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Abstract: We consider a class of conformal transformation on anti-K&hler
manifolds and find even five invariants for such a transformation. Three of
them are curvature-like tensors. Besides, we find that one of these curvature-
like conformal invariants is also an invariant of two special connections on such
a kind of spaces.

1. Facts about anti-Kahler manifolds

An anti-Kéhler manifold (M,g, J) is a differentiable manifold M,
dimM = 2n, endowed with parallel complex structure J and anti-
Hermitian metrics g. With respect to the local coordinates, these condi-
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tions are
(1.1) J;JJ‘.1 = —5;-, (a); gabele-’ = —gij, (b); VkJ; =0, (c);

where V is Levi-Civita connection operator with respect to metric g. We
note that J¢ = 0.

The anti-Kahler manifolds were first investigated by A.P. Nor-
den [3] (in the case dim M = 4). He named them B-manifolds to dis-
tinguish them from the Kéahler spaces (A-manifolds). Low-dimensional
spaces were also investigated in some contemporary papers, for exam-
ple, [8]. Anti-Kéhler manifolds were very well presented in the paper
[1], with all of its geometric characteristics. Also, even now, the Yano’s
monography [9] can be useful.

The condition (1.1)(b) implies

(1.2) Fij = 93 Ji" = giaJ] = Fji.

Let R;jry, be a component of the Riemannian curvature tensor of Levi-
Civita connection. Then the first and the second Ricci tensors are

(1.3) pin = Rijnkg™,  Pjn = Rajnrdig™,
and the first and the second scalar curvatures are
(1.4) % =ping’, %= ping™
The second Ricci tensor like the first one, is symmetric. Namely

Pin = Rajnie 9™ = RinjaJ} 9" = Phj.
The condition (1.1)(c), in view of the Ricci identity implies

(1.5) RijapJiJY = —Rijng.

It is known that the condition
RijapJiTY = Rijni
characterizes the class of Kahler manifolds among the Hermitian mani-
folds. Thus, we say that condition (1.5) is the condition of anti-Kdhler
type.
The condition (1.5) implies
Rabch;‘JfJﬁJlf = Rijnk
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and ([4], [5])

Pajdi = Djis pij = —PajJy,

(16> a 5 a D,
pav i S = —pijs  Pani T} = =iy

Finally, in view of (1.5), (1.6) and (1.7), we have the following
identity:

1
(1.7) Rini = 5 [Rijusc + Rapea J{ T} T T —

—RabthfJf — Rajkaf‘J,{’L — RajhbeJ,g —
—RiawiJ{Jp — Riany J3 Iy, — Rijan Iy -

2. Conformal change of metric

Let us consider Riemannian manifolds (M,g) and (M, g) and a
diffeomorphism ¢ : M — M such that Jij = e g;;, where f is a scalar
function. Then we say that ¢ : M — M is a conformal mapping. Since
@ is a diffeomorphism, we can suppose that locally it maps points onto
points with the same local coordinates, that is, locally, we can presume
that M = M ([1]). We shall consider the conformal mapping of the
anti-Kéhler manifolds (M,g, J) and (M, g, J). Thus dimn M = 2n and
Fy; = €2/ F;;. From now on, all geometric objects in (M,g, J) will be
denoted by analogous letters as in (M, g, J), but with “bar”.

It is well known that the Riemannian curvature tensors, Eijhk and
Rijnk, are related as follows (see, for example, [2]):

(2.1) e " Rijue = Rijuk + Gin0jn + Gin0ir — Gin0jk — GikTin,
where of
1
ojn = Vo, — oo, + —ginlio, o Njo = Uaabgab.

2 ozt

We note that o;; = 0.
If we contract (2.1) with respect to g'* = €2/g%*, we obtain

(22) ﬁjh = Pjh + 2(” - ].)O'jh + gjho-abgab'
Now, contracting (2.2) with respect to ¢, we find

27 — 5
2.3 i ad
(23) Tabd = 9on — 1)
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such that (2.2) becomes

1L % 1
%h = 5 —1) lpﬂ"‘ T 20— 1)94 T 2(n—1) {pﬂh T 20— 1)g”h}'
Thus, and in view of (1.8),

ga b 1 _ w i 1 ”
Oabd; = —— Gy — —T. - |p, — .
YT oy [P 2n— 0% T otm—1) T 2(2n—1) "
Therefore
1 x
a b — _
(24) Ojh — UabJj ‘]h = ﬁ |:p]h 2(2 _ 1>g]h:| -
S S DU S
(n—1) """ 2@2n - 1)%"
and
a a 1 ~ > Enl
(25) UjaJh + UahJj = m pjh — ijh —
1 »

On the other hand, the relation (2.1) yields
e Rujindf = Rajui ! + Firojn + ginoard? — Finojk — gixoand?,
from which, contracting with respect to ¢**, we obtain
Din = Pin + Gin(0ak ) g™ = (0judit + oandy).

Contracting this relation with respect to ¢/, we get

23— %

2.6 P = ——=
(2:6) Tak 2(n— 1)

such that the preceding relation becomes

a a = _ ~ VA
(2.7) Tjady, + Oandi = —pjp, + mgjh + pjn — mgjiu

wherefrom, using (1.8), we get

(28) Ojih — O'Qb(];»lJ;: = — ﬁjh + th + [pjh +
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Comparing (2.4) and (2.8), we find

% =
(2.9) 20, — 5——=9n T #Fjn = 2npjn —

om—1 gjh—f—;fth.

>
2n —1
Thus, we can state

Theorem 1. For an anti-Kahler manifold, the tensor

gin + 2 E

4
2n0jn = 5

is conformally invariant.

3. Conformally invariant curvature tensors

For the manifold (M,g, J) the relation (1.9) is

_ 1 — _ _ _
e Rijme = 3 [Rijni + Rapead? 0I5 T — RapninJ{ ! — RajornJ{ Ty —
—RajmJi T} — Rakaj”JZ — EiahbeJIg — Ez‘jabJ}?Jg];

wherefrom, substituting (2.1), we find

_ 1
(3.1) e ¥ Rijm = Rijuu+ 1{gik(djh—UabeJﬁ)+gjh(0ik—UabeJ};)_
- gih(Ujk - Uabeng) - gjk<0ih - UabeJ;l;)_
— ik(O'ahJ;-l + O-jaJ;Z) — F}'h(O'akJ;l + O'iaJ]?)+
+ Eh(aakJ; + O'jaJ]?) + ij(O'ahJia + O'iajg)}.

Contracting (3.1) with respect to g** = ¢*/g’* we obtain

1
(32) pjh = ,th + 5 [(n — 2)(0‘jh — UabJ;-LJ;Z) + (Uabg“b)gjh — (UabFab)th] .

Contracting (3.2) with respect to g/, we obtain

25 —

3.3 g’ = s—,
(3:3) Tabd = ot — 1)

while after contracting it with respect to F/* = 2/ th, we find
e —

2(n—1)

UabFab =
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Thus, relation (3.2) becomes

2 7% > =
a 7b __ — —_
(34) o =0T} = = [pjh “dmonont Fn

wherefrom there follows

2 |= o -
(35) O'jajg—i-O'ahJ]q = nT [pjh — T F; ] —

a4 VA F
n—2 " qm )" T dm 1)

Now, substituting (3.4) and (3.5) into (3.1), we have

o= 1 o
e 2f{Rijhk — m(gikpjh + GinPik — JinPir — GjkPin —

—Fapi, — Finpix + Finpyye + Fippin) +

DO

% —_ = PR — _— == —_ —
+4(n “1)(n-2) (GirGin — GinGjx — Fartjn + Finklp) —
Z _— T p— =1 — pe— _ —

1
= Rijkh - m(gikpjh + 9inpPik — GinPik — 9jkPih —
—Fixpjn — Finpix + Finpjx + Fjrpin) +
+

Va4
wgin — 99y — FaFon + FaFye) —
4(n _ 1)(n _ 2) (g kg]h g hg]k kL jh + h ]k)

a4
_4(n — 1)(n — 2) <ngF1Jh + gjh}?ik - gthjk — gjkEh)

In other words, the tensor

1
(3.6) Bijnk = Rijin — )(gikpjh + 9inPik — GinPjk — GikPin —

1
2(n —2
—Fipjn — Finpix + Finpje + Fjrpin) +

+

VA
kg — gindy — FacFyn + FaFy) —
4<n _ 1>(n _ 2) (g kg]h g hgjk kL jh + h ]k)
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a4
_4(n — 1)<n — 2) (gik:th + gthZ-k — gthjk _ gjkEh)

satisfies the condition

1
(3.7) e * B=Bijn -

The tensor (3.6) is obtained in [4] and [5] using the pseudoconformal
correspondence

9i; = agij + BEij,
where o and 3 are scalar functions.
On the other hand, substituting (2.4) and (2.5) into (3.1), we obtain
o5 1 _ _ _
e Rijnk — m(gikpjh + 9inPit — JinPix — 9jkPin —
_Fik;jh - thzik + Fz‘hzjk + ijﬁih) +

+

»
iwgin — gingik — FinFin + FinFix) o =
An—D)2n—1) (9irgjn — Gingijk kLn + Fin jk)}

1
= Rz’jhk - m(gikpjh + 9jnPik — GinPik — 9jkPih —
—FEpin — Finpix + Finpje + Fiepin) +
+

»
g — gingik — FunFin + FnFie).
An—1D)2n—1) (9irgjn — GinGijk #Ejn + FinFk)

This means that the tensor
1

m(gikpjh + GinpPik — GinPik — 9ikPih —

—Fupin — Enpix + Fnpix + Firpin) +

+

2
(3.8)  Bijak = Rijne —

4
ik9jn— Gingsk — FirFyn+ Fin
4(n_1)(2n_1)(9kg]h 9inGjk — Fir Fin+FinFjr)

satisfies the condition
2

2
e Bijnk=DBijnk -
But, if instead of (2.4) and (2.5), we use (2.7) and (2.8), we obtain

3 3
-2 =Y
e ! Bijnk=DBijnk
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where
3 1
(3.9)  Bijhk = Rijni + 1 (gikpin + Ginpir — GinPik — GikPin —
—Fupjn — Ejnpix + Funbjr + Finpin) +
%
—  _(gF o — aginFor — ginFin).
+4(n_1)(9k ih + GinFiw — ginFie — gjuFin)
If we put
Tijhke = GikPjn + GinPix — GinPik — GjkPin —
—Fipin — Finpix + Finpjrx + Fikpin,
1
Tijhk = 9ikGjh — Gingjk — FiFin + FipFly,
2
Tijnk = 9k L0 + ginFie — gin ik — gjxFin,

we have N
é:R_Q(nl—z)T+4(n—1%(n—2)71“4(71—1}){(71—2)72“
é:R_4(n1—1)T+4(n—1)%(2n—1)71T’
E:R+%T+ﬁ%.

Thus, we have

(310) B ——[(n—1)B— B+ n ok

n—2 4n—1)(n —2)(2n —1)
We note that the relations (2.3) and (3.3) yield
e — s M —

22n—1)  2(n—-1)’
wherefrom
ez = >,

and therefore
—2f— 1 1
eI HT=0m.
Thus, we can state
Theorem 2. For an anti-Kdhler manifold, each of tensors (3.6), (3.8),
(3.9) and s T is algebraic curvature tensor and satisfies
(a) the anti-Kdhler condition of type (1.5), and

(b) conformal condition of type (3.7). These tensors are mutually
related such that condition (3.10) holds.
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4. The class of proper follower connections and its
invariant

On an anti-Kahler space, we shall consider a class of connections
given by their coefficients

(4.1) F;h = {;h} — pi0h + 0'gin + ¢; T4 — ¢ Fin,

where vector (p;) is its generator and vector (g;) is generator’s image by
the structure, i. e. ¢; = p,J*. We shall call such kind of connection a
proper follower connection, because it is a metric J-connection, but,
of course, non-symmetric.

The components of Riemannian curvature tensor of proper follower
connection are given by

(4.2) Mijnk = Rijnk — GinPrj + GikPhj — GjkPhi + GjnDri +
+FEinagr; — Firqnj + Firqri — FinQu,

where I;;p is a component of curvature tensor of Levi-Civita connection
and

1 1
(4.3) Prj = Vip; + DiePj — Qi + §psqukj - §pspsgkj,
1 S 1 S
(4.4) Qk; = Viq; + Drq; + qepj — SPsP Fy; — SPsq Grj-

First, we can notice that gr; = pr.Jy. Second, we can notice that
the component of the tensor (4.2) is skew-symmetric in first two indices.
Now we want it to be invariant under changing places of first and second
pair of indices, i.e. we want it to be an algebraic curvature tensor. Then
we obtain that there holds

(4.5)
Gin(Pjk — Prj) — 9ik(Pin — Prj) + Gki(Din — Dhi) — 9in(Dik — Pri)+

+ Fin(qrj — k) — Fie(qnj — ain) + Fik(qni — @in) — Fjn(qri — qir,) =0.

After transvection by ¢*, we obtain

(4.6) (2n = 3)(prj — pjk) = 5 I7(Pba — Pas) = 0.
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Applying (4.6) once again, we obtain that there holds

1
(4.7) Pjk — Pkj = m(pjk — Dkj)-

If we exclude the cases of low dimensions (2n = 2,2n =4 [8]), we obtain
that the tensor pj; is symmetric:

Pjk = Pkj-
Then, using (4.5), we can easily obtain, after transvection by F that
the tensor g;;, is also symmetric:

4k = dkj-
We are going to calculate a curvature-like invariant of such a connection,
like it has been done in [6], [7].

As both py; and gi; are consisting of five addends and the sum of

last four of them is symmetric in both cases, then there holds

(4.8) Vip; = Ve Vid; = Vg,

what means that both the generator and its image by the structure are
gradients. We can also notice that Riemannian curvature tensor of proper
follower connection satisfies the first Bianchi identity
Mijnk + Minkj + Migjn =0
and, moreover, it satisfies the anti-Kéahler condition (1.5).
Now we shall transvect (4.2) by ¢** and obtain

fin = Pin + 2(n = 2)pn; + ginps — Fings,
where 15, is a component of the Ricci tensor of the proper follower con-

nection. Then, after another transvection of upper equality by ¢/*, we
obtain

(49) et

where p is scalar curvature of the connection (4.1).
If we transvect the upper equality by F’* we obtain that there
holds

i — 5

(4.10) q5 = An=1)
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where 1 stands for p,; F*. Now we shall obtain that there holds

1 W— w—
411 = —pri — =g+ "R
(4.11)  puy 2(n—2) Hhj = Phj 4(n_1)9h3+4(n_1) hj

If we transvect (4.10) by F* we obtain
(4.12) fjn = pjn + 2(n = 2)qjn + gjng; — Finps,

where i, = MijniJig™* = M F™* and pjp, is given by (1.3). Then, we
obtain

1 1w — —

(19 0= 53 [~ T

But, using the relationship between py; and gp,;, we can also obtain that
there holds

(4.14) qnj = pral =
1

(4.15) = GTE)

[— 3 1n—
ol —phadi — —<Fhj— ———<nj| -

Using (1.6), we have that the first member in parentheses of (4.13) is
equal to the first member in parentheses of (4.14). So, we shall use
(4.13) rather the (4.14). From (4.12) and (4.13), we obtain that there
holds

(4.16) R —

1
m(fhkﬂjh + 9jkPik — GinPjk — GjkPih—

— Fixpjn — Finpix + Finpjr + Fixpin)+

Ve
wGin — GinGin — FinFip &+ FonFip)—
+ i —1)n—2) (9ikgin — Gingjx ki + FinFji,)

P
T An—Dn—2) (9 Fjn + ginEir — 9inFji — ginkFin) =
1
= Mijkh - m(gik/vbjh + Gjktbik — Gintbjk — GjkMin—
— Eipijn — Finfiin + Finftje + Finflin)+
1
+ in—1)(n—2) (9ik9jn — 9ingik — FiFjn + Fin Fjr)—
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_ H
4(n—1)(n —2)

(i Esn + ginFir — ginEir — ginFin).-

So, we have proved that there holds:

Theorem 3. On an anti-Kdhler manifold (M,g, J), dim M #2,4, if the
generator of a proper follower connection (4.1) is a gradient, then the
tensor on the right-hand side of (4.15) is independent on the choice of

1
generator and is equal to conformal curvature invariant B given by (3.6).

5. The class of antiholomorphically projective con-
nections and its invariant

On the same anti-Kéhler space, we shall consider another class of
connections, given by its coefficients

(5.1) =t + 0, +0'gin — 4 J, — 4 Fin,

(g; = pan‘?) which we call an antiholomorphically projective connection
by the reason of evident similarity to holomorphically projective connec-
tion. Its coefficients look like coefficients of holomorphically projective
connection ([9]), but with opposite signs on the structure image side.
An antiholomorphically projective connection is a J-connection, non-
symmetric, but not a metric one.

We shall calculate the components of curvature tensor of such a
connection. After lowering its upper index, we obtain that there holds

(5.2) Nijnk = Rijnk + GinPrj — 9ikPrj — 9jkDpi + 9inPri —
—FinQrj + Fianj + FirQy; — FinQpy-

The meaning of upper abbreviations is

1 1

(5.3) Prj = ViPj — PePj + Qs + 5Psd By — oPsP Jkj>
— 1 s 1 S

Prj = Vipj + DrDj — Gy — 5Psd Frj + o DsP ki
I

Grj = Vrtj = Pik =GPk = 5Ps0" 9k — 5PsP" Fj;

— 1 S 1 S
Qr; = Vids + Py + Gpr + 5Ps0°9k; + 5Pop" F.
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There also hold the following relationships:

(54) pkaJ]q = (qkj; ]_)ka‘]]q = Qkﬁ

(5.5) Prj = ViPj + Skjs Prj = Vipj — Sk
and, consequently,

(5.6) Qrj = Vi + Skatjs  Trj = VG — SkaJj-

g

Also, it is obvious from (5.3) that both tensors Sy; and Si,J§ are sym-
metric.

If we want the curvature tensor (5.2) to be an algebraic curvature
tensor, i.e. to be skew-symmetric in first two indices, the necessary con-
dition shall be satisfied

0= gin(Prj + Drj) — 9ik(Phj + Prj) + Gin(Pri + Dri) — Gix(Pri + Ppi) +
+Fie(qnj + Tnj) — Finarj + Tij) + Fie(qni + Gni) — Fin(ari + Qi)
and, taking into account (5.3):

(5.7) 0= 9:nVip; — 9 Vipj + 9inVipi — 9xVipi +
+FieViq; — FinViq + FirVaqi — FjnVig;.

We shall suppose that the curvature tensor of antiholomorphically projec-
tive connection is skew-symmetric in first two indices and that, besides,
its generator (p;) is a gradient. Then

(5.8) Vip; = Vpy.

If we transvect (5.7) with F" we obtain

(59) (2n + 1)quj' — quk = gijithpZ- + ijvsps.

As the right-hand side of (5.9) is symmetric, its left-hand side will also
be symmetric and, consequently

(5.10) Vg = Vg
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and the generator’s image by the structure will also be a gradient.
From (5.9), we can see that

(5.11) Vigj = aFy; + Bgy;

and, as a consequence,
(5.12) Vipi = agri — BF.
For the tensor Si; ((5.3), (5.5)) there holds
(5.13) S = —(n+2)pp*  SyFY = —(n+2)pyg’.

We want the tensor (5.2) to be invariant under changing places of
first and second pair of indices. Then, using (5.5) and (5.6), we obtain
that there holds

9in(Pri + Dri) — Gik(Prj + Prj) = Fjn(ari + Tii) — Fie(anj + @)
or

9inViDi — 9k Vip; = FinViqi — FixViag;.

After transvection of the last equality by ¢7¥, we obtain
(5.14) ! Vsp®, B ! Vsq®
. = —VsD, = 5 _Vs{,
2n b 2n 1

for scalar functions appearing in (5.11) and (5.12).

Now we are going to construct a curvature-like invariant of that
class of antiholomorphically projective connections. Transvecting (5.2)
by ¢’*, we obtain

(5.15) Vin = pjn + 2(1 — n)pnj — 2Dy; + ginDs — Firds,

where v, denotes the component of the Ricci tensor of antiholomorphi-
cally projecive connection. After transvection of (5.15) by ¢/ and using
(5.4), (5.5) and (5.13), we obtain

V—x

An—D(n+2)

(5.16) psp’ =

where v stands for the scalar curvature of (5.1).
In fully analogous way, we can find, transvecting (5.2) by F first
and then by ¢* that there holds

vV —

in—1)(n+2)

(5.17) psq° =
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where 7 = N F*g?". 1f we transvect (5.2) by F**Fi" we obtain that

x—v

(5.18) PP = =Dt 2)

where 3 — pn;i F" and v = Nijne F*Fi". From (5.16) and (5.18), we
obtain that there holds

Lemma 1. On an anti-Kdhler space, for the scalar curvature v and
scalar function U = N F**Fih of a class of antiholomorphically pro-
jective connections with gradient generator and curvature tensor which is
invariant under changing places of the first and second pair of indices,

there holds
(5.19) VA=t x

where » and > are the same quantities depending on Levi-Civita connec-

tion.

We can also notice that there hold

(5.20) Pl =2na — (n+ 2)psp’; Do = 2na + (n+ 2)psp®,
' ¢ =2n8— (n+2)ps¢°; T =208+ (n+ 2)psq°.

From (5.3), (5.11) and (5.15), we obtain

vin = pin + 2(1 — n)(agjn — BFjn + Sin) — 2(agin — BEjn + Sjn) +
—i—gjh(Qnoz — Sj) — F]k(2n5 — SabFab) =
= pin +2(2 = n)Sjn + (n + 2)psp°gin — (n+ 2)psq® Fj.

From the upper equality, we obtain that there holds

(5.21) Sj = gﬂ(’;__éﬂ; + 5 &n —5 (v — 2)gjx — (7 — 3) F),

using (5.16) and (5.17). We shall also need the tensor

a _ Pha ~ Vha 1q
(5.22)  SpaJj = 2= 2) Ji +

1 ~  ~
+8(n —_ 4)(n —_ 2) [(V - %)th + (V - %>ghj]‘
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We can conclude from (5.22), as Phaj 18 symmetric, that VhaJj 18 also
symmetric Besides, it is easy to verify that this class of antiholomor-
phically projective connections satisfies the first Bianchi identity, anti-
Kéhler condition (1.5) and also conditions which are analogous to (1.7)
and (1.8).

Substituting (5.11) and (5.12) into (5.2), we obtain that there holds

(5.23)  Nijne = Rijnk + 9inSjik — 9ikSin + 9jShi — 9jxSki +
+EkshaJ; — FihSkan + FpSkadi’ — FiuShad;-

Substituting (5.21) and (5.22) into (5.23), we obtain that there holds

1
(5.24) Rijkn — m(gikpjh + 9jkPik — GinPik — GjkPih
—Fpin — Finpix + Finpje + Fiepin) +
P
+4(n “1)(n—2) (9ixgin — Gingsir — FixFyn + FinFjy)
i —D(n—2) (9ieEsn + ginFar — ginFjr — gintin)
1
= Nijkn — m(gikl/jh + 9jkVik — GinVik — 9jkVin
—Eilin — Fijplip + FinUji + FixUin)
v
+4(n “1)(n—2) (9ikgin — Gingjx — FirFin + FinLjy
v
TIm—Dn-2) (9ixFjn + ginFir — ginFji — g Fin)-

So, we have proved that there holds

Theorem 4. On an anti-Kdhler space, if the generator of an antiholo-
morphically projective connection is a gradient and if its curvature tensor
1s an algebraic curvature tensor, then the tensor on the right-hand side of
(5.24) is independent on the choice of generator. Moreover, it is equal to
the tensor (3.6), which is a conformal invariant of considered anti-Kdhler
space and also to the invariant of considered class of proper follower con-
nections (4.1).
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