation of the individuals
and the population, and obviously on the fitness function. The MGA
is governed by a number of parameters: population size, muterate pm,
fraction f%, time when restarting mechanisms take place, v, k, λ param-
eters of designs. Even with appropriate parameters, optimal solutions
cannot be guaranteed due to the probabilistic nature of the MGA. Also,
there are no universally best parameters for the MGA which can achieve
the best result for all problems. Since the state transitions of a ge-
netic algorithm are of probabilistic nature, the deterministic definition
of convergence was obviously not appropriate. Therefore the definition
of stochastic convergence had to be used (see [1]). Due to its stochastic
nature, the running time complexity analysis of a MGA is not an easy
task. However, if an algorithm does converge, the analysis of the time
limit behavior does not give any hints about the expected time for the
solution to be found, far less any precise statement (see [9]). The exe-
cution time of a genetic algorithm depends on the number of iterations
(generations). In many cases, parameters and the number of iterations
in genetic algorithms are decided experimentally.

For finding unitals in the symmetric (66,26,10) design D3, the MGA
produces 4.2 iterations per second on a quad-core CPU (3,2 GHz) with
population size of 100, 4-tournament selection, 2-point crossover, muter-
ate pm = 0.99, restarting mechanism with f% = 10% of the top ranked
chromosomes starting after 90 minutes and complete restarting mecha-
nism starting after 180 minutes of stagnation in the best fitness value. Us-
ing the described processor and the mentioned parameters of the MGA,
a unital is obtained in average 72 minutes, while the minimal time to get
one of them was in approximately 23 minutes, according to the results in
Table 1. The objective of that heuristic algorithm was to minimize the
overall execution time of the complete exhaustive search for unitals in



Finding unitals in symmetric designs using MGA 191

a symmetric (66,26,10) design. For such an exhaustive search that ana-
lyzes all of the

(
66
11

)
possible combinations, it takes approximately 900000

combinations per minute or approximately 2.3 years on the above men-
tioned CPU. Hence, the time consumption of the MGA is far less then
the complete exhaustive search.

3. Experimental results

The results on number of unitals found in already mentioned de-
sign D3 are presented in Table 1, where we give the number of unitals
obtained in this symmetric design nsol, the number of non-isomorphic
unitals among them niso, the minimal, the average number of iterations
leading to the first solution and the standard deviation denoted by nmin,
navi and σ respectively. Our algorithm has not found new unitals in al-
ready mentioned designs D1 and D2. We have used a population size of
40, 60 and 100, while for mutation probability pm we used the values of
0.9, 0.99 or 1. We set the fraction f% on 10%.

Table 1
Design nsol niso nmin navi σ

D3 17 3 5774 18088,27 21728,99

Solution of the considered problem, namely a unital in a symmetric
(66,26,10) design is a 2 – (11,5,10) design, according to Lemma 1.1. It has
b = 55 blocks and r = 25, according to the relations (1.1). The results,
namely eleven new unitals in the design D3, denoted by U7, . . . , U17, were
found and they are represented by the points of D3 in Table 2.

Table 2: 17 unitals found in D3 using MGA
Unitals Points
U1 1 2 3 4 5 6 7 8 9 10 11
U2 12 13 14 15 16 17 18 19 20 21 22
U3 23 24 25 26 27 28 29 30 31 32 33
U4 34 35 36 37 38 39 40 41 42 43 44
U5 45 46 47 48 49 50 51 52 53 54 55
U6 56 57 58 59 60 61 62 63 64 65 66
U7 1 2 3 7 9 10 20 31 42 53 64
U8 1 2 4 5 6 10 12 23 34 45 56
U9 1 2 6 8 9 11 19 30 41 52 63
U10 1 3 4 5 9 11 22 33 44 55 66
U11 1 3 4 6 7 8 14 25 36 47 58
U12 1 5 7 8 10 11 18 29 40 51 62
U13 2 3 4 8 10 11 21 32 43 54 65
U14 2 3 5 6 7 11 13 24 35 46 57
U15 2 4 5 7 8 9 15 26 37 48 59
U16 3 5 6 8 9 10 16 27 38 49 60
U17 4 6 7 9 10 11 17 28 39 50 61
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One can check, using GAP (see [5]), that up to isomorphism there
are only three unitals in the design D3. Furthermore, mutually isomor-
phic unitals in the design D3 are given in Table 3.

Table 3: Mutually isomorphic unitals and the order of the
associated full automorphism group

Isomorphic unitals in D3 |Aut(G)|
U1 660
U2
∼= U3

∼= · · · ∼= U6 55
U7
∼= U8

∼= · · · ∼= U17 100

In the symmetric (36,15,6) design D′ with the full automorphism
group of order 42 which is isomorphic to the group Frob21× Z2 (see [3]),
we have found 66 unitals using the MGA. Among them only three were
known before (see [7]). The results on number of unitals found in the
design D′ are presented in Table 4. We used a population size of 100,
while for mutation probability pm we used the value of 0.99. We set the
fraction f% on 10%.

A unital in a symmetric (36,15,6) design is a 2 – (8,4,6) design,
according to Lemma 1.1. It has b = 28 blocks and r = 14. The results,
namely 66 unitals in the design D′, denoted by U ′1, . . . , U

′
66, were found

and they are represented by the points of D′ in Table 5.

Table 4

Design nsol niso nmin navi σ

D′ 66 6 4 1660,83 1958,15

One can check, using GAP (see [5]), that up to isomorphism there
are exactly six unitals in the design D′. Furthermore, the information on
mutually isomorphic unitals in the design D′ are given in Table 6.

Those 66 unitals are all unitals in the design D′. This is checked by
a direct search which is performed very fast, because of relatively small
number of all possible combinations, which is

(
36
8

)
= 30260340.

Performing several experiments, it was noticed that the algorithm
regularly progresses close to the solution very fast, but after that, it takes
a lot of time to make only slight enhancements. This characteristic of
GA has been noticed in case of other combinatorial problems (see [6]).
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Table 5: 66 unitals found in D′ using MGA

Unitals Points

U′
1 1 16 17 18 19 20 21 22

U′
2 1 16 17 21 23 24 28 32

U′
3 1 16 18 19 23 25 26 34

U′
4 1 16 20 22 23 27 29 31

U′
5 1 17 18 22 24 25 29 33

U′
6 1 17 19 20 24 26 27 35

U′
7 1 18 20 21 25 27 28 36

U′
8 1 19 21 22 26 28 29 30

U′
9 1 23 24 25 26 27 28 29

U′
10 1 30 31 32 33 34 35 36

U′
11 2 3 4 6 16 33 35 36

U′
12 2 3 4 7 19 20 22 25

U′
13 2 3 5 8 22 32 34 35

U′
14 2 3 6 8 18 19 21 24

U′
15 2 3 7 11 16 17 21 32

U′
16 2 3 7 11 25 26 27 29

U′
17 2 4 5 6 17 21 22 27

U′
18 2 4 5 13 16 18 19 34

U′
19 2 4 5 13 24 27 28 29

U′
20 2 4 7 8 21 31 33 34

U′
21 2 5 6 7 19 31 32 36

U′
22 2 5 7 8 17 18 20 23

U′
23 2 6 8 10 16 20 22 31

U′
24 2 6 8 10 24 25 26 28

U′
25 2 12 14 15 16 17 18 20

U′
26 2 12 14 15 26 28 29 30

U′
27 3 4 5 7 17 30 34 36

U′
28 3 4 5 8 16 20 21 26

U′
29 3 4 8 12 17 18 22 33

U′
30 3 4 8 12 23 26 27 28

U′
31 3 5 6 7 16 18 22 28

U′
32 3 5 6 14 17 19 20 35

U′
33 3 5 6 14 23 25 28 29

U′
34 3 6 7 8 20 30 32 33

U′
35 3 9 13 15 17 18 19 21

U′
36 3 9 13 15 23 27 29 31

U′
37 4 5 6 8 18 30 31 35

U′
38 4 6 7 8 16 17 19 29

U′
39 4 6 7 15 18 20 21 36

U′
40 4 6 7 15 23 24 26 29

U′
41 4 9 10 14 18 19 20 22

U′
42 4 9 10 14 23 24 28 32

U′
43 5 7 8 9 19 21 22 30

U′
44 5 7 8 9 23 24 25 27

U′
45 5 10 11 15 16 19 20 21

U′
46 5 10 11 15 24 25 29 33

U′
47 6 9 11 12 17 20 21 22

U′
48 6 9 11 12 23 25 26 34

U′
49 7 10 12 13 16 18 21 22

U′
50 7 10 12 13 24 26 27 35

U′
51 8 11 13 14 16 17 19 22

U′
52 8 11 13 14 25 27 28 36

U′
53 9 10 11 13 23 33 35 36

U′
54 9 10 11 14 18 26 27 29

U′
55 9 10 12 15 29 32 34 35

U′
56 9 10 13 15 17 25 26 28

U′
57 9 11 12 13 20 24 28 29

U′
58 9 11 14 15 28 31 33 34

U′
59 9 12 13 14 26 31 32 36

U′
60 9 12 14 15 16 24 25 27

U′
61 10 11 12 14 24 30 34 36

U′
62 10 11 12 15 19 23 27 28

U′
63 10 12 13 14 21 23 25 29

U′
64 10 13 14 15 27 30 32 33

U′
65 11 12 13 15 25 30 31 35

U′
66 11 13 14 15 22 23 24 26
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Table 6: Mutually isomorphic unitals and the order of the
associated full automorphism group

Isomorphic unitals in D′ |Aut(G)|
U′

10 21

U′
1
∼=U′

9 336

U′
2
∼=U′

3
∼= · · ·∼=U′

8 6

U′
11
∼=U′

13
∼=U′

20
∼=U′

21
∼=U′

27
∼=U′

34
∼=U′

37
∼=U′

53
∼=U′

55
∼=U′

58
∼=U′

59
∼=U′

61
∼=U′

64
∼=U′

65 6

U′
12
∼=U′

14
∼=U′

17
∼=U′

22
∼=U′

28
∼=U′

31
∼=U′

38
∼=U′

54
∼=U′

56
∼=U′

57
∼=U′

60
∼=U′

62
∼=U′

63
∼=U′

66 3

U′
15
∼=U′

16
∼=U′

18
∼=U′

19
∼=U′

23
∼=U′

24
∼=U′

25
∼=U′

26
∼=U′

29
∼=U′

30
∼=U′

32
∼=U′

33
∼=U′

35
∼=U′

36
∼=U′

39
∼= . . .∼=U′

52 6

4. Conclusion

The application of the genetic algorithm to find unitals in a sym-
metric design has resulted in very encouraging and positive results. It is
hard to imagine that an exhaustive search for the 11 points and 55 blocks
of symmetric (66,26,10) design that form a unital, namely 2 – (11,5,10)
design, would finish successfully as the size of the search space is defi-
nitely extremely large, although the parameters of designs do not seem
to be so big. Our algorithm can give an answer to the existence question
of unitals in a symmetric design, but, in general, can not give an answer
how many unitals are in a symmetric design with particular parameters.

5. Appendix A – Correction of the paper [7] by
R. Mathon and T. van Trung

In the paper [7] by R. Mathon and T. van Trung we have found an
error in Lemma 5.2, there is λ missing in the denominator of the fraction
k−1
2

, which is obvious from Lemma 5.1 and Lemma 2.1 in that paper.
Here we give the correct statement of that lemma.

Lemma 5.1. If a symmetric 2−(v, k, λ) design admits a unitary polarity,
then

s =
k − 1

2λ

(
k + 1− λ√

n

)
is an integer.

So the consequence of this correction of Lemma 5.2 (from the paper
[7]) is that we have to correct the table with a list of parameters for
symmetric designs of square order for n ≤ 25 and k ≤ v/2 together with
the information about unitals and unitary polarities (see [7], p. 248). An
answer yes in one of the columns: unital, unitary polarity, means there is
at least one solution corresponding to that item. If no solution is known,
it is indicated by a question mark.
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