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Abstract: The notion of completely *-prime *-ideal of an involution ring is
introduced and investigated. In particular, it is shown that involution rings in
which the zero *-ideal is completely *-prime (called *-domains) are precisely
those in which there are neither symmetric nor skew-symmetric zero divisors.
It is shown that such involution rings may be embedded in involution rings
with unity having the same property. Several characterizations of *-domains
and, in particular, of Goldie *-domains are provided. Finally, this new concept
is used to describe the generalized nil radical of an involution ring.

1. Introduction

It is well-known that the symmetric and skew-symmetric elements
play an important role in the determination of the algebraic structure of
an involution ring. Lanski [9] and Herstein and Montgomery [8] estab-
lished rather complete structure theorems for rings with involution whose
symmetric and skew-symmetric elements, respectively, are not zero divi-
sors. In this paper we investigate, in particular, involution rings in which
neither symmetric nor skew-symmetric elements are zero divisors. We
introduce the notion of completely *-prime *-ideal of an involution ring
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(which is a generalization of the concept of completely prime *-ideal)
and show that involution rings in which there are no symmetric or skew-
symmetric zero divisors are precisely those in which the zero *-ideal is
completely *-prime. We show that such rings may be embedded in invo-
lution rings with identity having the same property and we characterize
Goldie involution rings without either symmetric or skew-symmetric el-
ements. Finally, we describe the generalized nil radical of an involution
ring in terms of its completely *-prime *-ideals.

Throughout this paper, all rings are assumed to be associative but
do not necessarily have identity. Let us recall that an involution ring R
is a ring with an additional unary operation *, called involution, such
that (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗ and (a∗)∗ = a, for all a, b ∈ R.
An element of an involution ring R which is either symmetric or skew-
symmetric shall be called a *-element and a *-ideal I of R is an ideal
which is closed under involution; that is, I∗ = {a∗ ∈ R : a ∈ I} ⊆ I. A
subring B of R such that BRB ⊆ B and which is closed under involution,
is called a *-biideal of R.

2. Completely *-prime *-ideals and *-domains

The concepts of completely prime ideal, completely semiprime ideal,
domain and reduced ring are well-known in the category of rings and have
been extensively studied. We now study generalizations of these concepts
in the category of involution rings and use them to prove similar results
to some well-known ones for rings (without involution).

Definition 1. An involution ring R is called a *-domain if, for any
nonzero a, b ∈ R, ab 6= 0 or ab∗ 6= 0. If, for any nonzero a ∈ R, a2 6= 0 or
aa∗ 6= 0, then R is said to be *-reduced.

Definition 2. Let P be a proper *-ideal of an involution ring R. Then
P is called completely *-prime if R/P is a *-domain. If R/P is *-reduced,
then P is said to be completely *-semiprime.

Example 3. LetD be a domain and R = D⊕Dop where Dop is the oppo-
site ring of D. Then R is a ring with involution defined by (a, b)∗ = (b, a)
for all a, b ∈ D. This involution is known as the exchange involution.
The involution ring R is a *-domain which is not prime.

Example 4. The ringM2 (Z3) of 2×2 matrices over the field Z3, endowed
with the usual transposition of matrices, is an example of a *-reduced
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involution ring which is not reduced.

Proposition 5. Let R be an involution ring and P a proper *-ideal of R.
Then the following statements are equivalent:

(i) P is a completely *-prime *-ideal of R;
(ii) P is a completely semiprime *-prime *-ideal of R.

Proof. (i) implies (ii). Let P be a completely *-prime *-ideal of R, a ∈ R
and a2 ∈ P . If a is a *-element, then a ∈ P. If a is not a *-element, then
(a∗a) (aa∗) ∈ P implies that aa∗ ∈ P or a∗a ∈ P . From this and a2 ∈ P
we get that a ∈ P . Hence P is a completely semiprime *-ideal. To show
that P is *-prime, let I and J be *-ideals of R such that P ⊂ I, P ⊂ J
and IJ ⊆ P . If I " P , then there exists a nonzero element a ∈ I such
that a /∈ P . Then (a+ P ) (J/P ) = 0 and (a∗ + P ) (J/P ) = 0 and, since
R/P is a *-domain, it follows that J ⊆ P .

(ii) implies (i). Suppose that P is a completely semiprime *-prime
*-ideal of R. Let a, b ∈ R such that ab ∈ P and ab∗ ∈ P . Then
(a∗Rb)2 ⊆ P and (a∗Rb∗)2 ⊆ P , whence a∗Rb ⊆ P and a∗Rb∗ ⊆ P . The
*-primeness of P now implies that a ∈ P or b ∈ P (see [3]). ♦

It is well-known that a ring R is a domain (that is, has no zero
divisors) if and only if R is a prime reduced ring. Now we have the
following for rings with involution:

Corollary 6. The following conditions are equivalent for an involution
ring R:

(i) R is a *-domain;
(ii) R is reduced and *-prime.

As for rings without involution [15], we have the following result
concerning involution rings in which every left and every right ideal is
two-sided, called duo involution rings:

Proposition 7. If R is a duo involution ring and P is a proper *-ideal
of R, then the following conditions are equivalent:

(i) P is a *-prime *-ideal;
(ii) P is a completely *-prime *-ideal.

Proof. Let a, b∈R with ab∈P and ab∗∈P . The set T = {t∈R : at∈P}
is an ideal of R and b, b∗ ∈ T ; hence Rb ⊆ T and Rb∗ ⊆ T . Therefore
aRb ⊆ P and aRb∗ ⊆ P , whence a ∈ P or b ∈ P . ♦

The proof of the next result is immediate.

Proposition 8. For an involution ring R, the following statements are
equivalent:
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(i) R is *-reduced;
(ii) R has no nonzero nilpotent *-elements.

The next theorem gives several characterizations of *-domains. Tak-
ing into account the next lemma, the proof of the equivalence of state-
ments (v), (vi) and (vii) is a straightforward adaptation of the proof of
([3], Th. 4.2). The concepts of “essential product”, “essential ideal” and
“*-essential *-ideal” are as defined in [3].

Lemma 9. If I is a nonzero ideal of a ring R such that I is a domain,
then annR (I) = {x ∈ R : xI = Ix = 0} is a completely prime ideal of R
and it is a minimal prime ideal of R.

Proof. Let a, b ∈ R, ab ∈ annR (I). We have (bIa)2 = 0, which implies
that bIaI = 0. Since I is a prime ring, aI = 0 or bI = 0. As I is
a domain, its left annihilator coincides with its right annihilator and so
a ∈ annR (I) or b ∈ annR (I). By ([3], Lemma 3.2), annR (I) is a minimal
prime ideal of R. ♦

Theorem 10. The following conditions are equivalent for an involution
ring R:

(i) R is a *-domain;
(ii) the product of any two nonzero *-elements in R is nonzero;
(iii) the *-elements in R are not zero divisors;
(iv) if a, b ∈ R and b is a *-element such that RabR = 0, then a = 0

or b = 0;
(v) R is a domain or R has a nonzero completely prime ideal P

such that P ∩ P ∗ = 0;
(vi) R is a domain or R has a nonzero ideal P such that

(a) P ∩ P ∗ = 0,
(b) P ⊕ P ∗ is a *-essential *-ideal of R,
(c) P and P ∗ are domains;

(vii) R is a domain or R has a nonzero completely prime ideal I
such that

(a) I ∩ I∗ = 0,
(b) I ⊕ I∗ is an essential ideal of R,
(c) I and I∗ are domains,
(d) I ⊕ I

∗

is an essential ideal of R/I∗ ⊕ R/I where I =
= (I ⊕ I∗) /I∗ and I

∗

= (I ⊕ I∗) /I,
(e) R is an essential product of R/I∗ and R/I.

Proof. Clearly, (i) implies (ii).
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(ii) implies (iii). First we observe that if (ii) holds, then R is re-
duced. Indeed, let a2 = 0 for some a ∈ R. Then (a∗a) (aa∗) = 0 implies
that a∗a = 0 or aa∗ = 0. If a∗a = 0, then (aa∗)2 = 0 and we have
aa∗ = 0. From (a∗ + a)2 = 0, we obtain a∗ = −a = 0. If aa∗ = 0, then it
follows in a similar way that a = 0. Next, let bc = 0, where b, c ∈ R and
b is a *-element. Since R is reduced, cb = 0 and, therefore, b (c + c∗) = 0.
Hence b = 0 or c = 0.

(iii) implies (iv). Let a, b ∈ R where b is a *-element such that
RabR = 0. Then a2b2 = 0 implies that a2 = 0 or b2 = 0 and hence a = 0
or b = 0.

(iv) implies (i) is obvious.
(i) implies (v). Let R be a *-domain which is not a domain. Then R

is *-prime but not prime. In fact, there exist nonzero elements r, s ∈ R
such that rs = 0 and so (sRr)2 = 0. Since R is reduced, sRr = 0.
According to [3, Th. 4.2], there exists a nonzero prime ideal P of R such
that P ∩ P ∗ = 0. We claim that P is a completely prime ideal of R.
Indeed, suppose that a, b ∈ R are such that ab ∈ P . Then (abb∗) (a∗a) ∈
∈ P ∩ P ∗ = 0 and so a∗a = 0 or abb∗ = 0. If a∗a = 0, then (aRa∗)2=0.
Hence aRa∗ = 0 ⊆ P and we get a ∈ P or a∗ ∈ P . If a∗ ∈ P , then
b∗a∗ ∈ P ∩ P ∗ = 0 and so ab = 0. Now (bRa)2 = 0 implies that
bRa = 0 ⊆ P and we obtain a ∈ P or b ∈ P . If abb∗ = 0, then either
a = 0 ∈ P or bb∗ = 0. The latter case implies, arguing as above, that
a ∈ P or b ∈ P .

(v) implies (iii). Suppose that R is not a domain. Let a, b ∈ R,
where b is a *-element and ab = 0. From ab ∈ P , it follows that a ∈ P
or b ∈ P . If b ∈ P , then, since b is a *-element, b ∈ P ∩ P ∗ = 0. If
b /∈ P , then a ∈ P . Now b∗a∗ = (ab)∗ = 0 ∈ P yields a∗ ∈ P and thus
a ∈ P ∩ P ∗ = 0. ♦

Corollary 11. Let R be an involution ring with descending chain con-
dition (d.c.c.) on *-biideals of the form xRx∗ (x ∈ R). Then R is a
*-domain if and only if R is a division ring or R is a ring of the form
D ⊕ Dop, where D is a division ring and D ⊕ Dop is endowed with the
exchange involution.

Proof. If R is a *-domain, then R is either a domain or R has a nonzero
ideal D such that D ∩ D∗ = 0, D and D∗ are domains and D ⊕ D∗ is
a *-essential *-ideal of R. If a semiprime involution ring has d.c.c. on
*-biideals of the form xRx∗, then R has d.c.c. on principal right ideals,
as was proved in [10, Th. 6]. So, R is a von Neumann regular ring.
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Thus, in the first case, R is a division ring, as is well-known. In the
second case, we claim that D (and hence also D∗) has an identity. For
any 0 6= d ∈ D, there exists x ∈ R such that d = dxd. Therefore,
e = xd = (xd)2 is a nonzero idempotent in D. Consequently, for any
y ∈ D, (y − ye) e = 0 and, sinceD is a domain, y = ye. Similarly, ey = y.
From ([12] , Lemma 8), it follows that R = D⊕D∗. Since D∗ ∼= Dop, we
have R = D ⊕ D∗ ∼=∗ D ⊕ Dop with the exchange involution. Since D
and D∗ are domains with d.c.c on principal right ideals, they are division
rings. ♦

Next, we will present some characterizations of Goldie *-domains.
To this end, we start by recalling some definitions and results, due to
Domokos, concerning (classical) rings of quotients and Goldie involution
rings.

If S is a nonempty subset of an involution ring R, let 〈S〉∗ denote the
*-biideal of R generated by S and denote by r (S) the right annihilator
of S in R. Then r (S) ∩ r (S)∗ is a *-biideal of R, called an annihilator
*-biideal of R.

Definition 12 [6]. An involution ring R is called a Goldie involution
ring, if the following two conditions are satisfied:

(i) there is no infinite sequence B1, ..., Bn, ... of nonzero *-biideals
of R such that 〈B1 + ... +Bn〉

∗ ∩ Bn+1 = 0 for all n = 1, 2, ...; that is,
the maximum condition on *-biideal direct sums is satisfied;

(ii) there is no infinite strictly ascending chain

r (S1) ∩ r (S1)
∗ ⊂ ... ⊂ r (Sn) ∩ r (Sn)

∗ ⊂ ...

where S1, ..., Sn, ... are subsets of R; that is, R satisfies the ascending
chain condition on annihilator *-biideals.

Definition 13 [6]. An involution ring Q is a *-ring of quotients of its
*-subring R, if Q is a ring of quotients of R.

Proposition 14 [6]. An involution ring R has a *-ring of quotients if
and only if R has a ring of quotients and, furthermore, the *-ring of
quotients is uniquely determined up to *-isomorphism over R.

Proposition 15 [6]. For a semiprime involution ring R, the following
two statements are equivalent:

(i) R is a Goldie ring;
(ii) R is a Goldie involution ring.
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Proposition 16 [6]. If R is a *-prime involution ring, then the following
two statements are equivalent:

(i) R is a Goldie involution ring;
(ii) R has a *-ring of quotients Q and

Q ∼= Mn (D) or Q ∼=∗ Mn (D)⊕Mop
n (D)

where Mn (D) denotes the full n× n matrix ring over a division ring D
and Mop

n (D) denotes its opposite ring and Mn (D)⊕Mop
n (D) is endowed

with the exchange involution.

Proposition 17 ([13], Prop. 1.5). If R is a reduced ring having a left
ring of quotients Q, then Q is reduced.

From [11, Lemma 3.1.6], we have:

Proposition 18. Let Q be a ring of quotients of a ring R and let S be
a subring of Q. Suppose further that there are units a, b ∈ Q such that
aRb ⊆ S. Then S also has Q as a ring of quotients.

Clearly, if R is a *-domain, then r (S) ∩ r (S)∗ = 0 for any nonzero
subset S of R; hence (ii) of Def. 12 automatically holds in a *-domain.
The equivalence of (iv) and (v) below is the involutive version of [7,
Lemma 4.2].

Theorem 19. The following conditions are equivalent for an involution
ring R:

(i) R is a Goldie *-domain;
(ii) R has a *-ring of quotients which is either a division ring or

a ring of the form D ⊕ Dop where D is a division ring and D ⊕ Dop is
endowed with the exchange involution;

(iii) R is a Goldie domain or R has nonzero ideal P such that P
and P ∗ are Goldie domains, P ∩P ∗ = 0 and P ⊕P ∗ is *-essential in R;

(iv) R is a *-domain which satisfies the maximum condition on
*-biideal direct sums;

(v) R is a *-domain in which the intersection of any two nonzero
*-biideals of R is nonzero.

Proof. (i) is equivalent to (ii). Follows readily from Cor. 6, Prop. 16
and Prop. 17.

(ii) implies (iii). If R has a *-ring of quotients which is a divi-
sion ring, then R is a Goldie domain. Suppose now that the *-ring of
quotients of R is of the form D ⊕ Dop where D is a division ring and
D⊕Dop is endowed with the exchange involution. Then R is a *-domain
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and, according to Th. 10, there exists a nonzero ideal P of R such that
P ∩ P ∗=0, P and P ∗ are domains, and P ⊕ P ∗ is *-essential in R. By
Prop. 18, P ⊕ P ∗ also has D ⊕Dop as its *-ring of quotients. Therefore
P ⊕ P ∗ is a Goldie ring and hence satisfies the maximum condition on
direct sums of left (right) ideals. Now it is clear that P and P ∗ satisfy
the maximum condition on direct sums of left (right) ideals, since any
left (right) ideal of P or P ∗ is also a left (right) ideal of P⊕P ∗. Therefore
P and P ∗ are Goldie domains.

(iii) implies (i). Suppose that R is not a domain. By assumption,
there exists a nonzero ideal P of R such that P and P ∗ are Goldie do-
mains, P ∩ P ∗ = 0 and P ⊕ P ∗ is *-essential in R. By Th. 10, R is a
*-domain and so is P ⊕ P ∗. Moreover, since P and P ∗ are Goldie rings,
P ⊕P ∗ is also a Goldie ring. Since P ⊕P ∗ is an essential ideal of R (see
[3], Cor. 3.4), R is also a Goldie involution ring, as is well-known.

Clearly (i) is equivalent to (iv) and (v) implies (i).
(i) implies (v). Suppose that B1 and B2 are nonzero *-biideals of R

such that B1 ∩ B2 = 0. First, we consider the case when R is a domain.
We have (B1R ∩ B2R) (RB1 ∩RB2) = 0, implying that B1R ∩ B2R = 0
or RB1∩RB2 = 0. However, R is a Goldie domain and so the intersection
of any two nonzero left (right) ideals of R is nonzero (see [7], Lemma 4.2).
We have thus arrived at a contradiction. Next we assume that R is not
a domain. From Th. 10, R contains a nonzero proper ideal P such that
P and P ∗ are domains, P ∩ P ∗ = 0 and P ⊕ P ∗ is *-essential in R. Now
B1PB1 and B2PB2 are nonzero biideals of P and B1PB1∩ B2PB2 = 0.
Thus (B1PB1P ∩ B2PB2P ) (PB1PB1 ∩ PB2PB2) = 0, implying that
B1PB1P ∩ B2PB2P = 0 or PB1PB1 ∩ PB2PB2 = 0. This contradicts
the fact that P is a Goldie domain. ♦

Szendrei [14] showed that every domain can be embedded in a
domain with identity. We terminate this section showing that every
*-domain is embeddable in a *-domain with identity. To this end, we
need the following lemma:

Lemma 20. Let R be an involution ring and I a *-ideal of R which,
considered as an involution ring, is a *-domain. If ra = 0 for some
nonzero *-element a ∈ I and r ∈ R, then r ∈ annR(I).

Proof. If r = 0, the result is clearly true. Suppose now that r 6= 0
and let b ∈ I. Then 0 = (br) a = (b∗r) a. Hence br = b∗r = 0 and
(b− b∗) rb = 0. This implies that rb = 0 or b∗ = b. In the latter case,
b (rb) = 0 implies that rb = 0. Hence the result follows. ♦
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Proposition 21. Let I be a nonzero *-ideal of an involution ring R such
that I, as an involution ring, is a *-domain and let A = annR(I). Then
R/A is a *-domain and (I + A) /A ∼=∗ I.

Proof. Let r, s ∈ R such that rs ∈ A and s − s∗ ∈ A or s + s∗ ∈ A.
For any nonzero *-element a ∈ I, we have r (sas∗) = 0, Clearly, sas∗ is
a *-element in I. If sas∗ 6= 0, then, from the previous lemma, r ∈ A. If,
on the other hand, sas∗ = 0, then we get 0 = s (as∗a). If s − s∗ ∈ A,
then (s− s∗) a = 0; that is, sa = s∗a and so as∗a is a *-element in I.
Therefore, if as∗a 6= 0, the previous lemma implies that s ∈ A; otherwise,
as∗a = a (s∗a) = 0 implies that s∗a = 0 and we conclude that s ∈ A.
When s+ s∗ ∈ A, it follows in a similar way that s ∈ A. Finally, noting
that I∩A = 0 since I is semiprime, we have (I+A)/A ∼=∗ I/(I ∩A)∼=∗ I.

♦

Corollary 22. For each *-domain R, there exists a *-domain with iden-
tity which contains R as a *-ideal.

Proof. Every involution ring R can be embedded as a *-ideal in an invo-
lution ring R♯ with identity [1]. By application of the previous proposition
to the involution ring R♯, we obtain the desired result. ♦

3. The generalized nil radical

Our main goal in this section is to show that a completely semiprime
*-ideal of an involution ring R is an intersection of completely *-prime
*-ideals of R. The proofs are a straightforward adaptation of the proofs
of the corresponding results in [2], for rings without involution. First,
however, we require some preliminary results.

In [3], Birkenmeier and Groenewald called a subset N of an in-
volution ring R a *-m-system if, for all a, b ∈ N , aRb ∩ N 6= ∅ or
aRb∗ ∩ N 6= ∅. It is clear that if P is a *-prime *-ideal, then C (P ),
the complement of P in R, is a *-m-system. In some cases, the converse
is also true. In fact, as in [2], it follows that any *-m-system N , not
intersecting a *-ideal I 6= R, is contained in some maximal *-m-system
M not intersecting I. We claim that the complement C (M) is a *-prime
*-ideal. Indeed, by Zorn’s Lemma, among the *-ideals of R containing I
and not intersecting M , there is a maximal *-ideal P . Now P is a *-prime
*-ideal. Indeed, if I1 and I2 are *-ideals in R such that P ⊂ I1 and P ⊂ I2,
then, by the maximality of P , there exist elements a1, a2 ∈ R such that
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a1 ∈ I1 ∩M and a2 ∈ I2 ∩M . Since M is a *-m-system, there exists an
element x ∈ R such that a1xa2 ∈ M or a1xa

∗

2 ∈ M . However, a1xa2 ∈
∈ I1I2 and a1xa

∗

2 ∈ I1I2. Since P is a *-prime *-ideal, it is clear from
[3, Th. 5.4] that C (P ) is a *-m-system. From I ⊆ P and P ∩M = ∅,
we obtain, C (P )∩ I = ∅ and M ⊆ C (P ) whence, by the maximality of
M , M = C (P ). Thus C (M) = P and P is a minimal *-prime *-ideal
containing I, for if P ′ is a *-prime *-ideal such that I ⊆ P ′ ⊂ P , then
C (P ′) ∩ I = ∅ and C (P ′) ∩ I 6= ∅, since M = C (P ) ⊂ C (P ′).

Theorem 23. A completely semiprime *-ideal is an intersection of com-
pletely *-prime *-ideals.

Proof. We show that if Q is a completely semiprime *-ideal of an involu-
tion ring R and I is any *-ideal of R such that Q ⊂ I, then there is a com-
pletely *-prime *-ideal P such thatQ ⊆ P and I 6⊆ P . Choose a ∈ R such
that a ∈ I and a /∈ Q. Then the *-m-system N = {ai : i = 1, 2, ...} does
not intersect the *-ideal Q. Let M be a maximal *-m-system containing
N and not intersecting Q. As seen above, the complement C (M) = P
is a minimal *-prime *-ideal containing Q. Since a /∈ C (M) = P ,
we have I 6⊆ P . It remains to show that P is a completely *-prime
*-ideal. To this end, we consider the set M1 of all elements of the form
ar11 ar22 ...arnn where each ri is a positive integer and a1a2...an ∈ M . It is
clear that M ⊆ M1. Moreover, M1 is a *-m-system. Indeed, if a, b ∈ M1,
then a = ar11 a

r2
2 ...arnn with a1a2...an ∈ M and b = bs11 bs22 ...bsmm with

b1b2...bm ∈ M . Since M is a *-m-system, there exists x ∈ R such that
a1a2...anxb1b2...bm∈M or a1a2...anx (b1b2...bm)

∗=a1a2...anxb
∗

m...b
∗

2b
∗

1∈M .
By the definition of M1, axb = ar11 a

r2
2 ...arnn xbs11 bs22 ...bsmm ∈ M1 or axb∗ =

= ar11 a
r2
2 ...arnn x (bsmm )∗ ... (bs22 )∗ (bs11 )∗ = ar11 ar22 ...arnn x (b∗m)

sm ... (b∗2)
s2 (b∗1)

s1 ∈
∈ M1. Now we show that M1∩Q = ∅. Since Q is completely semiprime,
it holds that, for any x, y ∈ Q, xy ∈ Q if and only if yx ∈ Q. Assume
that there exists c ∈ M1 ∩Q. Then c = cr11 c

r2
2 ...crnn with c1c2...cn ∈ M . If

r1 > 1, then cr1−1

1 cr22 ...c
rn
n c1 ∈ Q and hence

(

cr1−1

1 cr22 ...crnn
)2

∈ Q. This im-

plies that cr1−1

1 cr22 ...c
rn
n ∈ Q. Continuing in this way, we eventually obtain,

after a finite number of steps, c1c
r2
2 ...crnn ∈ Q. But then cr22 ...crnn c1 ∈ Q.

Repeating these arguments for r2, ..., rn, we obtain, after a finite number
of steps, c1c2...cn ∈ Q and, therefore, c1c2...cn ∈ Q ∩M ; a contradiction
with the choice of M . From Q ∩ M = ∅ and the maximality of the
*-m-system M , we obtain M1 = M = C (P ). Now t ∈ M implies that
t2 ∈ M1 = M , so t2 ∈ C (M) = P implies that t ∈ P . So R/P is reduced
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and *-prime, hence a *-domain by Cor. 6. ♦

The generalized nil radical of a ring R, denoted by Ng (R), was
introduced simultaneously by Andrunakievic and Thierrin (see [5]). It
is clear that Ng (R) = R implies that Ng (R

op) = Rop, whence, by [4,
Prop. 1.1], for any involution ring R, Ng (R) = Ng (R)∗. By Th. 23,
Ng (R) is an intersection of completely *-prime *-ideals of R. If Λ denotes
the family of all completely *-prime *-ideals of R, then ∩ (P : P ∈ Λ) ⊆
⊆ Ng (R). If the inclusion is proper, then, by the Lemma in [2], there
exists a completely prime ideal P ′ such that ∩ (P : P ∈ Λ) ⊆ P ′ and
Ng (R) * P ′; a contradiction with the fact that Ng (R) coincides with
the intersection of all completely prime ideals of R [2]. We may now state
the following:

Corollary 24. For any involution ring R, Ng (R) coincides with the
intersection of all completely *-prime *-ideals of R.

Proposition 25. Let R be a ring with involution. Any maximal *-m-
system M not intersecting a given completely semiprime *-ideal Q 6= R,
is a *-multiplicative system; that is, if a, b∈M , then ab ∈ M or ab∗ ∈ M .

Proof. In the proof of the previous theorem, it was seen that M = C (P )
where P is a completely *-prime *-ideal. ♦

Corollary 26. Each minimal *-prime *-ideal of a reduced involution
ring R is a completely *-prime *-ideal.

Proof. If P is a minimal *-prime *-ideal of R, then C(P ) is a maximal
*-m-system not containing the completely semiprime *-ideal 0. Hence P
is a completely *-prime *-ideal. ♦
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