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Abstract: A restricted Boolean polynomial ρ(x1, . . . , xn) is a finite expression
involving x1, . . . , xn (variables that range over sets) formed by means of unions
and intersections. Let R be a class of pairwise inequivalent restricted Boolean
polynomials. It is shown that the conditions

|ρ(A1, . . . , An)| ≥ |ρ(B1, . . . , Bn)| (ρ ∈ R)

are independent. That is, given ρ ∈ R, there exist sets A1, . . . , An, B1, . . . , Bn

such that the condition
|σ(A1, . . . , An)| ≥ |σ(B1, . . . , Bn)|

holds for all σ ∈ R where σ is not equivalent to ρ, but

|ρ(A1, . . . , An)| < |ρ(B1, . . . , Bn)|.
This solves a problem (attributed to Rado) from Mirsky’s 1971 text Transversal
Theory .
A conjecture of Cohen and Rubin from 1982 is also refuted.
Motivated by Rota’s Basis Conjecture, an analogue of the “easy” direction of
Edmonds’ matroid partitioning theorem is proved for transversals of a family
of subsets of a vector space.
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1. Introduction and background

Let n ∈ N. Let [n] := {1, . . . , n}. Two families of sets (A1, . . . , An)
and (B1, . . . , Bn) are combinatorially equivalent if there exists a bijection

φ :
n⋃
i=1

Ai →
n⋃
i=1

Bi

such that φ[Ai] = Bi for i ∈ [n].

A Boolean polynomial ρ(x1, . . . , xn) is a finite expression involving
x1, . . . , xn (variables ranging over sets) and formed by means of unions,
intersections, and set differences. A restricted Boolean polynomial is a
Boolean polynomial formed only by means of unions and intersections.

In [9], Rado proved the following

Theorem (Rado; see [9], Th. IV; [8], Th. 5.4.2). Let (A1, . . . , An) and
(B1, . . . , Bn) be families of finite sets. Then there exist sets Xi ⊆ Ai
(i∈ [n]) such that (X1, ..., Xn) is combinatorially equivalent to (B1, ..., Bn)
if and only if

(∗)ρ |ρ(A1, . . . , An)| ≥ |ρ(B1, . . . , Bn)|

for every restricted Boolean polynomial ρ. ♦

This result is discussed by Rota and Harper in [11], §12.3, who
write, “A deep minimax theorem has been proved by Rado for distribu-
tive lattices.” [Actually, Rado’s results in [9] are more general – for in-
stance, instead of cardinality he uses a more general notion of “measure” –
but this theorem “represents the gist of Rado’s conclusions,” according
to Mirsky, with the exception just noted ([8], p. 89).]

Rado’s result generalizes Hall’s Marriage Theorem (see [8], pp. 87–
88):

Theorem (Hall, [5]). A family (A1, . . . , An) possesses a system of dis-
tinct representatives if and only if, for all non-empty J ⊆ [n],

(∗∗)J
∣∣ ⋃
j∈J

Aj
∣∣ ≥ |J |. ♦

Inequality (∗∗)J represents 2n−1 conditions, which are independent
in the sense that, for every non-empty J0 ⊆ [n], there exists a family
(A1, . . . , An) such that (∗∗)J holds for every non-empty J ⊆ [n] other
than J0, but not for J = J0. (See the discussion at the end of [8], §2.1.)
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Two restricted Boolean polynomials ρ(x1, . . . , xn) and σ(x1, . . . , xn)
are considered equivalent if ρ(X1, . . . , Xn) = σ(X1, . . . , Xn) for every
family of sets (X1, . . . , Xn). Of course two formally different polynomials
can be equivalent; because of the distributive law, it is clear that there
are only finitely many equivalence classes of n-ary restricted Boolean
polynomials. Let R be a class of pairwise inequivalent restricted Boolean
polynomials. If R consists of at most one polynomial from each class,
then one may ask if the |R| conditions (∗)ρ (ρ ∈ R) are independent.

In a section entitled “Future Research and Open Questions,” Mirsky
writes (in the 1971 edition of Transversal Theory , [8], pp. 220 and 222):
“Let us now look in greater detail at what appear to be gaps or inade-
quacies in current transversal theory. . . .”

“12. It is clear from the proof of Theorem 5.4.2 that

the necessary and sufficient conditions appearing in that

result are equivalent to a finite subset of conditions.

It would be of interest to verify that the conditions

in this finite set are independent. (Cf. the remarks

at the end of §2.1.)

[R. Rado]”

[Name in brackets in the original text.] We solve this problem below
(Prop. 3.7).1

2. Definitions and notation

See [2] for definitions, notation, and basic results.

Let P be a poset. For a subset M ⊆ P , let

↓M := { p ∈ P | p ≤ m for some m ∈M }.
(Dually define ↑ M .) A subset D ⊆ P is a down-set (or order ideal)
if D =↓ D. The collection of all down-sets of P is denoted O(P ). An
element m ∈ P is maximal if, for all p ∈ P , m ≤ p implies m = p. Let
maxP be the set of maximal elements. Dually, let minP be the set of
minimal elements.

1The proof is simple, although we caution the reader against too simple an inter-
pretation. See the Addendum for a discussion of what the theorem does not say. Rado
may have considered the problem well before 1971, as he considers a similar question
in his 1943 paper [10]. Mirsky’s text has been cited at least 131 times according to
the Science Citation Index, so the problem must have received some exposure.
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Let 2 be the poset {0, 1} with 0 < 1; 2n is the set of n-tuples
a = (a1, . . . , an), where (a1, . . . , an) ≤ (b1, . . . , bn) in 2n if ai ≤ bi for all
i ∈ [n]. Let

â := { i ∈ [n] | ai = 0 }.
If ρ and σ are n-ary restricted Boolean polynomials, then ρ ≤ σ if

ρ(X1, . . . , Xn) ⊆ σ(X1, . . . , Xn)
for every family of sets (X1, . . . , Xn). It is well known that the equiv-
alence classes of n-ary restricted Boolean polynomials, so ordered, form
the free distributive lattice on n generators (FD(n)), which can also be
represented as the poset O(2n) \ {∅,2n}, ordered by set-inclusion. (See
Fig. 3.1 and [12], p. 158.) The correspondence is as follows: For any
C ∈ O(2n) \ {∅,2n} and any X1, . . . , Xn, let

ρC(X1, . . . , Xn) :=
⋃

c∈maxC

⋂
{Xi | i ∈ ĉ }.

This change of perspective to the arithmetic of ordered sets enables
us to refute a conjecture posed in 1982 by Professor Matatyahu Rubin
and Dr. Miriam Cohen, Director of the Center for Advanced Studies
in Mathematics and former Dean of the Faculty of Natural Sciences at
Ben Gurion University of the Negev, as well as a former President of
the Israel Mathematical Union. In their Proceedings of the American
Mathematical Society paper, they conjectured the following:

For i = 1, 2, 3, let Ii be a linearly ordered set with the interval
topology; let Xi be a compact, Hausdorff partially-ordered topological
space such that the partial order relation is closed in Xi × Xi with the
Tietze extension property with respect to Ii, meaning that for every closed
subset F of Xi and every continuous, order-preserving map f : F → Ii,
there is a continuous, order-preserving extension of f to all of Xi. On
page 691 of [1], the authors conjecture that if the lattices of continuous
order-preserving maps from Xi to Ii are pairwise order-isomorphic for
i = 1, 2, 3, then two of the Xi are order-homeomorphic.

If we let n be the n-element linearly ordered set with the discrete
topology, where n is a positive integer, and QP the poset of order-
preserving maps from the poset P to the poset Q ordered pointwise,
then 2(4×6),56 and 74 refute the conjecture:

For 2n ∼= n + 1 [2] and P (Q×R) ∼= (PQ)R ([7], page 87). If Q is a
complete lattice, any map f ∈ QS for S ⊆ P can be extended to all of P
in an order-preserving way by g(p) = sup{f(s) : s ≤ p}. If Ii and Xi are
finite, then both have the discrete topology. ♦
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3. The solution to the problem from Mirsky’s
Transversal Theory

Fix D ∈ O(2n)\{∅,2n}; let M := maxD and let Q := min(2n\D).
(Note that M,Q 6= ∅.)

Let (cm)m∈M be a family of distinct elements. Let X be any set of
cardinality |M |−1 and, for each q ∈ Q, let Yq be a set of cardinality |M |
such that X, Yq (q ∈ Q) are pairwise disjoint.

For i ∈ [n], let

Ai :=
⋃
{X | m ∈M and i ∈ m̂ } ∪

⋃
{Yq | q ∈ Q and i ∈ q̂ },

Bi := { cm | m ∈M and i ∈ m̂ }.
Note that X is fixed, so that the first union in the definition of Ai is either
X or the empty set. Note that m̂ 6= ∅ for all m ∈M , since D 6= 2n.

Lemma 3.1. For all m ∈M ,
⋂
{Ai | i ∈ m̂ } = X.

Proof. By definition of Ai, X ⊆Ai when i∈ m̂. Now let y ∈
⋂
{Ai | i∈

∈ m̂}. If y /∈ X, then m̂ 6= ∅ implies y ∈ Yr for some r ∈ Q and j ∈ r̂
(just reading the definition of the second union in the definition of Ai).
But r 
 m, so there exists j′ ∈ m̂ \ r̂ and hence y ∈ Aj′ – i.e., y ∈ Yr′
for some r′ ∈ Q and j′ ∈ r̂′. Since the Yq (q ∈ Q) are pairwise disjoint,
r = r′, and so j′ ∈ r̂ after all, a contradiction. ♦

Lemma 3.2. For all m ∈M ,
⋂
{Bi | i ∈ m̂ } = {cm}.

Proof. If i ∈ m̂, then cm ∈ Bi by definition. Now suppose that

cl ∈
⋂
{Bi | i ∈ m̂ },

where l ∈ M but l 6= m. Let j ∈ m̂ \ l̂. Then cl ∈ Bj, so j ∈ l̂ by
definition of Bj, a contradiction. ♦

Lemma 3.3. For all a ∈ 2n\ ↑M ,
⋂
{Bi | i ∈ â } = ∅.

Proof. Suppose cm ∈
⋂
{Bi | i ∈ â } for some m ∈M . As m 
 a, there

exists j ∈ â \ m̂. Hence cm ∈ Bj, contradicting the definition of Bj. ♦

Lemma 3.4. For all q ∈ Q \ {(1, . . . , 1)},
⋂
{Ai | i ∈ q̂ } ⊇ Yq.

Proof. By definition of Ai. ♦

Lemma 3.5. For all C ∈ O(2n) \ {∅, D,2n},
|ρC(A1, . . . , An)| ≥ |ρC(B1, . . . , Bn)|.

Proof. Case 1. C ∩Q 6= ∅.
Let c ∈ maxC, q ∈ Q be such that q ≤ c. Then
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ρC(A1, . . . , An) ⊇
⋂
{Ai | i ∈ ĉ } ⊇

⊇
⋂
{Ai | i ∈ q̂ } ⊇

⊇ Yq

by Lemma 3.4, so

|ρC(A1, . . . , An)| ≥ |M |.
But

|ρC(B1, . . . , Bn)| ≤ |M |.
Case 2. C ∩Q = ∅.
In this case, C ⊆ D. Thus M * C since D =↓M and C 6= D.

Case 2a. C ∩M 6= ∅.
Let l ∈ C ∩M . Clearly l ∈ maxC as C ⊆ D. Thus

ρC(A1, . . . , An) ⊇
⋂
{Ai | i ∈ l̂ } = X

by Lemma 3.1, and

|ρC(A1, . . . , An)| ≥ |M | − 1.

But

ρC(B1, ..., Bn)=
⋃

m∈(maxC)∩M

⋂{
Bi | i ∈ m̂

}
∪

⋃
c∈(maxC)\M

⋂{
Bi | i∈ ĉ

}
=

=
{
cm | m ∈ (maxC) ∩M

}
∪ ∅ =

=
{
cm | m ∈ (maxC) ∩M

}
by Lemmas 3.2 and 3.3. Thus

|ρC(B1, . . . , Bn)| = |(maxC) ∩M | < |M |
since M * C.

Case 2b. C ∩M = ∅.
Then C∩ ↑M = ∅ and

ρC(B1, . . . , Bn) =
⋃

c∈maxC

⋂
{Bi | i ∈ ĉ } =

=
⋃

c∈maxC

∅ =

= ∅
by Lemma 3.3. ♦

Lemma 3.6. The inequality

|ρD(A1, . . . , An)| < |ρD(B1, . . . , Bn)|
holds.
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Figure 3.1. The free distributive lattice on 3 generators

Proof. We have

ρD(A1, . . . , An) =
⋃
m∈M

⋂
{Ai | i ∈ m̂ } = X

(by Lemma 3.1), which has cardinality |M | − 1. But

ρD(B1, . . . , Bn) =
⋃
m∈M

⋂
{Bi | i ∈ m̂ } =

= { cm | m ∈M }
(by Lemma 3.2), which has cardinality |M |. ♦

Proposition 3.7. Let n ∈ N. For every n-ary restricted Boolean poly-
nomial ρ, there exist finite sets A1, . . . , An, B1, . . . , Bn such that

|σ(A1, . . . , An)| ≥ |σ(B1, . . . , Bn)|
for every n-ary restricted Boolean polynomial σ not equivalent to ρ, but

|ρ(A1, . . . , An)| < |ρ(B1, . . . , Bn)|.
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Proof. The result follows from Lemmas 3.5 and 3.6. ♦

As an example, Fig. 3.1 shows FD(3). (We use concatenation in-
stead of “∩”, so x1x2 means x1 ∩ x2.)

Suppose n = 3 and

ρ(x1, x2, x3) = x1 ∪ (x2 ∩ x3).

Then D = {011, 100, 010, 001, 000}. (See 23 in Fig. 3.2.)

Clearly M = {011, 100} and Q = {101, 110}.
Thus,

X = {x},
Y101 = {y1, y2},
Y110 = {y′1, y′2},
A1 = {x},
A2 = {x, y1, y2},
A3 = {x, y′1, y′2},
B1 = {c011},
B2 = {c100},
B3 = {c100}.

Figure 3.2. A down-set D in 23

For a related result, see [10], Th. 7.

Thus the problem (attributed to Rado) from Mirsky’s 1971 text
Transversal Theory is solved.
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σ σ(A1, A2, A3) |σ(A1, A2, A3)| σ(B1, B2, B3) |σ(B1, B2, B3)|
x1x2x3 x 1 ∅ 0
x1x2 x 1 ∅ 0
x1x3 x 1 ∅ 0
x2x3 x 1 c100 1

x1x2 ∪ x1x3 x 1 ∅ 0
x1x2 ∪ x2x3 x 1 c100 1
x1x3 ∪ x2x3 x 1 c100 1

x1x2 ∪ x1x3 ∪ x2x3 x 1 c100 1
x1 x 1 c011 1
x2 x, y1, y2 3 c100 1
x3 x, y′1, y

′
2 3 c100 1

ρ = x1 ∪ x2x3 x 1 c011, c100 2
x2 ∪ x1x3 x, y1, y2 3 c100 1
x3 ∪ x1x2 x, y′1, y

′
2 3 c100 1

x1 ∪ x2 x, y1, y2 3 c011, c100 2
x1 ∪ x3 x, y′1, y

′
2 3 c011, c100 2

x2 ∪ x3 x, y1, y2, y
′
1, y

′
2 5 c100 1

x1 ∪ x2 ∪ x3 x, y1, y2, y
′
1, y

′
2 5 c011, c100 2

Table 3.1. An illustration of Prop. 3.7

4. A “converse” to a counterexample of de Sousa

In 1989, Gian-Carlo Rota formulated his famous Basis Conjecture
([6], Conj. 4):

Rota’s Basis Conjecture. Let V be a vector space of dimension n over
an infinite field. Let B1, . . . , Bn be bases of V . Then there exists an n×n
table (vij) such that the i-th row {vi1, . . . , vin} equals Bi for i = 1, . . . , n,
and the j-th column {v1j, . . . , vnj} is an independent set for j = 1, . . . , n.

Since the field is infinite, we can assume the bases are pairwise
disjoint by taking scalar multiples if needed. Then the result we want
is equivalent to asserting that the set

⋃n
i=1Bi can be partitioned into n

pairwise disjoint transversals of the family (B1, . . . , Bn), each of which is
an independent set.

A result of Edmonds is the following:

Theorem 4.1 ([4], Th. 1). Let n ≥ 1. A finite matroid E with rank
function ρ can be partitioned into n pairwise disjoint independent sets if
and only if, for all subsets F of E,

|F | ≤ nρ(F ). ♦
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This implies ([8], Cor. 3.3.4):

Theorem 4.2. Let m,n ≥ 1. Let B = (B1, . . . , Bm) be a family of
subsets of a finite set E. For F ⊆ E, let ρ(F ) be the size of the largest
partial transversal of B contained in F .

Then E can be partitioned into n pairwise disjoint partial transver-
sals if and only if, for all subsets F of E,

|F | ≤ nρ(F ). ♦

The natural “join” of Theorems 4.1 and 4.2 to partial independent
transversals is known to be false ([3], pp. 93–94). But we do have the
following:

Proposition 4.3. Let n ≥ 1. Let V be an n-dimensional vector space.
Let B1, . . . , Bn be bases for V that are pairwise disjoint. Let E := ∪ni=1Bi.

Then for all F ⊆ E,

|F | ≤ nρ(F ),

where ρ(F ) is the size of the largest linearly independent partial transver-
sal of B = (B1, . . . , Bn) that is a subset of F .

Proof (by induction). The result is trivial if F = ∅.
Now let F ⊆ E with k := |F | ≥ 1 and suppose that, for all G ⊂ E

with |G| < k we have |G| ≤ nρ(G). Let l := ρ(F ). Pick any f1 ∈ F and
let F1 := F \ {f1}. Let k1 := |F1| and l1 := ρ(F1). Then l1 ≤ l ≤ l1 + 1.

If l = l1 + 1, then k1 ≤ nl1, so |F | = k = k1 + 1 ≤ nl1 + 1 ≤
≤ nl1 + n = n(l1 + 1) = nl = nρ(F ).

So assume l = l1. We know l ≥ 1.

If k1 < nl1 = nl, then |F | = k = k1 + 1 ≤ nl = nρ(F ).

So assume k1 = nl1 = nl (so that k = nl + 1).

Claim 1. We may assume that the number of i ∈ {1, . . . , n} such that
F ∩Bi 6= ∅ is at least l + 1.

Proof of Claim. Without loss of generality, suppose

F ∩Bi = ∅
for i = l + 1, . . . , n. Then F ⊆ ∪li=1Bi; but then

|F | = k ≤ | ∪li=1 Bi| ≤ nl,

and we would be done. ♦

Claim 2. We may assume there exists i ∈ {1, . . . , n} such that |F∩Bi| ≥
≥ l + 1.

Proof of Claim. If |F ∩Bi| ≤ l for i = 1, . . . , n, then
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k = |F | = |F ∩ ∪ni=1Bi| = | ∪ni=1 (F ∩Bi)| ≤ nl,

and we would be done. ♦

Let iF ∈ {1, . . . , n} be such that |F ∩BiF | ≥ l+1. Let F2 := F \BiF

and let k2 := |F2| and l2 := ρ(F2). Note that k − n ≤ k2 ≤ k − 1, so
nl + 1− n ≤ k2 ≤ nl or n(l − 1) + 1 ≤ k2 ≤ nl.

Of course l2 ≤ l. But if l2 ≤ l − 1, then

k2 = |F2| ≤ nρ(F2) = nl2 ≤ n(l − 1),

a contradiction. Thus l2 = l, so there exists an independent partial
transversal of (B1, . . . , Bn) in F2 of size l, call it (vi1 , . . . , vil), where
1 ≤ i1 < · · · < il ≤ n and vij ∈ Bij for j = 1, . . . , l.

Clearly iF /∈ {i1, . . . , il} and the dimension of W , the span of
{vi1 , . . . , vil}, is l.

As |F ∩ BiF | ≥ l + 1, there exists vF ∈ F ∩ BiF \ W . Thus
{vi1 , ..., vil , vF}⊆F is independent and a partial transversal of (B1, ..., Bn);
hence ρ(F ) = l + 1, a contradiction to the fact that ρ(F ) = l. ♦

Addendum

A reader of an earlier version of this manuscript, trying to interpret
Prop. 3.7 in the context of voting theory, made the following claims.

Claim A.1. Given any non-trivial up-set W in a finite Boolean algebra
B, there are subsets X and Y of B such that W is the only non-trivial
up-set of B containing more elements of X than of Y .

Claim A.2. Given any non-trivial up-set W in a finite poset P with
1, there are subsets X and Y of P such that W is the only non-trivial
up-set of P containing more elements of X than of Y .

Claim A.3. Claim A.1 is equivalent to Prop. 3.7.

We have proven that the three claims are false, no matter what
reasonable interpretation is given to “non-trivial” and “more.”

Observation A.4. Claim A.1 is false, if “non-trivial” means either
“non-empty” or “non-empty and proper” and if “more” means either
“strictly more” or “at least as many.”

Observation A.5. Claim A.2 is false, if “non-trivial” means either
“non-empty” or “non-empty and proper” and if “more” means either
“strictly more” or “at least as many.” ♦

Observation A.6. Claim A.3 is false.
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