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Abstract: By Fredholm’s Theorem of the alternative, the system Ax = b of
linear equations has no solution if and only if uT

A = o
T and u

T
b 6= 0 for

some u ∈ Rm. Recently, Rohn proved as a corollary of the Residual Existence
Theorem for linear equations [Optim. Lett. 4 (2010), 287–292] that the system
Ax = b has a solution if and only if the residual set {Ax− b : x ∈ Rn } inter-
sects all the orthants of Rm. We study the relation between both the results
in the more general setting of a vector space over a linearly ordered (possibly
skew) field, obtain a new proof of the corollary, and give a generalisation of
Fredholm’s Theorem of the alternative.

1. Introduction

Jǐŕı Rohn proved the Residual Existence Theorem for linear equa-
tions [7, Th. 2]. Then, as a corollary of it, he proved the next result [7,
Th. 3]:
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Theorem 1 (Rohn’s corollary in Rn). Let a matrix A ∈ Rm×n and a
vector b ∈ Rm be given. Then the system

(1) Ax = b

is solvable if and only if the residual set

(2) {Ax− b : x ∈ Rn }

intersects all the orthants of Rm.

Nevertheless, we also know Fredholm’s Theorem of the alternative,
cf. [5, Prop. at the end of Subsec. 9 (in § 2)].

Theorem 2 (Fredholm’s Theorem in Rn). Let a matrix A ∈ Rm×n and
a vector b ∈ Rm be given. Then the system

(3) Ax = b

has no solution if and only if

(4) u
T
A = o

T and u
T
b 6= 0

for some u ∈ Rm.

Comparing the two results, Fredholm’s Theorem 2 having been
known, Th. 1 due to Rohn turns out to be interesting. It is natural to
ask whether there is (and what is) the relation between both the results.

Both Th. 1 and Th. 2 are stated in the setting of the real finite-
dimensional vector space Rn. However, we know a generalisation of Fred-
holm’s Theorem [1, Th. 3.2], see Th. 3 below. The generalisation is stated
in a vector space of any dimension over any (possibly skew) field. An ac-
cording generalisation of Rohn’s Residual Existence Theorem [7, Th. 2],
of which Th. 1 is a corollary, can be found in [2, Th. 5], see Th. 4 below.
That is why, we shall study the relation between the results in the more
general setting of a vector space over a linearly ordered (possibly skew)
field, which we are now going to introduce.

2. Basic concepts, notation, and Fredholm’s Theo-

rem of the alternative

Let F be a field, which may be either commutative or skew. The
latter case means the field is not commutative. In addition, let “≤” be
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a binary relation on the field F such that, for all λ, µ ∈ F, the next five
statement hold true: First, we have λ ≥ 0 or λ ≤ 0. Second, if λ ≥ 0
and λ ≤ 0, then λ = 0. Third, if λ ≥ 0 and µ ≥ 0, then λ + µ ≥ 0.
Fourth, if λ ≥ 0 and µ ≥ 0, then λ · µ ≥ 0. Fifth, it holds λ ≤ µ if and
only if λ− µ ≤ 0. In the statements, we have used the usual convention
that λ ≥ µ means µ ≤ λ for any λ, µ ∈ F. Then F is a linearly ordered
(possibly skew) field.

The field of the real numbers R or that of the rational numbers Q
are examples of linearly ordered commutative fields. An example of a
linearly ordered skew field was given as early as in 1901 by David Hilbert,
see [3, Notes and comments to Ch. 1, p. 45, with Sec. 2.1 and Sec. 2.3,
pp. 47–50 and 66] and [6, Ex. 1.7, p. 10, and above Prop. 18.7, p. 288].

The additive group of the field F can be seen as a vector space over
the field F. Choose an element or vector u ∈ F. By ιu, i.e., by prepending
the Greek letter iota, we shall denote the right homothety of F given by
the element u. It is the mapping ιu : F → F with ιu : b 7→ ιu(b) = b · u
for each b ∈ F.

Let m be a non-negative natural number. Consider the vector
space Fm of column vectors. Choose a column vector u ∈ Fm. Trans-
posing it, we obtain the row u

T . Then we can “multiply” it by the
symbol “ι” from the right. Given another column vector b ∈ Fm, we can
multiply thus:

ιuT
b = ι

(

u1 . . . um

)







b1
...
bm






=

= ιu1b1 + · · ·+ ιumbm =

= b1 · u1 + · · ·+ bm · um ,

where u1, . . . , um and b1, . . . , bm are the components of the vectors
u and b, respectively.

Now, let W be a vector space over the field F. Let α : W → F be
a linear form. Note that, for any element or vector u ∈ F, the mapping
ιu : F → F with ιu : b 7→ ιu(b) for all b ∈ F is linear. Hence, we can
compose the form α : W → F with ιu : F → F. We shall denote the
composed mapping as ιuα. We have ιuα(x) = ιu

(

α(x)
)

=
(

α(x)
)

· u for
all x ∈ W.

More generally, let A : W → Fm be a linear mapping. To a point
x ∈ W, the mapping assigns the column vector Ax of the m components
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α1(x), . . . , αm(x). Each αi : W → F is a linear form for i = 1, . . . , m. We
note that, for a column vector u ∈ Fm, the mapping ιuT : Fm → F with
ιuT : b 7→ ιuT

b for all b ∈ Fm is linear. Then ιuTA is the composition
of the mapping A : W → Fm with ιuT : Fm → F. We have ιuTAx =
= ιu1α1(x)+· · ·+ιumαm(x), i.e. the sum of the mappings ιuiαi evaluated
at x.

Now, having introduced the notation, we recall the following gen-
eralisation of Fredholm’s Theorem 2, which can be found in [1, Th. 3.2].
Note that the field F need not be linearly ordered.

Theorem 3 (Fredholm’s Theorem). Let A : W → Fm be a linear map-
ping where W is a vector space over a (possibly skew) field F and let
b ∈ Fm be a vector. Then the system

(5) Ax = b

has no solution if and only if

(6) ιuTA = o and ιuT
b 6= 0

for some u ∈ Fm, where o is the zero linear form on W.

Fredholm’s Theorem 2 is a special case of Fredholm’s Theorem 3
when F is the field of the real numbers, F = R, and W is finite-
dimensional, W = Rn.

3. Further concepts, notation, and Rohn’s Residual

Existence Theorem for linear equations

Let W be a vector space over a linearly ordered (possibly skew)
field F. Given a set X ⊆ W, its convex hull and its (convex) conical hull
can be defined in the usual way: The convex hull of X is the set convX
of all non-negative affine combinations of the points of the set X. The
conical hull of X is the set coneX of all non-negative linear combinations
of the points of X. The Minkowski sum of two sets X, Y ⊆ W is the set
X + Y = { x+ y : x ∈ X, y ∈ Y }.

Let H be another vector space over the linearly ordered field F.
The algebraic dual of the space H is the space H# of all linear forms
η : H → F. Let H∗ be any subspace of H# such that, for any non-zero
vector h ∈ H, there exists a linear form η ∈ H∗ with η(h) 6= 0. (For
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example, if H is a real Banach space, then H∗ can be its topological
dual, which is the space of all continuous linear functionals η : H → R.)
Then (H,H∗) is a dual pair of spaces.

We say that two sets R, S ⊆ H can be strongly separated by a
hyperplane if there exists a linear form η ∈ H∗ and constants σ, τ ∈ F

such that η(r) ≤ σ < τ ≤ η(s) for all r ∈ R and s ∈ S. In particular, a
set R ⊆ H and a point b ∈ H can be strongly separated by a hyperplane
if there exists a linear form η ∈ H∗ and a constant τ ∈ F such that
η(r) ≤ τ < η(b) for all r ∈ R.

Having introduced the concepts, we recall the following generali-
sation of Rohn’s Residual Existence Theorem [7, Th. 2], which can be
found in [2, Th. 5].

Theorem 4 (Rohn’s Residual Existence Theorem). Let W and (H,H∗)
be a vector space and a dual pair of spaces, respectively, over a linearly or-
dered (possibly skew) field F. Given a linear mapping A : W →H, a point
b ∈ H, and finite subsets X = {x1, . . . , xr} ⊆ W and Y = {y1, . . . , ys} ⊆
⊆ W, the linear equation

(7) Ax = b

has a solution in the set convX + coneY if and only if

(8) η(Ay1), . . . , η(Ays) ≤ 0 implies max
xi∈X

η(Axi − b) ≥ 0

for all η ∈ H∗, which holds if and only if the set A(convX + cone Y )
and the point b cannot be strongly separated by a hyperplane.

When F is the field of the real numbers, F = R, both the spaces
W and H are of finite dimension, W = Rn and H = Rm, and the set
Y is empty, Y = ∅, we obtain Rohn’s result [7, Th. 2] as a special case
of Th. 4.

The special choice H = Fm, whence we must have H∗ = H#, will
be significant in the following section.

4. The corollary of Rohn’s Residual Existence The-

orem for linear equations

Repeating Rohn’s proof, we can establish a generalisation of his
corollary [7, Th. 3] of the Residual Existence Theorem for linear equations
in our setting.
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Theorem 5 (Rohn’s corollary). Let A : W → Fm be a linear mapping
where W is a vector space over a linearly ordered (possibly skew) field F.
Given a vector b ∈ Fm, the system

(9) Ax = b

is solvable if and only if the residual set

(10) {Ax− b : x ∈ W }

intersects all the orthants of the space Fm.

Proof. (Cf. [7, Th. 3].) The “only if” part is obvious. If x ∈ W solves
Ax = b, then the origin Ax − b = o lies in all the orthants of the
space Fm.

It remains to prove the “if” part. LetO be the set of the 2m orthants
of the space Fm. We assume that, for each orthant O∈O, there exists an
xO∈W such that AxO−b ∈ O. We shall apply Rohn’s Residual Existence
Theorem 4 with H = Fm and H∗ = H#, and with X = {xO : O ∈ O }
and Y = ∅.

Note that each u ∈ Fm induces a linear form η : Fm → F by
η(h) = ιuT

h for all h ∈ Fm. Conversely, if η : Fm → F is a linear form,
then it is induced by the vector u ∈ Fm with the components ui = η(ei)
for i = 1, . . . , m where ei are the canonical unit vectors of Fm.

Observe that, for each u ∈ Fm, there exists an orthant O ∈ O with
u ∈ O. Moreover, the linear form η : Fm → F induced by such a vector u
is non-negative on the O. We have η(h) = ιuT

h ≥ 0 for all h ∈ O.
Hence, it follows that maxxO∈O η(AxO−b) = maxxO∈O ιuT(AxO−b) ≥ 0
for all η ∈ (Fm)# or u ∈ Fm, whence the system Ax = b has a solution
(in conv{ xO : O ∈ O }) by Th. 4. ♦

Now, we should like to study the relation between Fredholm’s The-
orem 3 and Th. 5 (Rohn’s corollary).

5. The relation between Fredholm’s Theorem and

the corollary of Rohn’s Residual Existence The-

orem

Let F be a (possibly skew) field; we shall assume in this section
that the field is linearly ordered; and let W be a vector space over F.
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Consider a linear mapping A : W → Fm and a vector b ∈ Fm. Let us
assume that the system of equations Ax = b has no solution. Then, by
Fredholm’s Theorem 3, there exists a u ∈ Fm such that ιuTA = o and
ιuT

b 6= 0. As the field F is linearly ordered, we may assume wlog that
ιuT

b > 0, considering u := −u otherwise. Taking into consideration

• the proof of Th. 5 due to Rohn [7, Th. 3],

• the fact that Rohn’s Residual Existence Theorem 4, which is used
in the proof, is a separation theorem actually, see [2, Sec. 1],

• the fact that the vector u points inside a certain orthant of Fm,
and

• the fact that the vector u is normal to the hyperplane {h ∈ Fm :
ιuT

h = τ }, where τ ∈ F, such as τ = −1
2
ιuT

b, is a constant,

we see that the hyperplane strongly separates the residual set {Ax− b :
x ∈ W } and the orthant containing u. Hence, the residual set does not
intersect the orthant.

Note that we have just given another proof of the “if” part of Th. 5.
Its “only if” part is obvious.

Now, the relation between Fredholm’s Theorem 3 and Rohn’s corol-
lary, Th. 5, is apparent. Both the results say essentially the same. If the
system Ax = b has no solution, then the residual set {Ax− b : x ∈ W }
and the origin o of the space Fm can be strongly separated by a hy-
perplane. (Note that the residual set is a proper affine subspace of Fm.
It is easy to see that the separating hyperplane is parallel with it. The
hyperplane not passing through the origin o, there exists an orthant
of Fm which the hyperplane does not intersect. Hence, the hyperplane
separates the residual set and that orthant as well.) Conversely, if the
residual set and the origin – or even a whole orthant, which contains it –
can be strongly separated by a hyperplane, then the system cannot have
a solution. Finally, we observe that the residual set {Ax− b : x ∈ W }
and the origin o can be strongly separated by a hyperplane if and only if
the subspace {Ax : x ∈ W } and the point b can be strongly separated
by a hyperplane.

The last observation offers a new point of view on Fredholm’s The-
orem 3 [1, Th. 3.2], consequently on Gale’s Theorem [1, Lemma 4.2], and
other theorems of the alternative (Motzkin’s Theorem [1, Th. 5.1], etc.),
cf. [4, Th. 1].
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The next theorem summarises the above considerations. It extends
Rohn’s corollary, Th. 5.

Theorem 6. Let A : W → Fm be a linear mapping and let b ∈ Fm be a
point where W is a vector space over a linearly ordered (possibly skew)
field F. Then the next five statements are equivalent:

1. the system (9) has no solution,

2. the residual set (10) does not intersect all the orthants of the
space Fm,

3. the residual set (10) and an orthant of Fm can be strongly separated
by a hyperplane,

4. the residual set (10) and the origin o of Fm can be strongly sepa-
rated by a hyperplane,

5. the range {Ax : x ∈ W } of the mapping A and the point b can be
strongly separated by a hyperplane.

6. A generalisation of Fredholm’s Theorem and con-

cluding remarks

Comparing Rohn’s corollary, Th. 5, and Fredholm’s Theorem 3,
we can see they are similar to each other in a sense. We already know
that the corollary can be proved by using Rohn’s Residual Existence
Theorem 4 or Fredholm’s Theorem 3 – see the proof of Th. 5 or Sec. 5,
respectively. Turning our attention back to Rohn’s Residual Existence
Theorem 4, the following generalisation of Fredholm’s Theorem 3 is easy
to prove. Recall that, when H is a vector space over any (possibly skew)
field F, then H# denotes its algebraic dual, i.e. the space of all linear
forms η : H → F.

Theorem 7 (Fredholm’s Theorem). Let A : W → H be a linear map-
ping, where W and H are vector spaces over a (possibly skew) field F,
and let b ∈ H be a point. Then the linear equation

(11) Ax = b

has no solution if and only if

(12) ηA = o and η(b) 6= 0
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for some linear form η ∈ H#, where ηA denotes the composition of the
mapping A with η and o is the zero linear form on W.

Proof. The “if” part is obvious. Should Ax = b hold for some x ∈ W

and ηA = o with η(b) 6= 0 for some η ∈ H#, we would obtain 0 = ηAx =
= η(b) 6= 0, a contradiction.

We have to prove the “only if” part. Assume that Ax = b has
no solution. That is, the point b lies outside the linear subspace L =
= {Ax : x ∈ W }, the image or range of the mapping A. It follows hence
that L is a proper subspace of the space H. Find a maximal linearly
independent set B ⊆ W \ L. (If we know in advance that the dimension
of the space H is finite, H = Fm, say, we can find the set B by induction.
If the dimension of H is either known to be infinite or not known at all,
we shall find the set by using the Axiom of Choice.) Now, each point
h ∈ H can be written in the form h = hL+λ1b1+ · · ·+λnbn for a unique
hL ∈ L, a unique natural number n, unique basis elements b1, . . . , bn ∈ B,
and unique non-zero scalars λ1, . . . , λn ∈ F. So, we can define a linear
form η : H → F in the following way. We put η(hL) = 0 for all hL ∈ L

and η(b′) = 1, say, for all b′ ∈ B. Then, obviously, we have ηA = o and
η(b) 6= 0, which means we are done. ♦

Assuming that the field F is linearly ordered and using the reason-
ing of Sec. 5, we obtain the following analogy of Th. 6.

Theorem 8. Let W and H be vector spaces over a linearly ordered
(possibly skew) field F. Let A : W → H be a linear mapping and let
b ∈ H be a point. Then the next three statements are equivalent:

1. the linear equation (11) has no solution,

2. the residual set {Ax− b : x ∈ W } and the origin 0 of the space H

can be strongly separated by a hyperplane, i.e., there exists an
η ∈ H# such that η(Ax− b) < −1

2
η(b) < η(0) for all x ∈ W,

3. the range {Ax : x ∈ W } of the mapping A and the point b can be
strongly separated by a hyperplane.

On the one hand, Fredholm’s Theorem 7 and its corollary, Th. 8,
are quite general because we do not consider any topology on the vector
spaces W and H and because the field F can be any one. On the other
hand, unlike Rohn’s Residual Existence Theorem 4, we have to work with
the whole algebraic dual H#.
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Therefore, it is a challenging task to prove an analogy of Fredholm’s
Theorem 7 according with Rohn’s Residual Existence Theorem 4, i.e. an
analogy such that the linear form η in (12) can be restricted to be from
a subspace H∗ of H# which makes (H,H∗) be a dual pair of spaces. As
noted in Sec. 5, statement 5 of Th. 6, provides a new point of view on
Fredholm’s Theorem, indicating a way to prove the sought-after analogy.
Consequently, we may be able to obtain an according generalisation of
Gale’s Theorem of the alternative (see [1, Lemma 4.2]), which is funda-
mental in the proof of the Duality Theorem for linear programming (see
[1, Th. 6.3]). Thus, we may expect that we could be able to consider more
general problems of linear programming in infinite-dimensional spaces (in
an algebraic setting, cf. [1]) and to establish the strong Duality Theorem
for them.
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