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Abstract: Generalizing concepts from semigroups, we initiate a study of singu-
lar algebras. We determine their endomorphisms and investigate their algebras
of selfmaps with the operation of composition adjoined.

I. Introduction

We recall that a groupoid (called “magma” by Bourbaki) is an
algebra 〈A,+〉 with a single binary equation, +, on A. If the operation is
defined by x+ y = x (x+ y = y) for x, y ∈ A then 〈A,+〉 is called a left
(right) singular groupoid. In [3], Clifford and Preston call those groupoids
(which are semigroups) left (right) zero semigroups and state ([3] p. 4)
“In spite of their triviality these semigroups arise naturally in a number of
investigations”. As an illustration in support of this statement we recall
that every rectangular band is a product of left singular semigroups and
right singular semigroups.

Singular semigroups also arise naturally when considering muta-
tions of monoids. In fact, let 〈M,+, 0〉 be a commutative monoid and let
φ, ψ be commuting idempotent, 0-preserving endomorphisms of 〈M,+, 0〉.
Define a new operation, ⊕, on M by x ⊕ y = φx + ψy, x, y ∈ M . The
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groupoid 〈M,⊕〉 is a semigroup, called the (φ, ψ)-mutation of 〈M,+, 0〉.
One is interested in which properties of the given monoid remain invari-
ant under mutations (see [7], [9]). When φ = idM and ψ = 0M or φ = 0M
and ψ = idM , we get singular semigroups. When φ = 0M = ψ, we get a
constant semigroup, i.e., x⊕ y = 0, x, y ∈M .

In 1962, Tamura [14], announced that a groupoid 〈A,+〉 has the
property that every selfmap on A is an endomorphism of 〈A,+〉 if and
only if 〈A,+〉 is singular, and published a proof in 1965 [15]. In 2000,
Chris Devillier [4], extended this work by classifying groupoids in which
every selfmap is either an endomorphism or a translation.

The purpose of this investigation is to generalize and extend the
above results on singular semigroups to appropriate algebras. We first re-
call some basic concepts and definitions from universal algebras. By “al-
gebra”, we mean a set A with a collection, F , of operations on A, denoted
by 〈A,F 〉. Further, there exists a function τ : F → N = {0, 1, 2, . . . }
called the type of A or arity function of the operation ω. If τ(ω) = n
then ω is a function, ω : An → A, and we say ω is an n-ary operation.
We refer the reader to the books of Burris and Sankappanavar [2], or
Romanowska and Smith [12], for further notions of universal algebra.

We indicate two classes of possible operations on a set A. The pro-
jections on A, πni : An → A, (a1, . . . , an)→ ai, n ≥ 1, ι ∈ {1, . . . , n}, and
for an arbitrary but fixed e ∈ A, the constants en : An→A, (a1, . . . , an)→
→ e, n ≥ 1. For an algebra 〈A,F 〉 we denote the projections on A con-
tained in F by PA and we let eA = {en ∈ F}. In this paper we restrict our
attention to algebras 〈A,F 〉 in which F = PA∪eA, that is, an operation is
either a projection or a constant. If eA = ∅, Pöschel and Reichel [11], call
these algebras, 〈A,PA〉, projection algebras. However, in the present lit-
erature, particularly in that of computer science, the phrase “projection
algebra” refers to a completely different kind of algebra (see [6]). Thus
following the terminology from semigroups we call algebras 〈A,F 〉 with
F = PA, singular algebras, and in the case F = PA ∪ eA, eA 6= ∅, we say
〈A,F 〉 is an e-singular algebra. In the sequel when we write F = PA∪ eA
we are taking eA 6= ∅.

In the sequel we also restrict our attention to algebras 〈A,F 〉 of
finite type, that is {τ(ω)|ω ∈ F} is a finite set. For future use we let
µ = max{τ(ω)|ω ∈ F} for an algebra 〈A,F 〉.

For an arbitrary algebra, 〈A,F 〉, we let M(A) denote the collection
of selfmaps onA. As is well-known, M(A) can be considered as an algebra
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with the same set F of operations as A in the following manner: for
ω ∈ F with τ(ω) = n, and (f1, . . . , fn) ∈ (M(A))n we define the function
ω(f1, . . . , fn) : A → A by ω(f1, . . . , fn)(x) = ω(f1(x), . . . , fn(x)), x ∈ A.
We then have the algebra 〈M(A), F 〉. We note that the composition,
◦, of functions is a binary operation on M(A) and we adjoin this to F
obtaining the enrichment 〈M(A), F ∪ {◦}〉. One then investigates the
structure of the function algebra 〈M(A), F ∪ {◦}〉. This is part of the
program suggested by Guenter Pilz ([10] p. 42).

We close this section with a short summary of the paper. In the next
section we generalize the result of Tamura mentioned above to singular
and e-singular algebras. In Sec. III we turn to the algebras of selfmaps
of singular and e-singular algebras with the operation of composition
adjoined. We focus on endomorphisms and subalgebras.

II. Endomorphisms of singular and e-singular alge-
bras

We begin this section with the following two straightforward obser-
vations:

(II.A) The lattice of subalgebras of a singular algebra 〈A,PA〉 is isomor-
phic to the Boolean algebra of subsets of A.

(II.B) The lattice of subalgebras of an e-singular algebra, 〈A,PA ∪ eA〉 is
isomorphic to the Boolean algebra of subsets of A which contain eA.

Neither the converse of (II.A) nor (II.B) is true. (See Sasaki [13],
and the references given there.)

Let 〈A,F 〉 be an arbitrary algebra and let ω ∈ F, τ(ω) = n. Then,
for f ∈ M(A), fω = ωfn if for x1, . . . , xn in A, f(ω(x1, . . . , xn)) =
= ω(f(x1), . . . , f(xn)). When f ∈M(A) and fω = ωf τ(ω), for all ω ∈ F ,
we say f is an endomorphism of A. The collection of endomorphisms of
A is denoted by End(A), so we have End(A) = {f ∈M(A)|fω = ωf τ(ω),
for each ω ∈ F}.

Discussions with Erhard Aichinger in Linz led to the next theorem.
The author wishes to thank Professor Aichinger for his assistance.

Theorem II.1. i] Let 〈A,F 〉 be an algebra with |A| ≥ µ. Then End(A) =
M(A) if and only if 〈A,F 〉 is a singular algebra.
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ii] Let 〈A, f〉 be an algebra with |A| ≥ µ + 1. Then End(A) =
= M{e}(A) := {f ∈M(A)|f(e) = e} if and only if F = PA ∪ eA.

Proof. i] Suppose 〈A,F 〉 is a singular algebra. We take f ∈ M(A) and
show f ∈ End(A). To this end, let ω ∈ F , τ(ω) = n, say ω = πni , and take
(a1, . . . , an) ∈ An. Then fω(a1, . . . , an) = f(aι) = πni (f(a1), . . . , f(an)),
so f ∈ End(A).

For the converse we let ω ∈ F be arbitrary and show ω is a pro-
jection. Suppose τ(ω) = n and choose n distinct elements, a1, . . . , an
from A. This is possible since |A| ≥ µ. We let ω(a1, . . . , an) = a. If
a /∈ {a1, . . . , an} then there exist f, g ∈ M(A) = End(A) such that
f(aι) = g(aι), ι = 1, 2, . . . , n but f(a) 6= g(a). But this gives f(a) =
= f(ω(a1, . . . , an)) = ω(f(a1), . . . , f(an)) = ω(g(a1), . . . , g(an)) = g(a), a
contradiction thus a∈{a1, . . . , an} say a= aj. Now let x1, . . . , xn be ar-
bitrary inA. There exists h∈End(A) such that h(ai) =xi, ι=1, 2, . . . , n
so xj = h(aj) = hω(a1, . . . , an) = ω(h(a1), . . . , h(an)) = ω(x1, . . . , xn)
hence ω is a projection and 〈A,F 〉 is a singular algebra.

ii] If 〈A,F 〉 is an e-singular algebra then F = PA∪eA and ea 6=∅.
We take en ∈ F , f ∈ EndA and (a1, . . . , an) ∈ An. We get

e = en(f(a1), . . . , f(an)) = f(en(a1, . . . , an)) = f(e)

so End(A) ⊆M{e}(A).
Now let End(A) = M{e}(A) and let ω ∈ F with τ(ω) = n. Since

|A| ≥ µ + 1 > n, there exist n distinct elements a1, . . . , an ∈ A − {e}
and, if ω(a1, . . . , an) = a with a /∈ {a1, . . . , an, e} as above we obtain
a contradiction thus a ∈ {a1, . . . , an} so a = e or a = ej for some
j ∈ {1, . . . , n}. In the first case ω = en and in the second case ω is a
projection. Hence 〈A,F 〉 is e-singular. ♦

Without some cardinality condition, the above result need not be
true.

Example II.2. For i], let a = {a, b} and let ω be the ternary operation
defined as follows: for any triple (x, y, z) ∈ A3, at least two components
are the same element of A. We define ω(x, y, z) to be that element. Let
f ∈ M(A) and (x, y, z) ∈ A3 with, say, x = y. Then f(ω(x, y, z) = f(x)
and ωf 3(x, y, z) = ω(f(x), f(y), f(z)) = f(x). Hence M(A) = End(A)
but ω is not a projection.

For ii], the group 〈Z2 = {0, 1}, F = {+}〉 has End(Z2) = M{0}(Z2),
the zero preserving functions on Z2, but the binary operation, +, is
neither a projection nor a constant.
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We recall that an arbitrary algebra 〈A,F 〉 is called entropic or
medial if any two σ, ω ∈ F commute. That is, if τ(ω) = m and τ(σ) = n,
and (x1, . . . , xm), . . . , (xn1 , . . . , xnm) are in Am then we have the entropic
identity.

[E]: σ(ω(x11, . . . , x1m), ω(x21, . . . , x2m), . . . , ω(xm1, . . . , xnm))

= ω(σ(x11, . . . , xn1), σ(x12, . . . , xn2), . . . , σ(x1m, . . . , xnm))

is satisfied in 〈A,F 〉. (See [12], p. 235–237 for additional details.)
Calculations show that any en ∈ eA and πnj ∈ PA commute as well

as en, em ∈ eA and πnj , π
m
i ∈ PA. Thus, from Prop. 5.1 of [12] we obtain

the next result.

Theorem II.3. If 〈A,F 〉 is a singular or e-singular algebra, then
〈End(A), F 〉 is a subalgebra of 〈M(A), F 〉.

Note that the entropic property [E] guarantees that for each ω ∈ F ,
say τ(ω) = n and for f1, . . . , fn ∈ End(A), ω(f1, . . . , fn) ∈ End(A).
We note further that each projection πnι satisfies the idempotent identity
πnι (a1, . . . , an) = ai, i.e. a singular algebra is idempotent.

Corollary II. 4. A singular algebra 〈A,F 〉 is an idempotent, entropic
algebra, hence, by definition, a mode. (See [12].)

Corollary II.5. i] If 〈A,F 〉 is a singular algebra then the lattice of
subalgebras of 〈M(A), F 〉 is the Boolean algebra of subsets of M(A), each
subset having the set F of operations.

ii] If 〈A,F = PA ∪ eA〉 is the Boolean algebra of subsets of M{e}(A),
each subset having the set F of operations.

Proof. ii] One observes that if 〈W,F 〉 is a subalgebra of 〈M(A), F 〉 then
for each g ∈ W, g(e) = e. ♦

III. Singular and e-singular algebras with composi-
tion

For any algebra, 〈A,F 〉, composition of functions is a (binary) op-
eration on the sets M(A) and End(A). We denote composition by “◦”,
so for f, g ∈ M(A), x ∈ A, ◦ (f, g)(x) = f(g(x)). (As usual, we often
use f ◦ g or just fg to denote ◦(f, g).) We let F ◦ := F ∪ {◦}, hence
〈M(A), F ◦〉 is an enrichment of 〈M(A), F 〉. (See [12], p. 18.) If 〈A,F 〉
satisfies the entropic property, [E], then 〈End(A), F ◦〉 is a subalgebra
of 〈M(A), F ◦〉. In these cases we say 〈M(A), F ◦〉 and 〈End(A), F ◦〉 are
function algebras with composition.
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For ω ∈ F, τ(ω) = n and f1, . . . , fn ∈M(A) we have
◦(ω(f1, . . . , fn), g) = ω(f1, . . . , fn) ◦ g,

so for a ∈ A,

(ω(f1, ..., fn) ◦ g)(a) = ω(f1, ..., fn)(g(a))

= ω(f, g(a), ..., fng(a))= ω(f1g, . . . , fng)(a).

We say g is right composition distributive over F or composition is right
distributive over F . Further, we say g ∈M(A) is composition distributive
over F , if for arbitrary ω ∈ F, τ(ω) = n and arbitrary f1, . . . , fn in
M(A) we have ◦(g, ω(f1, . . . , fn)) = ω(gf1, . . . , gfn). The collection of
composition distributive elements in M(A) is denoted by Dist(M(A)).
The following results follow directly from the definitions and previous
statements.

Proposition III.1. For any algebras 〈A,F 〉 ,Dist(M(A)) = End(A).

For any algebra, 〈A,F 〉, we say a subalgebra 〈W,F ◦〉 of 〈M(A), F ◦〉
is composition distributive if every element h ∈ W is composition dis-
tributive over F .

Corollary III.2. Let 〈A,F 〉 be an algebra with |A| ≥ µ. The following
are equivalent:

i) 〈A,F 〉 is singular;
ii) 〈M(A), F ◦〉 = 〈End(A), F ◦〉;
iii) Every subalgebra of 〈M(A), F ◦〉 is composition distributive.

Corollary III.3. If 〈A,F 〉 satisfies the entropic property [E], then
〈End(A), F ◦〉 is the unique maximal composition distributive function al-
gebra in 〈M(A), F ◦〉 or 〈End(A), F ◦〉 = 〈M(A), F ◦〉. (We use the word
“maximal” to mean proper.)

Proof. Since 〈A,F 〉 satisfies the entropic property, 〈End(A), f ◦〉 is
a composition distributive algebra. From Prop. III.1, Dist(M(A)) =
= End(A), so for any composition distributive algebra, W = 〈End(A), f ◦〉
or W = 〈M(A), F ◦〉. ♦

We remark that in the above discussion the composition distributive
functions are relative to all functions in M(A). In contrast, consider the
case (say) where 〈A,F 〉 is an infinite abelian group, then 〈End(A), F ◦〉
is the unique maximal composition distributive algebra (ring) in the
near-ring 〈M(A), F ◦〉 but 〈End(A), F ◦〉 need not be a maximal ring in
〈M(A), F ◦〉. (See [5].)

Using Th. II.1 we know when 〈End(A), F ◦〉 = 〈M(A), F ◦〉.
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Corollary III.4. i] Let 〈A,F 〉 be an algebra with |A| ≥ µ. Then
〈End(A), F ◦〉 = 〈M(A), F ◦〉 if and only if 〈A,F 〉 is singular.

ii] If 〈A,F 〉 is an algebra with |A| ≥ µ+ 1 then

〈End(A), F ◦〉 =
〈
M{e}(A), F ◦

〉
if and only if F = PA ∪ eA.

Let 〈A,F 〉 be a singular algebra. From the above, 〈End(A), F ◦〉 is,
in general, not a maximal composition distributive algebra in 〈M(A), F ◦〉,
however every subalgebra of 〈M(A), F ◦〉 is composition distributive.
We next identify the maximal composition distributive subalgebras of
〈M(A), F ◦〉 for a finite singular algebra 〈A,F 〉. From Cor. II.5, every
subset of H of M(A) determines a subalgebra 〈H,F 〉 of 〈M(A), F 〉. Thus
to characterize the maximal subalgebras of 〈M(A), F ◦〉 one needs only
to describe the maximal subsemigroups 〈H, ◦〉 of 〈M(A), ◦〉. For finite A
this was done by Bayramov [1], as follows. Let |A| = m and for ι ≤ r ≤ m
let K(m, r) := {f ∈ M(A)||Imf | ≤ r}. Further let 〈Perm(A), ◦〉 denote
the group of permutations of A.

With the notation above, Bayramov [1], determines that 〈H, ◦〉 is
a maximal subsemigroup of 〈M(A), ◦〉 if and only if H=K(m,m− 2)∪
∪Perm(A) or H = K(m,m− 1)∪G where 〈G, ◦〉 is a maximal subgroup
of 〈Perm(A), ◦〉. The maximal subgroups of 〈Perm(A), ◦〉 for |A| < ∞
have been classified [8]. For further information on the lattice of subsemi-
groups of 〈M(A), ◦〉 for |A| <∞, see [16] and the references given there.
We can state a description of the maximal subgroups of 〈M(A), F 〉 for
finite A.

Theorem III.5. Let 〈A,F 〉 be a singular algebra with µ ≤ |A| =
= m < ∞, then 〈H,F ◦〉 is a maximal subalgebra of 〈M(A), F ◦〉 if and
only if H = K(m,m − 2) ∪ Perm(A) or H = K(m,m − 1) ∪ G where
〈G, ◦〉 is a maximal subgroup of 〈Perm(A), ◦〉.

We turn our attention now to e-singular algebras. Contrary to
the case for singular algebras, in the following example we show that
not every subalgebra of 〈M(A), F ◦〉 is composition distributive for an
e-singular algebra 〈A,F 〉.
Example III.6. Let A = {e, a, b} and let F consist of the single binary
operation ·(x, y) = x · y = e, for x, y ∈ A. Then 〈A,F 〉 is an e-singular
algebra. For x ∈ A, let kx denote the constant function on A with
value x. For T = {ke, ka, kb}, 〈T, F ◦〉 is a subalgebra of 〈M(A), F ◦〉 but
〈T, F ◦〉 "

〈
M{e}(A), F ◦

〉
= 〈End(A), F ◦〉.
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In Th. III.5 we found the maximal composition distribution alge-
bras in 〈M(A), F ◦〉 for a singular algebra 〈A,F 〉 , µ ≤ |A| < ∞. To
complete our program we next turn to the analogous problem for e-
singular algebras, 〈A,F = PA ∪ eA〉. As above, using Cor. II.5, we see
that we need to characterize subsemigroups 〈Y, F ◦〉 of

〈
M{e}(A), F

〉
since

for any such semigroup, 〈Y, F ◦〉 is a subalgebra of 〈End(A), F ◦〉. We take
〈A,F = PA ∪ eA〉 as an e-singular algebra with µ + 1 ≤ |A| = m < ∞.
By definition, eA 6= ∅, so we have a distinguished element e. We fix some
notation:

i) A− := A− {e},
ii) P := Perm(A−) := {f ∈ End(A)|f is a bijection of A−},
iii) H1 := {f ∈ End(A)|f(A−) j A−},
iv) Ĥ1 := {f ∈ H1| |f(A−)| < m− 2},
v) H2 := {f ∈ End(A)|f(A−) " A−},

vi) Ĥ2 := {f ∈ H2| |f(A−)| ≤ m− 2}.
We state some straightforward observations.

Lemma III.7. Using the above notation,

a) H1 ∪ P = End(A−);

b) 〈H1 ∪ P, ◦〉 , 〈H2 ∪ P, ◦〉 ,
〈
H1 ∪ P ∪ Ĥ2, ◦

〉
and

〈
Ĥ1 ∪ P ∪H2, ◦

〉
are subsemigroups of 〈End(A), ◦〉 ;

c) H1 ∪H2 ∪ P = End(A).

Lemma III.8. Using the notation above,
〈
H1 ∪ P ∪ Ĥ2, ◦

〉
and〈

Ĥ1 ∪ P ∪H2, ◦
〉

are maximal subsemigroups of 〈End(A), ◦〉.
Proof. We consider

〈
H1 ∪ P ∪ Ĥ2, ◦

〉
, the other case being similar. Let

A− = {a1, . . . , am} and let g ∈ H2 r Ĥ2, so g(aι) = e for some aι ∈ A−.

Since g /∈ Ĥ2, |g(A−)| = m − 1, hence g is a one-one function on A−.

We show that any k ∈ H2 r Ĥ2 is in the subsemigroup of 〈End(A), ◦〉
generated by H1∪P ∪ Ĥ2∪{g}, hence the result. Suppose k(aj) = e and
let σ ∈ P be the transposition interchanging aι and aj. We have

(1) gσ(aι) =


g(a`), l 6= i, j,

e, l = j,

g(aj), l = i,
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and we note |gσ(A−)| = m− 1. Thus there exists ρ ∈ P with

(2) ρg(ae) =

{
k(a`), l 6= i, j,

k(aι), l = ι,

and ρ(aj) = a where A− r k(A−) = {a}. From this, k = ρgσ is in〈
H1 ∪ P ∪ Ĥ2, ◦

〉
. ♦

Next we note that, since 〈H1 ∪ P ∪H2, ◦〉 = 〈End(A), ◦〉, for any
maximal subgroup 〈G, ◦〉 of 〈P, ◦〉 , 〈H1 ∪H2 ∪G, ◦〉 is a maximal sub-
semigroup of 〈End(A), ◦〉. We show that we have now identified all max-
imal subsemigroups of 〈End(A), ◦〉.

To this end let 〈M, ◦〉 be a maximal subsemigroup of 〈End(A), ◦〉
where again, 〈A,F = PA ∪ eA〉 is a finite e-algebra with µ + 1 ≤ |A| =
= m < ∞. We have M = M ∩ End(A) = M ∩ (H1 ∪ H2 ∪ P ) =
= (M ∩H1)∪ (M ∩H2)∪ (M ∩P ), a disjoint union. Note M ∩P 6=φ for
otherwise 〈M, ◦〉$〈M ∪ {idA}, ◦〉 and thus 〈M ∪ {id}, ◦〉 = 〈End(A), ◦〉,
a contradiction. Suppose first M ∩P $ P . then M ⊆ H1∪H2∪(M ∩P ).
If 〈M ∩ P, ◦〉 is not a maximal subgroup of 〈P, ◦〉, we get a contradiction,
so in this case we have M = H1 ∪H2 ∪G, 〈G, ◦〉 a maximal subgroup of
〈P, ◦〉.

The case, M∩P = P remains. We have M =(M∩H1)∪(M∩H2)∪
∪P . If H2∩M⊆Ĥ2, then M=(M∩H1)∪(M∩H2)∪P ⊆H1∪Ĥ2∪P . From

Lemma III.8,
〈
H1∪Ĥ2∪P, ◦

〉
is a maximal subsemigroup of

〈
End(A), ◦

〉
,

so 〈M, ◦〉 =
〈
H1∪ Ĥ2∪P, ◦

〉
. Similarly, if H1∩M ⊆ Ĥ1 we get 〈M, ◦〉 =

=
〈
Ĥ1 ∪ H2 ∪ P, ◦

〉
. Thus, it remains to consider the situation where

we have M ∩ H1 " Ĥ1 and M ∩ H2 " Ĥ2. Since H2 ∩M " Ĥ2, there

exists g ∈ (M ∩H2)r Ĥ2. As in Lemma III.8, we find that every f ∈ H2

with |f(A−)| = m − 1 is in M ∩ H2 (since P ⊆ M) and then one finds

H2 ⊆ M . But then M = (H1 ∩M) ∪ H2 ∪ P . Using M ∩ H1 " Ĥ1 we
have H1 ⊆ M which now gives M = H1 ∪H2 ∪ P , a contradiction. We
have the following characterization result.

Theorem III.9. Let 〈A,F = PA ∪ eA〉 be an e-singular algebra with
µ + 1 ≤ |A| = m < ∞. Using the above notation we have that 〈M,F ◦〉
is a maximal subalgebra of 〈End(A), ◦〉 if and only if M = H1 ∪H2 ∪G
where 〈G, ◦〉 is a maximal subgroup of 〈P, ◦〉 or M = H1 ∪ P ∪ Ĥ2 or

M = Ĥ1 ∪ P ∪H2.

The infinite case remains open.
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Problem. What are the analogues for Th. III.5 and Th. III.9 when A
is infinite?
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