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Abstract: In this paper, we offer an instructive treatment and some natural
extensions of a subadditive set-valued function of Páles.
This function shows that the boundedness condition in a set-valued generaliza-
tion of Hyers’ stability theorem, proved by Gajda and Ger, is essential.
Here, instead of set-valued functions, we shall use relations. Thus, the results
will also illustrate the appropriateness of the relational methods of the present
author.

Introduction

Hyers [24] in 1941, giving a partial answer to a general problem
formulated by Ulam during a talk at the University of Wisconsin in
1940, proved a slightly weaker Banach space particular case the following
stability theorem.

Theorem 1. If f is an ε-approximately additive function of a commu-
tative semigroup X to a Banach space Y , for some ε > 0, in the sense
that
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‖f(x+ y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ X, then there exists an additive function g of X to Y such
that g is ε-near to f in the sense that

‖f(x)− g(x)‖ ≤ ε

for all x ∈ X.

Remark 1. Hence, by using the N-homogeneity of g, one can infer that

g(x) = lim
n→∞

n−1f(nx)

for all x ∈ X. Therefore, the additive function g is uniquely determined.

By Ger [17], M. Laczkovich announced at a conference that a strict
inequality form of the X = N, Y = R and ε = 1 particular case of the
above theorem was already proved by Pólya and Szegő [37, Aufgabe 99,
pp. 17, 171] in 1925. Moreover, this particular case is actually equivalent
to the original theorem. (For some ideas in this respect, see [63, Remarks
A.5 and A.6, p. 633].)

However, it is now more important to note that Hyers’ theorem
was already transformed into set-valued settings by W. Smajdor [47] and
Gajda and Ger [14], in 1986 and 1987, respectively, by making use the
following observations.

If f and g are as in Th. 1 and B =
{
y ∈ Y : ‖y‖ ≤ ε

}
, then

g(x)− f(x) ∈ B and f(x+ y)− f(x)− f(y) ∈ B,
and hence

g(x) ∈ f(x) +B and f(x+ y) ∈ f(x) + f(y) +B

for all x, y ∈ X.

Therefore, by defining

F (x) = f(x) +B

for all x ∈ X, we can get a set-valued function F of X to Y such that
g is a selection of F and F is subadditive. That is,

g(x) ∈ F (x) and F (x+ y) ⊂ F (x) + F (y)

for all x, y ∈ X.

Thus, the essence of Hyers’ theorem is nothing but the statement
of the existence of an additive selection function of a certain subadditive
set-valued function. A similar observation, in connection with the Hahn–
Banach extension theorems, was already announced by Rodŕıguez-Salinas
and Bou [43] in 1974 and Gajda, A. Smajdor and W. Smajdor [15] in
1992. (See also [49], [53] and [20] for some further developments.)
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In particular, in 1987 Gajda and Ger [14] proved the following gen-
eralization of Th. 1. (See also Gajda [13, Th. 4.2] for a further general-
ization.)

Theorem 2. If F is a subadditive set-valued function of a commutative
semigroup X to a Banach space Y such that the values F (x) of F are
nonempty, closed and convex, and moreover

sup
{

diam
(
F (x)

)
: x ∈ X

}
< +∞,

then F has an additive selection function f .

Remark 2. Hence, by using the N-homogeneity of f and the above
boundedness condition on F , one can infer that

{f(x)} =
∞⋂
n=1

n−1F (nx)

for all x ∈ X. Therefore, the additive selection function f of F is
uniquely determined.

At the same time, Gajda and Ger [14] also proved an extension
of this theorem to a separated, sequentially complete topological vector
space Y . (See also Gajda [13, Th. 4.3] for a further generalization.)

The importance of the observations of W. Smajdor, Gajda and Ger
was soon recognized by Hyers and Rassias [25], Rassias [40], Hyers, Isac
and Rassias [26, pp. 204–231], and Czerwik [9, pp. 301–329].

Moreover, the results of Gajda and Ger [14] have been generalized
and improved by Popa [38, 39], Badora [3], Badora, Ger and Páles [4],
Piao [36], Lu and Park [30], and the present author [58, 60].

However, it is now more important to note that, by finding the
following counterexample, Páles showed at a conference that the bound-
edness condition on the function F is essential for the proof of Th. 2.

This counterexample, which also clarifies the importance of the infi-
mality condition of [58], was not originally published by Páles. However,
it was cited by Gajda and Ger [14] in 1987, Hyers and Rassias [25] in
1992, Rassias [40] in 1998, and Hyers, Isac and Rassias [26, p. 210] in
1998. (Moreover, A. Smajdor [46] in 1990 considered a superadditive
counterpart of it.)

Example. Define R+ = [0,+∞[ and

F (x) = [x2,+∞[

for all x ∈ R+. Then, F is a subadditive set-valued function of the
semigroup R+ to the Banach space R such that values F (x) of F are
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nonempty, closed and convex, but F still does not have any additive
selection function.

To prove the latter fact, following [14], assume on the contrary that
f is an additive selection function of F . Then, by [1, Th. 2.1], f can be
extended to an additive function g of R to itself. Moreover, we can note
that

g(x) = f(x) ∈ F (x) = [x2,+∞[, and thus x2 ≤ g(x)

for all x ∈ R+. Therefore, g is bounded below by 0 on R+. Thus, by [1,
Cor. 2.5], there exists a number c ∈ R such that g(x) = cx for all x ∈ R.
Hence, we can already infer that x2 ≤ g(x) = cx, and thus x ≤ c for all
x ∈ R with x > 0. This contradiction proves the the required assertion.

Unfortunately, the set-valued function F of Páles is defined only on
a semigroup. Therefore, in view of the counterexamples of Á. Száz and
G. Száz [64], Godini [21], Sablik [45], Paganoni [35], Forti and Schwaiger
[11], Forti [10], Gajda [12], Rassias and Šemrl [41], Gǎvruţǎ [16], Kazhdan
[27], and Špakula and Zlatoš [50], it seems to be of some interest to find
some reasonable extensions of the function F to R.

This problem and some of its immediate generalizations, motivated
by the results of Aczél et al. [2], were posed by the present author at
some special courses for students and in several talks with colleagues.
However, no answers have been obtained. Therefore, it seems reasonable
to present here some possible solutions. These will also well illustrate
the appropriateness of our relational methods offered in [63], where we
have only considered a natural totalization of F .

1. Relations and functions

A subset F of a product set X×Y is called a relation on X to Y .
If in particular F ⊂ X2, then we may simply say that F is a relation on
X. Thus, a relation on X to Y is also a relation on X ∪ Y .

If F is a relation on X to Y , then for any x ∈ X and A ⊂ X the
sets F (x) =

{
y ∈ Y : (x, y) ∈ F

}
and F [A] =

⋃
a∈A F (a) are called

the images of x and A under F , respectively.

Instead of y ∈ F (x) sometimes we shall also write xFy. Moreover,
the sets DF =

{
x ∈ X : F (x) 6= ∅

}
and RF = F [X] = F [DF ] will be

called the domain and range of F , respectively.
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If in particular DF = X, then we say that F is a relation of X to
Y , or that F is a total relation on X to Y . While, if RF = Y , then we
say that F is a relation on X onto Y .

If F is a relation on X to Y , then F =
⋃
x∈X{x} × F (x) =

=
⋃
x∈DF

{x} × F (x). Therefore, a relation F on X to Y can be nat-
urally defined by by specifying F (x) for all x ∈ X, or by specifying DF

and F (x) for all x ∈ DF .

For instance, if F is a relation on X to Y , then the inverse relation
F−1 of F can be naturally defined such that F−1(y) = {x ∈ X : y∈F (x)}
for all y ∈ Y . Thus, we also have F−1 = {(y, x) : (x, y) ∈ F}.

Moreover, if in addition G is a relation on Y to Z, then the com-
position relation G ◦ F of G and F can be naturally defined such that
(G ◦ F )(x) = G[F (x)] for all x ∈ X. Thus, we also have (G ◦ F )[A] =
= G[F [A]] for all A ⊂ X.

In particular, a relation f on X to Y is called a function if for
each x ∈ Df there exists y ∈ Y such that f(x) = {y}. In this case, by
identifying singletons with their elements, we may simply write f(x) = y
in place of f(x) = {y}.

A relation F on X to Y can be naturally identified with the set-
valued function F defined by F(x) = F (x) for all x ∈ X. However, thus
in contrast to F ⊂ X×Y we have F ⊂ X×P(Y ). Therefore, F is a more
convenient tool than F.

If F is a relation on X to Y , then a subset Φ of F is called a partial
selection relation of F . Thus, we also have DΦ ⊂ DF . Therefore, a
partial selection relation Φ of F may be called total if DΦ = DF .

In the literature, the total selection functions of a relation F are
usually called the selections of F . Thus, in particular, the Axiom of
Choice can be briefly expressed by saying that every relation F has a
selection.

If F is a relation on X to Y and U ⊂ X, then the relation F | U =
= F ∩ (U×Y ) is called the restriction of F to U . Moreover, F and G
are relations on X to Y such that DF ⊂ DG and F = G|DF , then G is
called an extension of F .
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2. Computations with sets

A function ? of a set X to itself is called an unary operation on X.
Moreover, a function ∗ of X2 to X is called a binary operation in X. In
these cases, for any x, y ∈ X, we usually write x? and x ∗ y in place of
?(x) and ∗(x, y), respectively.

A set X, equipped with a binary operation +, is called a groupoid.
Instead of groupoids, it is usually sufficient to consider only semigroups
(associative groupoids) or even monoids (semigroups with zero).

However, several definitions on semigroups can be naturally ex-
tended to groupoids. For instance, if X is a groupoid, then for any n ∈ N
and x ∈ X, we may naturally define nx = x if n = 1 and nx = (n−1)x+x
if n 6= 1.

Moreover, for any n ∈ N and A ⊂ X we may also naturally define
nA =

{
na : a ∈ A

}
. And, for any A,B ⊂ X, we may naturally define

A + B =
{
a + b : a ∈ A, b ∈ B

}
. Thus, for instance, 2A can be easily

confused with the possibly larger set A+ A.

If in particular X is a groupoid with zero, then for any x ∈ X we
may also naturally define 0x = 0. Moreover, if more specially X is a
group, then for any n ∈ N and x ∈ X we may also naturally define
(−n)x = n(−x).

Thus, if in particular X is a group, then for any k ∈ Z and A ⊂ X
we may also define kA =

{
ka : a ∈ A

}
. And, for any A,B ⊂ X, we

may also write −A = (−1)A and A− B = A + (−B) despite that the
family P(X) is, in general, only a monoid with involution.

If more specially X is a vector space over K, then for any λ ∈ K
and A ⊂ X we may also define λA =

{
λa : a ∈ A

}
. Thus, only two

axioms of a vector space may fail to hold for P(X). Namely, only the
one point subsets of X can have additive inverses. Moreover, in general
we only have (λ+ µ)A ⊂ λA+ µA.

A subset A of a groupoid X is called additive, subadditive and super-
additive if A = A+A, A ⊂ A+A and A+A ⊂ A, respectively. Moreover,
for some n ∈ N, the set A is called n-homogeneous, n-subhomogeneous
and n-superhomogeneous if A = nA, A ⊂ nA and nA ⊂ A, respectively.

In particular, a subset A of a group X is called symmetric if A =
= −A. Moreover, for some λ∈K, a subset A of a vector space X over
K is called λ-affine, λ-subaffine and λ-superaffine if A = λA+ (1− λ)A,
A ⊂ λA+ (1− λ)A and λA+ (1− λ)A ⊂ A, respectively.
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Thus, a subset A of a vector space X over R may be called convex if
A is [0, 1]-superaffine in the sense that A is λ-superaffine for all λ ∈ [0, 1].
Note that the inclusions 0A+ (1− 0)A ⊂ A and 1A+ (1− 1) ⊂ A always
hold. Therefore, we may take here ] 0, 1[ in place of [0, 1].

In the sequel, for a subset A of a field K, we shall briefly write
A∗ = A \ {0}. Moreover, as is customary, we shall use the common
notation K for the number fields Q, R, and C.

3. Computations with intervals

In the set R = R∪{−∞,+∞} of the extended real numbers, beside
the usual ordering, we shall only consider some restricted addition and
multiplication. Thus, in contrast some recent trends, expressions like
0(+∞) and −∞+ (+∞) will not be defined.

Moreover, for any a, b ∈ R, with a ≤ b, we shall write [a, b] =
= {x ∈ R : a ≤ x ≤ b}, [a, b [ = {x ∈ R : a ≤ x < b} and ]a, b] =
= {x ∈ R : a < x ≤ b}. Thus, we have [a, a] = {a} and [a, a[ = ]a, a] = ∅.
Therefore, we shall usually assume that a < b.

Concerning half-open intervals, in the sequel we shall only need
some particular cases the following, well-known basic facts.

Theorem 3.1. If a, b ∈ R and c ∈ R ∪ {+∞} such that b < c, then

a+ [b, c[ = [a+ b, a+ c[.

Corollary 3.2. If a ∈ R and b ∈ R ∪ {+∞} such that a < b, then

[a, b[ = a+ [0,−a+ b[.

Theorem 3.3. If a ∈ R, b ∈ R ∪ {+∞} such that a < b, then for any
λ ∈ R we have

λ[a, b[ =


{0} if λ = 0;

[λa, λb[ if λ > 0;

]λb, λa] if λ < 0.

Lemma 3.4. If a, b ∈ R ∪ {+∞} such that a, b > 0, then

[0, a[ +[0, b[ = [0, a+ b[.

To check this, note that if a, b 6= +∞, then for any x ∈ [0, a + b[
by taking y = a(a + b)−1x and z = b(a + b)−1x we have y ∈ [0, a[ and
z ∈ [0, b[ such that x = y + z. Therefore, [0, a+ b[ ⊂ [0, a[ +[0, b[.
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While, if for instance a = +∞, then we also have a + b = +∞,
and thus [0, a + b[ = [0, a[. Hence, since 0 ∈ [0, b[, and thus [0, a[ ⊂
⊂ [0, a[ + [0, b[, it is already clear that the required inclusion is again
true.

Now, by using Cor. 3.2 and Lemma 3.4, one can easily prove the
following

Theorem 3.5. If a, c ∈ R and b, d ∈ R ∪ {+∞} such that a < b and
c < d, then

[a, b[ +[c, d[ = [a+ c, b+ d[.

Remark 3.6. In the last section of the paper, we shall also need some
similar fundamental results for the infimuma and suprema of subsets
of R.

For instance, if A and B are nonvoid subsets of R, then it can be
easily shown that inf(A + B) = inf(A) + inf(B) and sup(A + B) =
= sup(A) + sup(B).

4. Additive and homogeneous relations

Because of the extensive theory of additive, subadditive and super-
additive functions [1, 44, 23, 28], we may naturally have the following

Definition 4.1. A relation F on one groupoid X to another Y is called

(1) additive if F (x+ y) = F (x) + F (y),

(2) subadditive if F (x+ y) ⊂ F (x) + F (y),

(3) superadditive if F (x) + F (y) ⊂ F (x+ y)

for all x, y ∈ X.

Remark 4.2. Moreover, the relation F may, for instance, be naturally
called semi-additive (left-quasi-additive) if the equality F (x+y) = F (x)+
+F (y) is required to hold only for all x, y ∈ DF (x ∈ DF and y ∈ X).

Furthermore, if in particular X has a zero element (X is a group),
then the relation F may, for instance, be naturally called left-zero-additive
(inversion-additive) if F (x) = F (0) + F (x) (F (0) = F (x) + F (−x)) for
all x ∈ X.

Analogously to Def. 4.1, we may also naturally have the following

Definition 4.3. For some n ∈ N, a relation F on one groupoid X to
another Y is called

(1) n-homogeneous if F (nx) = nF (x),
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(2) n-subhomogeneous if F (nx) ⊂ nF (x),

(3) n-superhomogeneous if nF (x) ⊂ F (nx)

for all x ∈ X.

Remark 4.4. Moreover, the relation F may, for instance, be naturally
called n-semi-homogeneous if the equality F (nx) = nF (x) is required to
hold only for all x ∈ DF .

Furthermore, for some A ⊂ N, the relation F may, for instance, be
naturally called A-homogeneous if it is n-homogeneous for all n ∈ A.

The following two basic theorems, established in [63, 20], reveal
some intimate connections between additivity and homogeneity proper-
ties.

Theorem 4.5. If F is a superadditive relation on one groupoid X to
another Y , then DF is a subgroupoid of X and F is N-superhomogeneous.

Hence, it is clear that in particular we also have

Corollary 4.6. If f is a semi-additive function on one groupoid X to
another Y , then Df is a subgroupoid of X and f is N-semi-homogeneous.

Theorem 4.7. If F is a subadditive (right-quasi-subadditive) relation
on a groupoid X to a vector space Y over Q such that the value F (x)
is n−1-convex for all x ∈ DF and n ∈ N, then F is N-subhomogeneous
(N-semi-subhomogeneous).

Proof. Clearly, F (1x) = F (x) = 1F (x) for all x ∈ DF . Moreover, if
n ∈ N such that F (nx) ⊂ nF (x) for all x ∈ DF , then by the right-quasi-
subadditivity of F and the (n + 1)−1-convexity of the values of F we
have
F
(
(n+ 1)x

)
= F (nx+ x) ⊂ F (nx) + F (x) = F (x) + nF (x) =

= (n+ 1)
(

(n+ 1)−1F (x) +
(
1− (n+ 1)−1

)
F (x)

)
⊂ (n+ 1)F (x)

for all x ∈ DF . Therefore, in the right-quasi-subadditive case, we have
F (nx) ⊂ nF (x) for all n ∈ N and x ∈ DF , and thus F is N-semi-
subhomogeneous. ♦

Definition 4.8. A relation F on a group X to a set Y is called even if
F (−x) = F (x) for all x ∈ X.

While, a relation F on one group X to a another Y is called odd if
F (−x) = −F (x) for all x ∈ X.

Remark 4.9. Moreover, a relation F on one group X to another Y ,
may, for instance, be naturally called semi-subodd if F (−x) ⊂ −F (x) for
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all x ∈ DF .

However, the following simple theorem shows that some further
similar weakenings of oddness need not be introduced.

Theorem 4.10. If F is a relation on one group X to another Y , then
the following assertions are equivalent:

(1) F is odd;

(2) F (−x) ⊂ −F (x) for all x ∈ X;

(3) −F (x) ⊂ F (−x) for all x ∈ DF .

Now, by using some obvious analogues of Def. 4.3 and Rem. 4.4,
we can also easily prove the following two theorems which show that odd
relations are more important than the even ones.

Theorem 4.11. If F is an odd, k-superhomogeneous (k-subhomogeneous,
resp. k-semi-subhomogeneous) relation on one group X to another Y , for
some k ∈ Z, then F is also −k-superhomogeneous (−k-subhomogeneous,
resp. −k-semi-subhomogeneous).

Theorem 4.12. If F is a nonvoid, odd, superadditive relation on one
group X to another Y , then DF is a subgroup of X, 0 ∈ F (0), and F is
quasi-additive and Z-superhomogeneous.

Proof. Because of F 6= ∅, we have DF 6= ∅. Moreover, since F is odd and
superadditive, we also have −DF ⊂ DF and DF +DF ⊂ DF . Therefore,
DF is a subgroup of X.

Now, by taking x ∈ DF , we can see that
0 ∈ F (x)− F (x) = F (x) + F (−x) ⊂ F (0).

Moreover, if x ∈ DF , then we can also see that
F (x+ y) = {0}+ F (x+ y) ⊂ F (x) + F (−x) + F (x+ y) ⊂ F (x) + F (y)
for all y ∈ X. Therefore, F is left-quasi-subadditive.

The right-quasi-subadditivity of F can be proved quite similarly.
Moreover, from Theorems 4.5 and 4.11, we can see that F is Z∗-super-
homogeneous. Thus, to complete the proof, it remains to note only that
0F (x) ⊂ {0} ⊂ F (0) = F (0x) also holds for all x ∈ X. Therefore, F is
0-superhomogeneous too. ♦

Remark 4.13. This theorem can be partly generalized by assuming only
that Y is a monoid and F is quasi-odd in the sense that 0 ∈ F (x)+F (−x)
for all x ∈ DF .

However, it is now more important to note that as a useful conse-
quence of Th. 4.12, we have
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Corollary 4.14. If f is a nonvoid, semi-additive function on one group
X to another Y such that its domain Df is symmetric, then Df is a sub-
group of X, f(0) = 0, and f is quasi-additive and Z-semi-homogeneous.

Remark 4.15. Note that if F is an inversion-semi-subadditive relation
on a group to a groupoid Y such that 0 ∈ DF , then DF is symmetric.
Moreover, if in particular F is inversion-subadditive, then DF = X, and
thus F is total.

Finally, we note that, by using an obvious analogue of Def. 4.3, we
can also easily prove the following

Theorem 4.16. If F is a λ-subhomogeneous (λ-superhomogeneous) re-
lation on one vector space X over K to another Y , for some λ ∈ K∗,
then F is λ−1-superhomogeneous (λ−1-subhomogeneous).

Remark 4.17. In the sequel, a relation F on one vector space X over
R to another Y will be called convex-valued if F (x) is a convex subset of
Y for all x ∈ X.

Moreover, the relation F will be called convex if it is λ-convex for
all λ ∈ [0, 1] in the sense that λF (x) + (1− λ)F (y) ⊂ F

(
λx+ (1− λ)y

)
for all x, y ∈ X.

Note that thus a convex relation is always convex-valued, but the
converse statement need not be true. Moreover, the relation F is convex
if and only if it is a convex subset of the product space X×Y .

However, it is now more important to note that a subset A of Y
is convex if and only if the relation X×A is convex. Therefore, the
definition and properties of convex sets can also be derived from those of
convex relations.

5. The global negative of a relation

Definition 5.1. For any relation F on one group X to another Y , we
define a relation F∧ on X to Y such that

F∧(x) = −F (−x)

for all X. Moreover, we also define FM = F ∩ F∧.
Remark 5.2. Thus, we have DF∧ = −DF and

F∧ =
{

(−x,−y) : (x, y) ∈ F
}
.

Therefore, the relation F∧ will be called the global negative of F . (See
[18].)
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Remark 5.3. The partial negatives −F and F∨ of F can defined such
that −F (x) = −F (x) and F∨(x) = F (−x) for all x ∈ X. Note that any
one of the above three negatives can be expressed in terms of the other
two. Moreover, −F can easily be confused with F∧.

Concerning the operations ∧ and M, the following simple theorems
have been proved in [63]. (See also [62] for some improvements.)

Theorem 5.4. For any relation F on one group X to another Y , we
have

(1) F = F∧∧; (2) FM = FM∧ = F∧M; (3) FM = FMM.

Remark 5.5. Thus, ∧ is an involution and M is an idempotent operation
on the family P(X×Y ) of all relations on X to Y . Moreover, ∧ and M
commute, and FM is ∧-invariant. That is, FM is a fixed point of ∧.

Theorem 5.6. For any relation F on one group X to another Y , the
following assertions are equivalent:

(1) F is odd; (2) F∧ is odd;

(3) F = F∧; (4) F = FM; (5) F∧ = FM.

Remark 5.7. In this respect, it is also worth mentioning that F is
quasi-odd if and only if DF = DFM . Moreover, FM is total if and only if
F is total and quasi-odd.

From Th. 5.6, by Cor. 4.14, it is clear that in particular we have

Corollary 5.8. If f is a semi-additive function of one group X to an-
other Y with a symmetric domain, then f = f∧ = fM.

Theorem 5.9. For any relation F on one group X to another Y , FM is
the largest odd partial selection relation of both F and F∧.

Proof. By definition, we have FM = F ∩ F̂ ⊂ F . Therefore, FM is a
partial selection relation of F . Moreover, by Th. 5.4, we have FM∧ = FM.
Therefore, by Th. 5.6, FM is always odd.

On the other hand, if Φ is an odd partial selection relation of F , then
by Th. 5.6 we have Φ = ΦM. Moreover, by the corresponding definitions,
we have Φ ⊂ F , and hence ΦM ⊂ FM. Therefore, Φ ⊂ FM also holds.

Hence, it is clear that the first statement of the theorem is true.
Moreover, by Th. 5.4, we have FM = F∧M. Therefore, the second state-
ment of the theorem can be immediately derived from the first one by
writing F∧ in place F . ♦

Corollary 5.10. If F is a relation on one group X to another Y and Φ
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is an odd partial selection relation of F , then Φ ⊂ FM.

Remark 5.11. In contrast to ∧, the operation M is not compatible with
most of the set and relation theoretic operations. Moreover, the relation
FM fails to inherit several basic properties of F .

6. The Hyers transform of a relation

Definition 6.1. If F is a relation on a group X to a vector space Y over
Q, then for any k ∈ Z∗ we define a relation Fk on X to Y such that

Fk(x) = k−1F (kx)
for all x ∈ X.

Remark 6.2. Thus, we have DFk
=
{
x ∈ X : kx ∈ DF

}
and

Fk =
{

(x, y) ∈ X×Y : (kx, ky) ∈ F
}
.

The relation Fk or the family (Fk)k∈Z∗ will be called the Hyers trans-
form of F . Though, in contrast to Pólya and Szegő [37, pp. 17, 171],
Hyers [24] originally used the functional case of the subfamily (F2n)n∈N.

The set-valued case has been first studied by W. Smajdor [47] and
Gajda and Ger [14]. For some further developments, see Popa [38], Niko-
dem and Popa [34], Lu and Park [30], and the present author [58, 60].

Remark 6.3. Note that if in particular X is also a vector space over Q,
then we may also naturally define Fλ(x) = λ−1F (λx) for all x ∈ X and
λ ∈ Q∗.

Concerning the relations Fk, the following simple theorems have
also been proved in [63].

Theorem 6.4. If F is a relation on a group X to a vector space Y over
Q, then for any k ∈ Z∗

(1) F is k-subhomogeneous if and only if Fk ⊂ F ;

(2) F is k-superhomogeneous if and only if F ⊂ Fk.

Corollary 6.5. If F is as in Th. 6.4, then for any k ∈ Z∗ the relation
F is k-homogeneous if and only if F = Fk.

Hence, by Cor. 4.14, it is clear that in particular we also have

Corollary 6.6. If f is an additive function of a group X to a vector
space Y over Q, then f = fk for all k ∈ Z∗.

Moreover, as an immediate consequence of Th. 6.4, we can also
state
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Corollary 6.7. If F is a relation on one group X to another Y and Φ is
a k-superhomogeneous partial selection relation of F , for some k ∈ Z∗,
then Φ ⊂ Fk.

Theorem 6.8. If F is a relation on a group X to a vector space Y over
Q, then for any k, l ∈ Z∗ we have

(1) (Fk)l = (Fl)k = Fkl;

(2) (Fk)
∧ = (F∧)k = F−k; (3) (Fk)

M = (FM)k = Fk ∩ F−k.

Hence, it is clear that in particular we also have

Corollary 6.9. If F is as in Th. 6.8, then

(1) F∧ = F−1; (2) FM = F ∩ F−1.

Moreover, from Th. 6.8, by using Th. 5.6, we can immediately get

Corollary 6.10. If F is an odd relation on one group X to another Y ,
then Fk is also odd for all k ∈ Z∗.

7. Two superhomogenizations of a relation

Definition 7.1. For any relation F on a group X to a vector space Y
over Q, we also define

F ? =
⋂
n∈N

Fn and F ∗ =
⋂
k∈Z∗

Fk.

Remark 7.2. Thus, we have

F ∗ ⊂ F ? ⊂ F1 = F and F ∗ ⊂ F1 ∩ F−1 = F ∩ F∧ = FM.

Concerning operations ? and ∗, the following simple theorems have
also been proved in [63].

Theorem 7.3. If F is a relation on a group X to a vector space Y over
Q, then the following assertions are equivalent:

(1) F is N-superhomogeneous; (2) F ⊂ F ?; (3) F = F ?.

Theorem 7.4. If F is a relation on a group X to a vector space Y over
Q, then the following assertions are equivalent:

(1) F is Z∗-superhomogeneous; (2) F ⊂ F ∗; (3) F = F ∗.

Hence, by Cor. 4.14, it is clear that in particular we have

Corollary 7.5. If f is an additive function of a group X to a vector
space Y over Q, then f = f ? = f ∗.
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Theorem 7.6. If F is a relation on a group X to a vector space Y over
Q, then

(1) F∧? = F ?∧; (2) FM? = F ?M = F ∗;

(3)
(
Fk
)?

=
(
F ?
)
k

for all k ∈ Z∗; (4) F ?? = F ?.

Remark 7.7. In this respect, it is worth noticing that

F ?∧ =
⋂
n∈N

F−n and
(
F ?
)
k

=
⋂
n∈N

Fnk

for all k ∈ Z∗.
Theorem 7.8. If F is a relation on a group X to a vector space Y over
Q, then

(1) F∧∗ = F ∗∧ = F ∗; (2) FM∗ = F ∗M = F ∗;

(3)
(
Fk
)∗

=
(
F ∗
)
k

for all k ∈ Z∗; (4) F ?∗ = F ∗? = F ∗∗ = F ∗.

From Theorems 7.6 and 7.8, by using Th. 5.6, we can immediately
get

Corollary 7.9. If F is an odd relation on a group X to a vector space
Y , then F ? and F ∗ are also odd.

Theorem 7.10. If F is a relation on a group X to a vector space Y
over Q, then

(1) F ? is the largest N-superhomogeneous relation contained in F ;

(2) F ∗ is the largest Z∗-superhomogeneous relation contained in F .

Corollary 7.11. If F is a relation on a group X to a vector space Y
over Q and Φ is an N-superhomogeneous (Z∗-superhomogeneous) partial
selection relation of F , then Φ ⊂ F ? (Φ ⊂ F ∗).

Remark 7.12. In contrast to F 7→ Fk, the operations ? and ∗ are
not compatible with most of the set and relation theoretic operations.
Moreover, the relations F ? and F ∗ fail to inherit several basic properties
of F .

8. The relational equivalent of a set-valued function
of Páles

Definition 8.1. Define R+ = [0,+∞[ and

ϕ(x) = x2
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for all x ∈ R+.

The function ϕ can easily be seen to have the following useful prop-
erties.

Theorem 8.2.

(1) ϕ is increasing and convex;

(2) ϕ is superadditive and ϕ(0) = 0;

(3) ϕ is [0, 1]-subhomogeneous and [1,+∞[-superhomogeneous.

Proof. By two well-known theorems in calculus [51, (4.18) and (4.47)],
assertion (1) is immediate from the facts that ϕ′(x) = 2x ≥ 0 and ϕ′′(x) =
= 2 ≥ 0 for all x ∈ R+.

Moreover, if x ∈ R+ and 0 ≤ λ ≤ 1, then by using the second parts
of (1) and (2), we can easily see that

ϕ(λx) = ϕ
(
λx+ (1− λ)0

)
≤ λϕ(x) + (1− λ)ϕ(0) = λϕ(x).

Therefore, the first part of (3) is true. Hence, the second part of (3) can
be immediately derived by using a functional analogue of Th. 4.16.

Finally, to complete the proof, we can note that if x, y ∈ R+, then
0 ≤ 2xy, and thus

ϕ(x) + ϕ(y) = x2 + y2 ≤ x2 + y2 + 2xy = (x+ y)2 = ϕ(x+ y).

Therefore, the first part of (2) is also true. ♦

Remark 8.3. Because of the above non-direct proof of (1), it is worth
noticing that by an improvement of Rathore’s [42, Th. 1] the superad-
ditivity of ϕ on ]0,+∞[ can also be immediately derived from the fact
that x−1ϕ(x) = x ≤ 2x = ϕ′(x) for all x ∈]0,+∞[. Moreover, by the
second part of (2), the function ϕ is zero-additive.

In this respect, it is also worth mentioning that if f is a super-
additive function of R+ to itself, then f is increasing and f(0) = 0.
Moreover, by Matkowski [31, Lemma 2], f is differentiable at 0 and
f ′(0) = inf

x>0
x−1f(x).

In connection with Th. 8.2, it is also worth mentioning that by
Rosenbaum [44, Th. 1.4.6] a finite-valued convex function is subadditive
if and only if it is [1,+∞[-subhomogeneous. Moreover, by Burai and
Száz [8, Cor. 6.4], a 2-homogeneous real-valued function is subadditive if
and only if it is 2−1-convex.

Concerning the set R+, we can easily establish the following well-
known basic facts.
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Theorem 8.4.

(1) R+ is a closed and convex;

(2) R+ = R+ + R+ and R = R+ − R+;

(3) R+ = λ R+ if λ > 0 and −R+ = λ R+ if λ < 0;

(4) x ≤ y ⇐⇒ −x+ y ∈ R+ ⇐⇒ y ∈ x+ R+ for all x, y ∈ R.

Note that (3) and the first part of (2) are particular cases of the
corresponding statements of Th. 3.3 and Lemma 3.4.

Remark 8.5. From (4), by defining a relation Θ on R such that Θ(t) =
= t+R+ for all t ∈ R, we can note that Θ is the usual inequality relation
on R. Moreover, it is also worth noticing that, by [54, Th. 3.2], Θ is the
unique translation relation on R such that Θ(0) = R+.

The importance of translation relations lies mainly in the fact that
each vector topology can be derived from a family of translation relations
by [54]. Moreover, the multiplicative forms of translation functions can
be used to extended various algebraic structures by [52] and [56] and the
references therein.

Now, in addition to Def. 8.1, we may also naturally introduce the
following

Definition 8.6. Define a relation Φ on R+ to R such that

Φ(x) = ϕ(x) + R+

for all x ∈ R+.

Remark 8.7. Thus, for all x ∈ R+, we also have

Φ(x) = x2 + [0,+∞[= [x2,+∞[.

Therefore, Φ corresponds to the set-valued function of Páles mentioned
earlier.

Moreover, it also worth noticing that

Φ(x) = ϕ(x) + R+ = Θ
(
ϕ(x)

)
=
(
Θ ◦ ϕ

)
(x)

for all x ∈ R+. Therefore, Φ = Θ ◦ ϕ.

The relation Φ can also be easily seen to have the following useful
properties.

Theorem 8.8.

(1) Φ is decreasing and convex;

(2) Φ is closed and convex valued;

(3) Φ is zero-additive and subadditive;
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(4) R = Φ(x)− Φ(y) for all x, y ∈ R+;

(5) Φ is [0, 1]-superhomogeneous and [1,+∞[-subhomogeneous.

Proof. If x, y ∈ R+ such that x ≤ y, then by (1) in Th. 8.2 we have
ϕ(x) ≤ ϕ(y). Hence, by (4) in Th. 8.4, it follows that ϕ(y) ∈ ϕ(x) + R+.
Now, by using Def. 8.6 and (2) in Th. 8.4, we can see that

Φ(y) = ϕ(y) + R+ ⊂ ϕ(x) + R+ + R+ = ϕ(x) + R+ = Φ(x).

Therefore, Φ is decreasing.

If x, y ∈ R+, then by (2) in Th. 8.2 we have ϕ(x)+ϕ(y) ≤ ϕ(x+y).
Hence, by (4) in Th. 8.4, it follows that ϕ(x + y) ∈ ϕ(x) + ϕ(y) + R+.
Now, by using Def. 8.6, we can see that

Φ(x+ y) = ϕ(x+ y) + R+ ⊂ ϕ(x) + ϕ(y) + R+ + R+ =

= ϕ(x) + R+ + ϕ(y) + R+ = Φ(x) + Φ(y).

Therefore, Φ is subadditive.

If x, y ∈ R+ and 0 < λ < 1, then by (1) in Th. 8.2 we have

ϕ
(
λx+ (1− λ)y

)
≤ λϕ(x) + (1− λ)ϕ(y).

Hence, by (4) in Th. 8.4, it follows that

λϕ(x) + (1− λ)ϕ(y) ∈ ϕ
(
λx+ (1− λ)y

)
+ R+.

Now, by using Def. 8.6 and (3) and (2) in Th. 8.4, we can see that

λΦ(x) + (1− λ)Φ(y) = λ
(
ϕ(x) + R+

)
+ (1− λ)

(
ϕ(y) + R+

)
=

= λϕ(x) + λR+ + (1−λ)ϕ(y) + (1−λ)R+ =

= λϕ(x) + R+ + (1−λ)ϕ(y) + R+ =

= λϕ(x) + (1− λ)ϕ(y) + R+ + R+ ⊂
⊂ ϕ

(
λx+ (1− λ)y

)
+ R+ + R+ + R+ =

= ϕ
(
λx+ (1− λ)y

)
+ R+ = Φ

(
λx+ (1− λ)y

)
.

Therefore, Φ is convex. ♦

Remark 8.9. The above theorem can be proved more directly by using
the results of Sec. 3 instead of Th. 8.4.

However, the above arguments can also be well used in the case
when R+ and ϕ are replaced by some more general objects.
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9. Odd and superhomogeneous partial selection
relations of Φ

Remark 9.1. In the sequel, to apply the transformations M and ? to Φ,
we shall consider Φ as a relation on R.

Thus, by the corresponding definitions, for any x ∈ R we have

Φ(x) =

{
∅ if x < 0,

[x2,+∞[ if x ≥ 0.

Theorem 9.2. We have
ΦM = {(0, 0)}.

Proof. By Rem. 9.1, for any x ∈ R, we have

Φ(−x) =

{
∅ if x > 0,

[x2,+∞[ if x ≤ 0.

Hence, by Th. 3.3, it is clear that

Φ∧(x) = −Φ(−x) =

{
∅ if x > 0,

]−∞,−x2] if x ≤ 0.

Now, by the corresponding definitions, we can also easily see that

ΦM(x) =
(
Φ ∩ Φ∧

)
(x) = Φ(x) ∩ Φ∧(x) =

{
∅ if x 6= 0,

{0} if x = 0.

Therefore, the required equality is also true. ♦

Theorem 9.3. For a relation Ω on R, the following assertions are equiv-
alent:

(1) Ω = ∅ or Ω = {(0, 0)};
(2) Ω is an odd partial selection relation of Φ.

Note that if (2) holds, then by Cor. 5.10 and Th. 9.2 we have

Ω ⊂ ΦM = {(0, 0)}.
Therefore, either Ω = ∅ or Ω = {(0, 0)}. Thus, (1) also holds.

Theorem 9.4. We have
Φ? = {0} × R+.

Proof. If x ∈ R, then by Rem. 9.1, for any n ∈ N, we have

Φ(nx) =

{
∅ if x < 0,

[n2x2, +∞[ if x ≥ 0.



96 Á. Száz

Hence, by Th. 3.3, it is clear that

Φn(x) = n−1Φ(nx) =

{
∅ if x < 0,

[nx2, +∞[ if x ≥ 0.

Now, by the corresponding definitions, we can also easily see that

(Φ?)(x) =

( ∞⋂
n=1

Φn

)
(x) =

∞⋂
n=1

Φn(x) =

{
∅ if x 6= 0,

[0,+∞[ if x = 0.

Therefore, the required equality is also true. ♦

Theorem 9.5. For a relation Ω on R, the following assertions are equiv-
alent:

(1) Ω is an N-superhomogeneous partial selection relation of Φ;

(2) Ω = {0} × A for some N-superhomogeneous subset A of R+.

Note that if (1) holds, then by Cor. 7.11 and Th. 9.4 we have

Ω ⊂ Φ? = {0} × R+.

Therefore, Ω = {0} × A with A = Ω(0) ⊂ R+. Moreover, we can also
see that

nA = nΩ(0) ⊂ Ω(n0) = Ω(0) = A

for all n ∈ N. Therefore, A is N-superhomogeneous. Thus, (2) also holds.

Theorem 9.6. For a relation Ω on R, the following assertions are equiv-
alent:

(2) Ω is a superadditive partial selection relation of Φ;

(1) Ω = {0} × A for some superadditive subset A of R+.

Note that if (2) holds, then by Th. 4.5 Ω is N-superhomogeneous.
Thus, by Th. 9.5, we have Ω = {0} × A for some subset A of R+.
Moreover, we can also see that

A+ A = Ω(0) + Ω(0) ⊂ Ω(0) = A.

Therefore, A is superadditive. Thus, (1) also holds.

Remark 9.7. If x ∈ R+, then by the corresponding definitions we also
have

ϕn(x) = n−1ϕ(nx) = nx2

for all n ∈ N, and thus

lim
n→∞

ϕn(x) =

{
0 if x = 0,

+∞ if x > 0.

Therefore, ϕ is also rather irregular in the sense of [22, Def. 3.1].
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10. Some basic properties of the global negative
Φ∧ of Φ

Remark 10.1. By defining R− = ]−∞, 0], for any x ∈ R−, we have

Φ∧(x) = −Φ(−x) = −
(
ϕ(−x) + R+

)
= −ϕ(−x)− R+ = ϕ∧(x) + R−.

However, the basic properties of Φ∧ can be more easily derived from those
of Φ.

For instance, by considering Φ∧ as a relation on R−, from Th. 8.8
we can immediately get the following

Theorem 10.2.

(1) Φ∧ is increasing and convex;

(2) Φ∧ is closed and convex valued;

(3) Φ∧ is zero-additive and subadditive;

(4) R = Φ∧(x)− Φ∧(y) for all x, y ∈ R−;

(5) Φ∧ is [0, 1]-superhomogeneous and [1,+∞[-subhomogeneous.

Note that if x, y ∈ R− such that x ≤ y, then −x,−y ∈ R+ such
that −y ≤ −x. Therefore, by (1) in Th. 8.8, we have Φ(−x) ⊂ Φ(−y).
Hence, it is clear Φ∧(x) = −Φ(−x) ⊂ −Φ(−y) = Φ∧(y). Therefore, Φ∧

is increasing.

Moreover, if x, y ∈ R− and 0 ≤ λ ≤ 1, then again by (1) in Th. 8.8
we have
λΦ(−x)+(1−λ)Φ(−y)⊂Φ

(
λ(−x)+(1−λ)(−y)

)
=Φ
(
−
(
λx+ (1− λ)y

))
.

Hence, it is clear that

λΦ∧(x) + (1− λ)Φ∧(y) =

= λ
(
−Φ(−x)

)
+ (1− λ)

(
−Φ(−y)

)
=

= −
(
λΦ(−x) + (1− λ)Φ(−y)

)
⊂ −Φ

(
−
(
λx+ (1− λ)y

))
=

= Φ∧
(
λx+ (1− λ)y

)
.

Therefore, Φ∧ is also convex.

In the following theorem, we shall again consider Φ∧ as a relation
on R.

Theorem 10.3. We have

(1) Φ∧M = {(0, 0)}; (2) Φ∧? = {0} × R−.

Proof. By Theorems 5.4 and 9.2, we have Φ∧M = Φ∧ = {(0, 0)}. More-
over, by Theorems 7.6 and 9.4, we have
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Φ∧? = Φ?∧ =
(
{0} × R+

)∧
= {0} × (−R+) = {0} × R−. ♦

Now, analogously to Theorems 9.3, 9.5 and 9.6, we can also easily
establish the following theorems.

Theorem 10.4. For a relation Ω on R, the following assertions are
equivalent:

(1) Ω = ∅ or Ω = {(0, 0)};
(2) Ω is an odd partial selection relation of Φ∧.

Theorem 10.5. For a relation Ω on R, the following assertions are
equivalent:

(1) Ω is an N-superhomogeneous partial selection relation of Φ∧;

(2) Ω = {0} × A for some N-superhomogeneous subset A of R−.

Theorem 10.6. For a relation Ω on R, the following assertions are
equivalent:

(1) Ω is a superadditive partial selection relation of Φ∧;

(2) Ω = {0} × A for some superadditive subset A of R−.

Remark 10.7. The latter three theorems can also be easily derived from
Theorems 9.3, 9.5 and 9.6.

For instance, if (1) in Th. 10.6 holds, then Ω∧ ⊂ Φ∧∧ = Φ. More-
over, Ω∧ is also superadditive. Thus, by Th. 9.6, Ω∧ = {0} × B for
some superadditive subset B of R+. Hence, by noticing that Ω = Ω∧∧ =
=
(
{0} × B

)∧
= {0} × (−B) and −B is a superadditive subset of R−,

we can see that (2) in Th. 10.6 also holds.

11. An almost odd extension of Φ to R

Definition 11.1. Define

Ψ = Φ∧|R∗− and F = Φ ∪Ψ.

Remark 11.2. Thus, for any x ∈ R, we have

F (x) =
(
Φ ∪Ψ)(x) = Φ(x) ∪Ψ(x) =

{
Φ(x) if x ≥ 0,

Ψ(x) if x < 0.

Therefore, F is an extension of both Φ and Ψ. Moreover, by the
corresponding definitions, we also have
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F (x) =

{
[x2,+∞[ if x ≥ 0,

]−∞,−x2] if x < 0.

By using the corresponding properties of Φ and Φ∧, we can also
easily prove the following

Theorem 11.3.

(1) F is subadditive,

(2) F is closed and convex valued;

(3) F (−x) = −F (x) for all x ∈ R∗;
(4) F is [0, 1]-superhomogeneous and [1,+∞[-subhomogeneous.

To prove (1), note that if for instance x, y ∈ R such that x, y < 0,
then by Rem. 11.2 and (3) in Th. 10.2 we have

F (x+ y) = Φ∧(x+ y) ⊂ Φ∧(x) + Φ∧(y) = F (x) + F (y).

While, if for instance x, y ∈ R such that x ≥ 0 and y < 0, then by
Rem. 11.2 and (4) in Th. 8.8 we have

F (x) + F (y) = Φ(x) + Φ∧(y) = Φ(x)− Φ(−y) = R.
Therefore, F (x+ y) ⊂ F (x) + F (y) trivially holds.

Concerning the relation F , we can also easily prove the following

Theorem 11.4. We have
FM = {(0, 0)} ∪

(
F |R∗

)
.

Proof. By (3) in Th. 11.3, we have

F∧(x) = −F (−x) = F (x)

for all x ∈ R with x 6= 0. Moreover, since F is an extension of Φ, we
have

F∧(0) = −F (0) = −Φ(0) = −R+ = R−.
Hence, by the corresponding definitions, it is clear that

FM(x) =
(
F ∩ F∧

)
(x) = F (x) ∩ F∧(x) =

{
{0} if x = 0,

F (x) if x 6= 0.

Therefore, the required equality is also true. ♦

Now, in contrast to Th. 9.3, we can only prove the following

Theorem 11.5. For a relation Ω on R, the following assertions are
equivalent:

(1) Ω is an odd partial selection relation of F ;

(2) Ω = Λ∪Λ∧ for some partial selection relation Λ of {(0, 0)}∪
∪
(
Φ|R∗

)
.
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Note that if (1) holds, then by Cor. 5.10 and Th. 11.4 we have

Ω ⊂ FM = {(0, 0)} ∪
(
F |R∗

)
.

Hence, since Φ = F |R+, it is clear that

Λ = Ω|R+ ⊂ {(0, 0)} ∪
(
F |R∗+

)
= {(0, 0)} ∪

(
Φ|R∗+

)
.

Thus, Λ is a partial selection relation of {(0, 0)} ∪
(
Φ|R∗

)
. Moreover, if

x ∈ R−, then since −x ∈ R+ and Ω is odd we can easily see that

Λ∧(x) = −Λ(−x) = −
(
Ω|R+

)
(−x) = −Ω(−x) = Ω(x) =

(
Ω|R−

)
(x).

Hence, it is clear that

Ω =
(
Ω|R+

)
∪
(
Ω|R−

)
= Λ ∪ Λ∧,

and thus (2) also holds.

In addition to Th. 11.4, we can also easily prove the following

Theorem 11.6. We have
F ? = {0} × R+.

Proof. If x ∈ R, then by Rem. 11.2, for any n ∈ N, we have

F (nx) =

{
[n2x2, +∞[ if x ≥ 0,

]−∞, −n2x2] if x < 0.

Hence, by Th. 3.3, it is clear that

Fn(x) = n−1F (nx) =

{
[nx2, +∞[ if x ≥ 0,

]−∞, −nx2] if x < 0.

Now, by the corresponding definitions, we can also easily see that

F ?(x) =

( ∞⋂
n=1

Fn

)
(x) =

∞⋂
n=1

Fn(x) =

{
∅ if x 6= 0,

[0,+∞[ if x = 0.

Therefore, the required equality is also true. ♦

Now, analogously to Theorems 9.5 and 9.6, we can also easily es-
tablish the following two theorems.

Theorem 11.7. For a relation Ω on R, the following assertions are
equivalent:

(1) Ω is an N-superhomogeneous partial selection relation of F ;

(2) Ω = {0} × A for some N-superhomogeneous subset A of R+.

Theorem 11.8. For a relation Ω on R, the following assertions are
equivalent:

(1) Ω is a superadditive partial selection relation of F ;

(2) Ω = {0} × A for some superadditive subset A of R+.
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12. Another natural extension of Φ to R

Because of the results of [61], we may also naturally introduce the
following

Definition 12.1. Define

Γ = R∗−× R and G = Φ ∪ Γ.

Remark 12.2. Thus, for any x ∈ R, we have

G(x) =
(
Φ ∪ Γ)(x) = Φ(x) ∪ Γ(x) =

{
Φ(x) if x ≥ 0,

Γ(x) if x < 0.

Therefore, G is an extension of both Φ and Γ. Moreover, by the
corresponding definitions, we also have

G(x) =

{
R if x < 0,

[x2,+∞[ if x ≥ 0.

Now, analogously to the the results of Sec. 11, we can also easily
prove the following theorems.

Theorem 12.3.

(1) G is closed and convex valued;

(2) G is subadditive and zero-additive;

(3) G is [0, 1]-superhomogeneous and [1,+∞[-subhomogeneous.

To prove (2), note that if for instance x, y ∈ R such that x < 0,
then by Rem. 12.2 we have

G(x) +G(y) = R +G(y) = R.
Therefore, G(x + y) ⊂ G(x) + G(y) trivially holds. Moreover, we also
have G(x) +G(0) = R = G(x).

Remark 12.4. Note that convexity of G on R∗− is an immediate conse-
quence of the R∗+-linearity of G on R∗−.

Theorem 12.5. We have
GM = {(0, 0)} ∪

(
F |R∗

)
.

Proof. By Rem. 12.2, for any x ∈ R, we have

G(−x) =

{
R if x > 0,

[x2,+∞[ if x ≤ 0.

Hence, by Th. 3.3, it is clear that
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G∧(x) = −G(−x) =

{
R if x > 0,

]−∞,−x2] if x ≤ 0.

Now, by the corresponding definitions, we can also easily see that

GM(x) =
(
G ∩G∧

)
(x) = G(x) ∩G∧(x) =


{0} if x = 0,

[x2, +∞[ if x > 0,

]−∞, −x2] if x < 0.

Hence, by Rem. 11.2, it is clear that the required equality is also true. ♦

Theorem 12.6. For a relation Ω on R, the following assertions are
equivalent:

(1) Ω is an odd partial selection relation of G;

(2) Ω = Λ ∪ Λ∧ for some partial selection relation Λ of {(0, 0)}∪
∪
(
Φ | R∗

)
.

Theorem 12.7. We have
G? = Γ ∪

(
{0} × R+

)
.

Proof. If x ∈ R, then by Rem. 12.2 for any n ∈ N, we have

G(nx) =

{
R if x < 0,

[n2x2, +∞[ if x ≥ 0.

Hence, by Th. 3.3, it is clear that

Gn(x) = n−1G(nx) =

{
R if x < 0,

[nx2, +∞[ if x ≥ 0.

Now, by the corresponding definitions, we can also easily see that

G?(x) =

( ∞⋂
n=1

Gn

)
(x) =

∞⋂
n=1

Gn(x) =


∅ if x > 0,

R if x < 0,

R+ if x = 0.

Therefore, by the corresponding definitions, the required equality is also
true. ♦

Now, we can also easily prove the following two theorems.

Theorem 12.8. For a relation Ω on R, the following assertions are
equivalent:

(1) Ω is an N-superhomogeneous partial selection relation of G;

(2) Ω is an N-superhomogeneous relation on R− to R such that
Ω(0) ⊂ R+.
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Theorem 12.9. For a relation Ω on R, the following assertions are
equivalent:

(1) Ω is a superadditive partial selection relation of G;

(2) Ω is a superadditive relation on R− to R such that G(0) ⊂ R+.

13. Further natural extensions of Φ to R

Suppose now that H is a subadditive relation of R to itself such
that H is an extension of Φ. Moreover, define

p(x) = inf
(
H(x)

)
and q(x) = sup

(
H(x)

)
for all x ∈ R.

Then, since H(x) 6= ∅ for all x ∈ R, it is clear that p and q are
functions of R to R ∪ {−∞} and R ∪ {+∞}, respectively. Moreover, we
evidently have

H(x) ⊂ [p(x), q(x)]

for all x ∈ R.

Furthermore, since H(u) = Φ(u) = [ϕ(u),+∞[ for all u ∈ R+, we
can also at once state that

p(u) = ϕ(u) and q(u) = +∞
for all u ∈ R+.

On the other hand, by using that H(x+ y) ⊂ H(x) +H(y) for all
x, y ∈ R, we can also easily see that

p(x) + p(y) = inf
(
H(x)

)
+ inf

(
H(y)

)
=

= inf
(
H(x) +H(y)

)
≤ inf

(
H(x+ y)

)
= p(x+ y)

and
q(x+ y) = sup

(
H(x+ y)

)
≤ sup

(
H(x) + F (y)

)
=

= sup
(
H(x)

)
+ sup

(
H(y)

)
= q(x) + q(y)

for all x, y ∈ R. Therefore, p is superadditive and q is subadditive.

Now, if u, v ∈ R+, then we can already see that

ϕ(u+ v) + p(−v) = p(u+ v) + p(−v) ≤ p(u) = ϕ(u),

and thus
p(−v) ≤ −

(
ϕ(u+ v)− ϕ(u)

)
= −

(
(u+ v)2 − u2

)
= −(2u+ v)v.

Hence, if v 6= 0, then by letting u→ +∞ we can already infer that

p(−v) ≤ −∞, and thus p(−v) = −∞.
Therefore, for any x ∈ R, we have
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p(x) =

{
x2 if x ≥ 0,

−∞ if x < 0.

It can also be easily seen that

p(−v) = inf
u∈R+

(
ϕ(u)− ϕ(u+ v)

)
for all v ∈ R∗+. Therefore, according to Barton and Laatsch [6], p is just
the maximal superadditive extension of ϕ to R.

Unfortunately, concerning the function q we cannot prove a similar
statement. Namely, if ψ is a subadditive function of R∗− to R ∪ {+∞}
and

ρ(x) =

{
+∞ if x ≥ 0,

ψ(x) if x < 0,

then it can be easily seen that ρ is a subadditive.

However, if in addition to the subadditivity of H, we assume that
H is closed and convex valued, then we can note that

H(x) =

{
R if x < 0 and q(x) = +∞,

]−∞, q(x)] if x < 0 and q(x) 6= +∞.

Hence, it is clear that the implication (1) =⇒ (2) is true in the
following

Theorem 13.1. For any relation H of R to itself such that H is an
extension of Φ, the following assertions are equivalent:

(1) H is subadditive and closed and convex valued;

(2) there exists a subadditive function ψ of R∗− to R∪{+∞} such
that

H(x) =

{
R if x < 0 and ψ(x) = +∞,

]−∞, ψ(x)] if x < 0 and ψ(x) 6= +∞.

To check the subadditivity of H, note that if for instance x, y ∈ R
such that x, y < 0 and ψ(x), ψ(y) < +∞, then ψ(x+y) ≤ ψ(x)+ψ(y) <
< +∞. Therefore, by a dual of Th. 3.5, we have

H(x+ y) = ]−∞, ψ(x+ y)] ⊂ ]−∞, ψ(x) + ψ(y)] =

= ]−∞, ψ(x)]+ ]−∞, ψ(y)] = H(x) +H(y).

On the other hand, if for instance x, y ∈ R such x < 0, 0 ≤ y and
ψ(x) < +∞, then

H(x) +H(y) = ]−∞, ψ(x)] + [ϕ(y), +∞[ = R.
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Moreover, if for instance x ∈ R such that x < 0 and ψ(x) = +∞, then
for any y ∈ R we have

H(x) +H(y) = R +H(y) = R.
Therefore, the inclusion H(x+ y) ⊂ H(x) +H(y) trivially holds.
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