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Abstract: In this paper the concept of Crelle–Brocard points of the triangle
in an isotropic plane is defined. A number of statements about the relationship
between Crelle–Brocard points and some other significant elements of a triangle
in an isotropic plane are also proved. Some analogies with the Euclidean case
are considered as well.

The isotropic (Galilean) plane (see [12] and [13]) is defined as a
projective–metric plane with an absolute which consists of a line, absolute
line ω and a point on that line, absolute point Ω. The lines through the
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point Ω are isotropic lines, and the points on the line ω are isotropic
points (the points at infinity). Two lines through the same isotropic
point are parallel, and two points on the same isotropic line are parallel
points.

In an isotropic plane the distance between two non–parallel points
Ti = (xi, yi) (i = 1, 2) is defined by T1T2 = x2−x1. For two non-isotropic
lines y = k1x+l1 and y = k2x+l2 the isotropic angle is defined by k2−k1.

In [7] it is shown that each allowable triangle in an isotropic plane,
if none of its sides is isotropic, can be set, by a suitable choice of the
coordinates, in the so called standard position, where its vertices are of
the form A = (a, a2), B = (b, b2), C = (c, c2) while a+ b+ c = 0.

With the labels p = abc, q = bc+ ca+ ab, p1 = 1
3
(bc2 + ca2 + ab2),

p2 = 1
3
(b2c+ c2a+ a2b),

(1) ω = − 1

3q
(b− c)(c− a)(a− b)

it can be shown that the following equalities

(b− c)2 = −(q + 3bc), (c− a)2 = −(q + 3ca),

(a− b)2 = −(q + 3ab), (c− a)(a− b) = 2q − 3bc,

(a− b)(b− c) = 2q − 3ca, (b− c)(c− a) = 2q − 3ab,

a2 + b2 + c2 = −2q, q = bc− a2 = ca− b2 = ab− c2,
b2 + bc+ c2 = −q, a2 + ab+ b2 = −q,
c2 + ca+ a2 = −q, p+ p1 + p2 = 0,

p1p2 = p2 +
1

9
q3, p21 + p1p2 + p22 = p2 + pp1 + p21 = −q

3

9
,

9q2ω2 = (b− c)2(c− a)2(a− b)2 = −(27p2 + 4q3)

are valid (see [7]).
To prove the geometric facts for each allowable triangle it is suffi-

cient to give a proof for a standard triangle.

Theorem 1. Let A, B, C, respectively A′, B′, C ′, be the lines through
the points A, B, C such that

∠(AB,A) = ∠(BC,B) = ∠(CA, C) = ϕ,

∠(A′, AC) = ∠(B′, BA) = ∠(C ′, CB) = ψ.
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If the triangle ABC is in a standard position, then the lines A, B, C
pass through one point Ω1, if and only if, ϕ = ω, and the lines A′, B′, C ′
pass through one point Ω2, if and only if, ψ = ω where ω is given by the
formula (1).

The statement of this theorem, without the formula (1), has been
proved by Tölke in [15].

Proof. The line BC has the equation y = −ax − bc, and then from
∠(BC,B) = ϕ and ∠(BC, C ′) = −ψ we get the equations of the lines B
and C ′

y = (ϕ− a)(x− b) + b2 and y = −(ψ + a)(x− c) + c2,

i.e., owing to a+ b+ c = 0 we obtain the equations
y = (ϕ− a)x− bc− bϕ, y = −(ψ + a)x− bc+ cψ.

Analogously the lines C and A′, and lines A and B′ have the equations

y = (ϕ− b)x− ca− cϕ, y = −(ψ + b)x− ca+ aψ,

y = (ϕ− c)x− ab− aϕ, y = −(ψ + c)x− ab+ bψ.

The lines A, B, C pass through one point provided that

0 =

∣∣∣∣∣∣
1 ϕ− a bϕ+ bc
1 ϕ− b cϕ+ ca
1 ϕ− c aϕ+ ab

∣∣∣∣∣∣ =

= ϕ(a2 + b2 + c2 − bc− ca− ab) + a2(b− c) + b2(c− a) + c2(a− b) =

= −3qϕ− (b− c)(c− a)(a− b) = −3qϕ+ 3qω

and the lines A′, B′, C ′ pass through one point under condition

0 =

∣∣∣∣∣∣
1 ψ + a cψ − bc
1 ψ + b aψ − ca
1 ψ + c bψ − ab

∣∣∣∣∣∣ =

= ψ(a2 + b2 + c2 − bc− ca− ab) + a2(b− c) + b2(c− a) + c2(a− b) =

= −3qψ + 3qω,

i.e., if and only if, ϕ = ω respectively ψ = ω. ♦

The angle ω from Th. 1 will be called, by the analogy with the
Euclidean case, Brocard angle of the triangle ABC, and the points Ω1

and Ω2 Crelle–Brocard points of that triangle (shortly CB–points).
The equality (1) can also be written in the form −3qω = 3p1− 3p2,

i.e.

ω =
p2 − p1
q

.
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Corollary 1. If Ω1 and Ω2 are CB–points of the standard triangle ABC,
then the lines AΩ1, BΩ1, CΩ1 and the lines AΩ2, BΩ2, CΩ2 have suc-
cessively the equations

(2) y = (ω−c)x−aω−ab, y = (ω−a)x−bω−bc, y = (ω−b)x−cω−ca,

(3)
y = −(ω+b)x+aω−ca, y = −(ω+c)x+bω−ab, y = −(ω+a)x+cω−bc,

where ω is the Brocard angle of that triangle.

Corollary 2. If Ω1 and Ω2 are CB–points of the triangle ABC and ω
the Brocard angle of that triangle then the following equalities are valid

(4) ∠(AB,AΩ1) = ∠(BC,BΩ1) = ∠(CA,CΩ1) = ω,

(5) ∠(AΩ2, AC) = ∠(BΩ2, BA) = ∠(CΩ2, CB) = ω.

The points Ω1 and Ω2 are isogonal points with respect to the triangle
ABC.

If the lines through the symmedian center K of the triangle ABC,
which are parallel to the lines BC, CA, AB, intersect successively pairs
of the lines CA, AB; AB, BC; BC, CA at the pairs of the points Ba, Ca,
Cb, Ab; Ac, Bc, then the following equalities are valid (they are proved
in [4, Th. 7])

(6) ∠(BC,AcBa) = ∠(CA,BaCb) = ∠(AB,CbAc) = ω,

(7) ∠(CaAb, BC) = ∠(AbBc, CA) = ∠(BcCa, AB) = ω.

According to (4) and (6) we get, for example the equality ∠(AB,AΩ1) =
∠(AB,CbAc) which means that the lines AΩ1 and CbAc are parallel, and
analogously BΩ1||AcBa and CΩ1||BaCb. Besides that the lines BaK,
CbK, AcK are parallel to the lines BC, CA, AB, respectively. Thus,
the triangles ABC and BaCbAc have the property that parallel lines
through the vertices of the first triangle with the corresponding sides of
the second triangle pass through one point and parallel lines through
the vertices of the second triangle with corresponding sides of the first
triangle pass also through one point. For these two triangles we shall say
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parallelogonic, and two mentioned points are the centers of parallelogy of
these triangles. In the same way, by means of the equalities (5) and (7),
it can be shown the triangles ABC and CaAbBc are parallelogonic, so we
have the following theorem

Theorem 2. If the lines through the symmedian center K of the triangle
ABC, which are parallel to the lines BC, CA, AB, intersect successively
pairs of the lines CA, AB; AB, BC; BC, CA at the pairs of the points
Ba, Ca; Cb, Ab; Ac, Bc, then the triangle ABC is parallelogonic with the
triangles BaCbAc and CaAbBc. The centers of parallelogy are the points
Ω1, K and Ω2, K where Ω1 and Ω2 are CB–points of the triangle ABC.

Theorem 3. CB–points of the standard triangle ABC are the points

(8) Ω1 =

(
p− p1
q

,
3p 2

1

q2
− 2

9
q

)
, Ω2 =

(
p− p2
q

,
3p 2

2

q2
− 2

9
q

)
.

Proof. From the last two equations (2) for abscissa x of the point Ω1 we
get the equation (a− b)x = c(a− b)− (b− c)ω. Applying (1) we obtain

x = c− b− c
a− b

ω = c+
1

3q
(b− c)2(c− a) =

1

3q
[3cq − (q + 3bc)(c− a)] =

=
1

3q
(2cq+aq+3p−3bc2) =

1

3q
[2c(bc−a2)+a(ca−b2)−3bc2+3p] =

=
1

3q
(3p− bc2 − ca2 − ab2) =

1

3q
(3p− 3p1) =

p− p1
q

= −2p1 + p2
q

.

If the last two equations (2) are multiplied successively by −b and a and
if we add these two obtained equations we get for the ordinate y of the
point Ω1

y = ωx− qω

a−b
−c(a+b)=

1

q2
(2p1+p2)(p1−p2)+

1

3
(b−c)(c−a)+c2 =

=
1

q2
(2p 2

1 − p1p2 − p 2
2) +

1

3
(2q − 3ab) + ab− q =

=
3p 2

1

q2
− 1

q2
(p 2

1 + p1p2 + p 2
2)−

q

3
=

3p 2
1

q2
+
q

9
− q

3
=

3p 2
1

q2
− 2q

9
.

The substitution b↔ c results in the substitutions p1 ↔ p2 and ω ↔ −ω,
and the equations (2) become the equations (3) and vice versa. Because
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of that the same substitution leads to the substitution Ω1 ↔ Ω2 in the
equations (8). ♦

Referring to [5], Th. 2 the second Lemoine circle of the standard
triangle ABC is the pair of isotropic lines with the equations

x =
p− p1
q

, x =
p− p2
q

,

and because of (8) these lines pass through the points Ω1 and Ω2. So we
have the following statement.

Corollary 3. CB-points of the standard triangle ABC lie on its second
Lemoine circle, which consists of two isotropic lines where each of these
lines passes through one CB-point.

Theorem 4. The joint line of CB–points Ω1 and Ω2 of the standard
triangle ABC has the equation

(9) y =
3p

q
x− 6p2

q2
− 5

9
q

or y =
3p

q
x+ 2ω2 +

1

3
q.

Proof. For example for the point Ω1, owing to (8), we get

3p

q
· p− p1

q
− 6p 2

q 2
− 5

9
q = − 3

q2
(p2 + pp1 + p 2

1) +
3p 2

1

q2
− 5

9
q =

=
q

3
+ 3

p 2
1

q2
− 5

9
q =

3p 2
1

q2
− 2

9
q.

Besides that we have

−6p 2

q 2
− 5

9
q − q

3
= −6p 2

q 2
− 8

9
q = − 2

9q 2
(27p2 + 4q3) = −2ω2. ♦

Acoording to [16] the Lemoine line of the triangle ABC has the

slope
3p

q
, so it follows

Corollary 4. The joint line of CB–points of an allowable triangle is
parallel to its Lemoine line.

Theorem 5. If R is the radius of the circumscribed circle of a triangle
and ω its Brocard angle, then the distance of CB–points is equal to 2Rω.

Proof. According to [7] 2R = 1 for the standard triangle ABC. There-
fore from (8) we get
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Ω2Ω1 =
p− p1
q
− p− p2

q
=
p2 − p1
q

= ω = 2Rω. ♦

In [15] Tölke proved a theorem wherefrom we get

Theorem 6. CB-points of an allowable triangle in an isotropic plane
are conjugated with regard to its polar circle.

Proof. In [1] it is proved that polar circle Kp of the standard triangle has
the equation x2+2y+q = 0, so the points (x1, y1), (x2, y2) are conjugated
with respect to this circle under condition x1x2 + y1 + y2 + q = 0. For
the points Ω1, Ω2 owing to (8) we get

q 2(x1x2 + y1 + y2 + q) = (p− p1)(p− p2) + 3p 2
1 + 3p 2

2 −
4

9
q 3 + q 3 =

= p 2 − (p1 + p2)p+ 3(p 2
1 + p1p2 + p 2

2)− 2p1p2 +
5

9
q3 =

= 2p 2 + 3(−1

9
q 3)− 2

(
p 2 +

1

9
q3
)

+
5

9
q 3 = 0. ♦

Theorem 7. CB–points Ω1 and Ω2 of the triangle ABC satisfy the
following equalities

AΩ1 = −ω CA
BC
, BΩ1 = −ω AB

CA
, CΩ1 = −ω BC

AB
,

AΩ2 = ω AB
BC
, BΩ2 = ω BC

CA
, CΩ2 = ω CA

AB
,

where ω is the Brocard angle of the triangle ABC.

Proof. From (1) we obtain

3p− 3p1 − 3aq = 3p− bc2 − ca2 − ab2 − 3p− 3a2(b+ c) =

= c2(c+ a)− ca2 − a(c+ a)2 + 3a3 = 2a3 − 3a2c+ c3 =

= (a− c)2(2a+ c) = (a− c)2(a− b) =

=
a− c
c− b

(b− c)(c− a)(a− b) = −CA
BC

3qω,

3p− 3p2 − 3aq = 3p− b2c− c2a− a2b− 3p− 3a2(b+ c) =

= b2(a+ b)− a(a+ b)2 − a2b+ 3a3 = 2a3 − 3a2b+ b3 =

= (a− b)2(2a+ b) = (a− b)2(a− c) =

= −b− a
c− b

(b− c)(c− a)(a− b) =
AB

BC
3qω

wherefrom it follows

AΩ1 =
p− p1
q
− a =

3p− 3p1 − 3aq

3q
= −CA

BC
ω,
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AΩ2 =
p− p2
q
− a =

3p− 3p2 − 3aq

3q
=
AB

BC
ω. ♦

Corollary 5. With the labels from Th. 6 the following equalities are
valid

AΩ1 ·BΩ1 · CΩ1 = −ω3, AΩ2 ·BΩ2 · CΩ2 = ω3,

BΩ1 · CΩ2 = −ω2, CΩ1 · AΩ2 = −ω2, AΩ1 ·BΩ2 = −ω2,

AΩ1 : AΩ2 = −CA : AB, BΩ1 : BΩ2 = −AB : BC,

CΩ1 : CΩ2 = −BC : CA.

TÖLKE ([15]) has the equalities

AΩ1

AΩ2

:
BΩ1

BΩ2

:
CΩ1

CΩ2

=
CA

AB
:
AB

BC
:
BC

CA

and shows that these equalities characterize CB–points among the pairs
of isogonal points Ω1 and Ω2 of the triangle ABC.

Theorem 8. Let Ω1, Ω2 be CB-points of the triangle ABC and

A1 = BΩ1 ∩ CΩ2, B1 = CΩ1 ∩ AΩ2, C1 = AΩ1 ∩BΩ2,

A2 = BΩ2 ∩ CΩ1, B2 = CΩ2 ∩ AΩ1, C2 = AΩ2 ∩BΩ1.(10)

The lines AA1, BB1,CC1 pass through the one point Ω′
1, and the lines

AA2, BB2, CC2 pass through the one point Ω′
2.

This theorem generalizes the Euclidean result (see Emmerich [2]).

Proof. Let us multiply the equations (2)2 and (3)3, of the lines BΩ1 and
CΩ2, by (a− b)2 and −(c− a)2 respectively, and then add the obtained
equalities. Because of

(a− b)2 − (c− a)2 = q + 3ca− (q + 3ab) = −3a(b− c)

(a− b)2(ω − a) + (c− a)2(ω + a) =

= −(q + 3ab)(ω − a)− (q + 3ca)(ω + a) =

= −ω(2q + 3ca+ 3ab) + 3a2(b− c) =

=
1

3q
(b− c)(c− a)(a− b)(5q − 3bc) + 3a2(b− c) =

=
b− c

3q
[(2q − 3bc)(5q − 3bc) + 9q(bc− q)] =

b− c
3q

(q2 − 12bcq + 9b2c2),
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− bω(a− b)2 − cω(c− a)2 − bc[(a− b)2 − (c− a)2] =

= ω[b(q + 3ab) + c(q + 3ca)] + bc · 3a(b− c) =

= − 1

3q
(b− c)(c− a)(a− b)[−aq + 3a(b2 + c2)] + 3p(b− c) =

= −b− c
3q

(2q − 3bc)a[−q + 3(−q − bc)] + 3p(b− c) =

=
a(b− c)

3q
[(2q − 3bc)(4q + 3bc) + 9bcq] =

a(b− c)
3q

(8q2 + 3bcq − 9b2c2)

we get, after multiplication by −3q and dividing by b− c, the equality

9aq y = −(q2 − 12bcq + 9b2c2)x− a(8q2 + 3bcq − 9b2c2)(11)

of the line, which passes through the point BΩ1 ∩ CΩ2 = A1. However,
this line also passes through the point A = (a, a2) because of

−a(q2 − 12bcq + 9b2c2)− a(8q2 + 3bcq − 9b2c2) = 9aq(bc− q) = 9aq · a2.
Therefore (11) is the equation of the line AA1. This line passes through
the point

Ω1
′ =

(
−3p

q
,

3p2

q2
− 8

9
q

)
(12)

owing to

3p

q
(q2 − 12bcq + 9b2c2)− a(8q2 + 3bcq − 9b2c2) =

=
a

q
(3bcq2 − 36b2c2q + 27b3c3 − 8q3 − 3bcq2 + 9b2c2q) =

=
a

q
(−8q3 − 27b2c2q + 27b3c3) =

a

q
(−8q3 + 27b2c2 · a2) =

= 9aq

(
3p2

q2
− 8

9
q

)
,

and the same is true for the lines BB1 and CC1. Let us multiply the
equalities (2)3 and (3)2 of the lines CΩ1 and BΩ2 with a − b and a − c
respectively. If we add the obtained equalities, because of 2a−b−c = 3a
and
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(a− b)(ω − b)− (a− c)(ω + c) = −(b− c)ω + b2 + c2 − a(b+ c) =

=
1

3q
(b− c)2(c− a)(a− b) + a2 + b2 + c2 =

=
1

3q
[−(q + 3bc)(2q − 3bc)− 2q · 3q] = − 1

3q
(8q2 + 3bcq − 9b2c2),

− cω(a− b) + bω(a− c)− ca(a− b)− ab(a− c) =

= a(b− c)ω − a(ca+ ab− 2bc) =

= − a

3q
(b− c)2(c− a)(a− b)− a(q − 3bc) =

=
a

3q
[(q + 3bc)(2q − 3bc)− 3q(q − 3bc)] = − a

3q
(q2 − 12bcq + 9b2c2),

we get, after multiplication by 3q and dividing by a, the equality

9aq y = −(8q2 + 3bcq − 9b2c2)x− a(q2 − 12bcq + 9b2c2)(13)

of the line, which passes through the point BΩ2 ∩ CΩ1 = A2. However,
this line also passes through the point A because of

−a(8q2 + 3bcq − 9b2c2)− a(q2 − 12bcq + 9b2c2) = 9aq(bc− q) = 9aq · a2,
and (13) is the equation of the line AA2. This line passes through the
point

Ω2
′ =

(
3p

2q
,

3p2

2q2
− q

9

)
(14)

owing to

− 3p

2q
(8q2 + 3bcq − 9b2c2)− a(q2 − 12bcq + 9b2c2) =

= − a

2q
(24bcq2 + 9b2c2q − 27b3c3 + 2q3 − 24bcq2 + 18b2c2q) =

= − a

2q
(2q3 + 27b2c2q − 27b3c3) = − a

2q
(2q3 − 27b2c2 · a2) =

= 9aq

(
3p2

2q2
− q

9

)
. ♦

Theorem 9. With the labels from Th. 8 the lines A1A2, B1B2, C1C2

pass through one point Ω0, which lies on the line Ω′
1 Ω′

2 as well as on the
Euler line of the triangle ABC.
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This theorem generalizes the Euclidean result from Emmerich [2]
and Nehring [8].

Proof. The point Ω0 = (0, d), where

d =
54p2 − 10q3

27q2
,(15)

lies on the Euler line of the triangle ABC which, according to [7], has
the equation x = 0. As

27p2 − 8q3

9q2
+ 2 · 27p2 − 2q3

18q2
=

1

9q2
(54q2 − 10q3) = 3d,

the equality Ω1
′ + 2Ω2

′ = 3Ω0 is true, and the point Ω0 lies also on the
line Ω1

′Ω2
′. Let us multiply the equations (2)2 and (3)3 with d+ bc− cω

and −(d + bc + bω), respectively. The addition of the obtained results
leads to the equation

−(b+ c)ω y = [(d+ bc− cω)(ω − a) + (d+ bc+ bω)(ω + a)]x−
− ω[b(d+ bc− cω) + c(d+ bc+ bω)] + bc(b+ c)ω

of a line through the point A1. The terms in brackets are equal to

(b− c)ω2 + (2d+ 2bc+ ca+ ab)ω = [(b− c)ω + 2d+ 2bc− a2]ω
and −(b + c)(d + bc)ω, and the final form of this equation, without the
factor ω, is

ay = [(b− c)ω + 2d+ 2bc− a2]x+ ad(16)

owing to a(d + bc) − abc = ad. Therefore, this line passes through the
point Ω0 = (0, d). Multiplying equations (2)3 and (3)2 with d + ab− bω
and −(d+ ca+ cω) respectively, and adding the obtained equations, we
get the equation

(ab− ca− bω − cω)y = [(d+ ab− bω)(ω − b) + (d+ ca+ cω)(ω + c)]x−
− ω[c(d+ab−bω)+b(d+ ca+ cω)]−a[c(d+ ab− bω)−b(d+ ca+ cω)]

of a line through the point A2. The terms in square brackets are equal
to

− (b− c)ω2 + (2d+ ab+ b2 + ca+ c2)ω − (b− c)d− a(b2 − c2) =

= −(b− c)ω2 + (2d− bc− bc)ω − (b− c)d+ a2(b− c) =

= 2(d− bc)ω + (a2 − ω2 − d)(b− c)
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and (b+ c)d+ 2p, −(b− c)d− 2bcω, so this equation is of the form

[a(b− c) + aω]y = [2(d− bc)ω + (a2 − ω2 − d)(b− c)]x−
− (2p− ad)ω + a[(b− c)d+ 2bcω]

and a free coefficient is ad(b− c+ ω), i.e., it is of the form

(17) a(b−c+ω)y=[2(d−bc)ω + (a2−ω2 − d)(b− c)]x+ ad(b− c+ ω).

Therefore this line passes through the point Ω0 = (0, d). For the proof
of the equivalency of the equations (16) and (17) it is necessary to prove
the equality

(b− c+ ω)[(b− c)ω + 2d+ 2bc− a2] = 2(d− bc)ω + (a2 − ω2 − d)(b− c),
i.e.,

(b−c)2ω+2(b−c)ω2+2(d+bc)(b−c)+4bcω−2a2(b−c)−a2ω+(b−c)d = 0.

As
(b− c)2 + 4bc− a2 = (b+ c)2 − a2 = 0,

without the factor b− c, it is necessary to prove the equality 2ω2 + 3d+
+2bc − 2a2 = 0, i.e. the equality 2ω2 = −3d − 2q. However we get
according to (15) and (1)

−3d− 2q =
1

9q2
(10q3 − 54p2)− 2q = −2

27p2 + 4q3

9q2
=

=
2

9q2
(b− c)2(c− a)2(a− b)2 = 2ω2. ♦

In the Euclidean geometry Emmerich ([2]) and Nehring ([8]) have
the equality Ω1

′Ω0 : Ω2
′Ω0 = −2 cos 2ω, and in the isotropic geometry

the equality Ω1
′ + 2Ω2

′ = 3Ω0 implies the following

Corollary 6. The point from Th. 9 satisfies the equality
Ω′

1 Ω0 : Ω′
2 Ω0 = −2.

Theorem 10. The points Ω′
1 and Ω′

2 from Th. 8 satisfy the equality
AΩ′

1

AΩ′
2

:
BΩ′

1

BΩ′
2

:
CΩ′

1

CΩ′
2

= BC3 : CA3 : AB3.

In the Euclidean geometry Nehring [8] has this statement.

Proof. From (12) and (14) we get

AΩ′
1 = −3p

q
− a = −a

q
(q + 3bc) =

a

q
(b− c)2,

AΩ′
2 =

3p

2q
− a =

a

2q
(3bc− 2q) =

a

2q
(c− a)(a− b)
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and therefore
AΩ′

1

AΩ′
2

= − 2(b− c)2

(c− a)(a− b)
=

2(b− c)3

3qω
= − 2

3qω
BC3. ♦

Theorem 11. With the labels from Th. 8 the equalities

BA2

CA2

= −AB
3

CA3
,

CB2

AB2

= −BC
3

AB3
,

AC2

BC2

= −CA
3

BC3
(18)

are valid.

This theorem generalizes the Euclidean result (see Piggott [9]).

Proof. Let us find the abscissa of the point A2 = CΩ1 ∩ BΩ2. By the
subtracting equations (2)3 and (3)2 of the lines CΩ1 and BΩ2, we get the
equation (2ω− b+ c)x− (b+ c)ω+ a(b− c) = 0 with the solution x = a2
given by the formula

a2 =
a(c− b− ω)

2ω − b+ c
.

Since

c− b− ω = −(b− c) +
1

3q
(b− c)(c− a)(a− b) =

=
b− c

3q
(−3q + 2q − 3bc) = −b− c

3q
(q + 3bc),

2ω − b+ c = − 2

3q
(b− c)(c− a)(a− b)− (b− c) =

= −b− c
3q

[2(2q − 3bc) + 3q] = −b− c
3q

(7q − 6bc),

it follows

a2 =
a(q + 3bc)

7q − 6bc
.

Because of that we get

(7q − 6bc) ·BA2 = (7q − 6bc)(a2 − b) = a(q + 3bc)− b(7q − 6bc) =

= (a− 7b)q + 3abc+ 6b2c =

= −(a− 7b)(a2 + ab+ b2)− 3b(a+ 2b)(a+ b) =

= −a3 + 3a2b− 3ab2 + b3 = (b− a)3 = AB3,

and analogously

(7q − 6bc) · CA2 = AC3 = −CA3,
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so the first of the equalities (18) is valid. ♦

In the Euclidean geometry the statement of Th. 13 can be found
at [10], Pranesachar. The same statement can also be found at Piggott
[9]. He states that in the considered case the line through the points A,
Ω1, Ω2 is the angle bisector of the angle A. It is a consequence of the
isogonality of the points Ω1 and Ω2.

It could be useful to know the midpoint of the points Ω1 and Ω2.
So, it can be proved.

Theorem 12. The midpoint of CB–points of the standard triangle ABC

is the point S =

(
3p

2q
,

1

2
ω2 − 1

3
q

)
.

Proof. According to (8) we get

x =
2p− p1 − p2

2q
=

3p

2q
,

y =
3

2q2
(p21 + p22)−

2

9
q =

3

2q2
[
(p1 + p2)

2 − 2p1p2
]
− 2

9
q =

=
3

2q2

[
p2−2

(
p2+

1

9
q3
)]
− 2

9
q = − 3

2q2

(
p2 +

2

9
q3
)

+
1

9
q − 1

3
q =

= −3p2

2q2
− 2

9
q − 1

3
q = − 1

18q2
(27p2+4q3)− 1

3
q =

1

18q2
· 9q2ω2− 1

3
q =

=
1

2
ω2 − 1

3
q. ♦

Owing to [7] the Brocard diameter of the triangle ABC is the

isotropic line with the equation x =
3p

2q
, so it follows

Corollary 7. The midpoint of CB–points of an allowable triangle lies
on its Brocard diameter.

The following interesting statement can be also proved.

Theorem 13. CB-points of the triangle ABC are collinear with its
vertex A if and only if the equality BC2 + CA · AB = 0 is valid.

Proof. The lines AΩ1 and AΩ2 with the first equations (2) and (3)
are coincident under the condition 2ω = −(b − c), i.e. provided that
2(c − a)(a − b) = 3q or 2(2q − 3bc) = 3q which gives the final condition
q = 6bc.
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On the other hand, we get
BC2+CA·AB = (b−c)2+(c−a)(a−b) = −(q+3bc)+2q−3bc = q−6bc,
so the obtained condition is equivalent to the desired equality BC2+
+CA · AB = 0. ♦
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