Mathematica Pannonica

23/2 (2012), 235-256

HERZ SPACES AND POINTWISE SUMMABILITY OF FOURIER SERIES

Ferenc Weisz

Department of Numerical Analysis, Eötvös L. University, H-1117 Budapest, Pázmány P. sétány 1/C, Hungary

Dedicated to the memory of Professor Gyula I. Maurer (1927-2012)
Received: March 2012
MSC 2010: Primary 42 B 08, 42 A 38, 42 A 24 ; secondary 42 B 30
Keywords: Wiener algebra, cone-like sets, Hardy-Littlewood maximal function, θ-summation of Fourier series, restricted convergence, Herz spaces, Lebesgue points.

Abstract

A general summability method, the so-called θ-summability is considered for multi-dimensional Fourier series. It is proved that if the kernel functions are uniformly bounded in a Herz space then the restricted maximal operator of the θ-means of a distribution is of weak type (1,1), provided that the supremum in the maximal operator is taken over a cone-like set. From this it follows that $\sigma_{n}^{\theta} f \rightarrow f$ a.e. for all $f \in L_{1}\left(\mathbb{T}^{d}\right)$. Moreover, $\sigma_{n}^{\theta} f(x)$ converges to $f(x)$ over a cone-like set at each Lebesgue point of $f \in L_{1}\left(\mathbb{T}^{d}\right)$ if and only if the kernel functions are uniformly bounded in a suitable Herz space. The Cesàro, Riesz and Weierstrass summations are investigated as special cases of the θ-summation.

1. Introduction

The well-known Lebesgue [8] theorem says that for every integrable function f the Fejér means $\sigma_{n} f(x)=\frac{1}{n} \sum_{k=0}^{n-1} s_{k} f(x)$ converge to $f(x)$ as $n \rightarrow \infty$ at each Lebesgue point of f, where $s_{k} f$ denotes the k th partial sum of the Fourier series of f. Almost every point is a Lebesgue point

[^0]of f. Later Alexits [1] generalized this result and gave a sufficient and necessary condition such that the singular integrals converge at every Lebesgue point.

For multi-dimensional trigonometric-Fourier series Marcinkievicz and Zygmund [9, 17] proved that the Fejér means $\sigma_{n} f$ of a function $f \in L_{1}\left(\mathbb{T}^{d}\right)$ converge a.e. to f as $n \rightarrow \infty$ provided that n is in a cone, i.e., $\tau^{-1} \leq n_{k} / n_{j} \leq \tau$ for every $k, j=1, \ldots, d$ and for some $\tau \geq 1\left(n=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}^{d}\right)$. We have extended this result to the θ-summation in [14]. The so called θ-summation is a general method of summation and it is intensively studied in the literature (see e.g. Butzer and Nessel [3], Trigub and Belinsky [13] and Weisz [14, 4, 5] and the references therein). Similar results for so-called cone-like sets can be found in Gát [6] and Weisz $[15,16]$.

In this paper we extend the results concerning the Lebesgue points to cone-like sets defined by a function γ. We introduce a new version of the Hardy-Littlewood maximal function depending on γ and show that if the kernel functions of the θ-summation are uniformly bounded in a modified Herz space, then the maximal function $\sigma_{\gamma}^{\theta} f$ can be estimated by the Hardy-Littlewood maximal function $M_{p}^{\gamma} f$, provided that the supremum in the maximal operator is taken over a cone-like set. Since M_{p}^{γ} is of weak type (p, p) we obtain $\sigma_{n}^{\theta} f \rightarrow f$ a.e. over a cone-like set for all $f \in L_{p}\left(\mathbb{T}^{d}\right)$. The set of convergence is also characterized, the convergence holds at every p-Lebesgue point of f. The converse holds also, more exactly, $\sigma_{n}^{\theta} f(x) \rightarrow f(x)$ over a cone-like set at each p-Lebesgue point of $f \in L_{p}\left(\mathbb{T}^{d}\right)$ if and only if the kernel functions are uniformly bounded in the Herz space. As special cases five examples of the θ-summation are considered, amongst others the Cesàro, Riesz and Weierstrass summations. Similar results for Fourier transforms can be found in Feichtinger and Weisz $[5,15]$.

2. Wiener algebra

Let us fix $d \geq 1, d \in \mathbb{N}$. For a set $\mathbb{Y} \neq \emptyset$ let \mathbb{Y}^{d} be its Cartesian product $\mathbb{Y} \times \ldots \times \mathbb{Y}$ taken with itself d-times. For $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ and $u=\left(u_{1}, \ldots, u_{d}\right) \in \mathbb{R}^{d}$ set $u \cdot x:=\sum_{k=1}^{d} u_{k} x_{k}$.

We briefly write L_{p} or $L_{p}\left(\mathbb{T}^{d}\right)$ instead of $L_{p}\left(\mathbb{T}^{d}, \lambda\right)$ space equipped with the norm (or quasi-norm) $\|f\|_{p}:=\left(\int_{\mathbb{T}^{d}}|f|^{p} d \lambda\right)^{1 / p}(0<p \leq \infty)$, where $\mathbb{T}=[-\pi, \pi]$ is the torus and λ is the Lebesgue measure.

The weak L_{p} space, $L_{p, \infty}\left(\mathbb{T}^{d}\right)(0<p<\infty)$ consists of all measurable functions f for which

$$
\|f\|_{p, \infty}:=\sup _{\rho>0} \rho \lambda(|f|>\rho)^{1 / p}<\infty
$$

while we set $L_{\infty, \infty}\left(\mathbb{T}^{d}\right)=L_{\infty}\left(\mathbb{T}^{d}\right)$. Note that $L_{p, \infty}\left(\mathbb{T}^{d}\right)$ is a quasi-normed space (see Bergh and Löfström [2]). It is easy to see that for each $0<$ $<p \leq \infty$,

$$
L_{p}\left(\mathbb{T}^{d}\right) \subset L_{p, \infty}\left(\mathbb{T}^{d}\right) \quad \text { and } \quad\|\cdot\|_{p, \infty} \leq\|\cdot\|_{p}
$$

The space of continuous functions with the supremum norm is denoted by $C\left(\mathbb{T}^{d}\right)$.

A measurable function f belongs to the Wiener amalgam space $W\left(L_{\infty}, \ell_{1}\right)\left(\mathbb{R}^{d}\right)$ if

$$
\|f\|_{W\left(L_{\infty}, \ell_{1}\right)}:=\sum_{k \in \mathbb{Z}^{d}} \sup _{x \in[0,1)^{d}}|f(x+k)|<\infty .
$$

It is easy to see that $W\left(L_{\infty}, \ell_{1}\right)\left(\mathbb{R}^{d}\right) \subset L_{p}\left(\mathbb{R}^{d}\right)$ for all $1 \leq p \leq \infty$. The closed subspace of $W\left(L_{\infty}, \ell_{1}\right)\left(\mathbb{R}^{d}\right)$ containing continuous functions is denoted by $W\left(C, \ell_{1}\right)\left(\mathbb{R}^{d}\right)$ and is called Wiener algebra. It is used quite often in Gabor analysis, because it provides a convenient and general class of windows (see e.g. Gröchenig [7]). It turned out in Feichtinger and Weisz $[4,5]$ that it can be well applied in summability theory, too.

3. θ-summability of Fourier series

We will consider the θ-summation defined by a multi-parameter sequence. Let

$$
\begin{equation*}
\theta=\left(\theta(k, n), k \in \mathbb{Z}^{d}, n \in \mathbb{N}^{d}\right) \tag{1}
\end{equation*}
$$

be a $2 d$-parameter sequence of real numbers satisfying

$$
\begin{equation*}
\theta(0, \ldots 0, n)=1, \quad \lim _{n \rightarrow \infty} \theta(k, n)=1 \quad(\theta(k, n))_{k \in \mathbb{Z}^{d}} \in \ell_{1} \tag{2}
\end{equation*}
$$

for each $n \in \mathbb{N}^{d}$. Recall that for a distribution $f \in \mathcal{S}^{\prime}\left(\mathbb{T}^{d}\right)$ the nth Fourier coefficient is defined by $\widehat{f}(n):=f\left(e^{-i n \cdot x}\right)\left(n \in \mathbb{Z}^{d}, \imath=\sqrt{-1}\right)$. In special case, if $f \in L_{1}\left(\mathbb{T}^{d}\right)$ then

$$
\widehat{f}(n)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}} f(t) e^{-i n \cdot t} d t \quad\left(n \in \mathbb{Z}^{d}\right)
$$

The θ-means of a distribution $f \in \mathcal{S}^{\prime}\left(\mathbb{T}^{d}\right)$ are defined by

$$
\begin{equation*}
\sigma_{n}^{\theta} f(x):=\sum_{k_{1}=-\infty}^{\infty} \ldots \sum_{k_{d}=-\infty}^{\infty} \theta(-k, n) \widehat{f}(k) e^{\imath k \cdot x}=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{T}} f(x-t) K_{n}^{\theta}(t) d t \tag{3}
\end{equation*}
$$

$\left(x \in \mathbb{T}^{d}, n \in \mathbb{N}^{d}\right)$, where K_{n}^{θ} denotes the θ-kernel

$$
K_{n}^{\theta}(t):=\sum_{k_{1}=-\infty}^{\infty} \ldots \sum_{k_{d}=-\infty}^{\infty} \theta(-k, n) e^{\imath k \cdot t} \quad\left(t \in \mathbb{T}^{d}\right)
$$

Observe that (2) ensures that $K_{n}^{\theta} \in L_{1}(\mathbb{T})$.
We can also define a θ-summation by one single function θ defined on \mathbb{R}^{d}. In this case we define the sequence in (1) by

$$
\theta(k, n):=\theta\left(\frac{k_{1}}{n_{1}}, \ldots, \frac{k_{d}}{n_{d}}\right) \quad\left(k \in \mathbb{Z}^{d}, n \in \mathbb{N}^{d}\right)
$$

If $\theta(0)=1$ and $\theta \in W\left(C, \ell_{1}\right)\left(\mathbb{R}^{d}\right)$ then (2) is satisfied, because

$$
\begin{aligned}
\sum_{k_{1}=-\infty}^{\infty} \ldots \sum_{k_{d}=-\infty}^{\infty}\left|\theta\left(\frac{k_{1}}{n_{1}}, \ldots, \frac{k_{d}}{n_{d}}\right)\right| & \leq \sum_{l_{1}=-\infty}^{\infty} \ldots \sum_{l_{d}=-\infty}^{\infty}\left(\prod_{j=1}^{d} n_{j}\right) \sup _{x \in[0,1)}|\theta(x+l)|= \\
& =\left(\prod_{j=1}^{d} n_{j}\right)\|\theta\|_{W\left(C, \ell_{1}\right)}<\infty
\end{aligned}
$$

The Fourier transform of $f \in L_{1}\left(\mathbb{R}^{d}\right)$ is given by

$$
\widehat{f}(x):=\int_{\mathbb{R}^{d}} f(t) e^{-2 \pi x \cdot t} d t \quad\left(x \in \mathbb{R}^{d}\right)
$$

If θ is a function and $\widehat{\theta} \in L_{1}\left(\mathbb{R}^{d}\right)$ then

$$
\begin{equation*}
\sigma_{n}^{\theta} f(x)=\left(\prod_{j=1}^{d} n_{j}\right) \int_{\mathbb{R}^{d}} f(x-t) \widehat{\theta}\left(n_{1} t_{1}, \ldots, n_{d} t_{d}\right) d t \tag{4}
\end{equation*}
$$

for all $x \in \mathbb{T}^{d}, n \in \mathbb{N}^{d}$ and $f \in L_{1}\left(\mathbb{T}^{d}\right)$, where f is extended periodically to \mathbb{R}^{d} (see Feichtinger and Weisz [4]).

4. Hardy-Littlewood inequality and cone-like sets

Suppose that for all $j=2, \ldots, d, \gamma_{j}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$are strictly increasing and continuous functions such that $\gamma_{j}(1)=1, \lim _{\infty} \gamma_{j}=\infty$ and $\lim _{+0} \gamma_{j}=0$. Moreover, suppose that there exist $c_{j, 1}, c_{j, 2}, \xi>1$ such that

$$
\begin{equation*}
c_{j, 1} \gamma_{j}(x) \leq \gamma_{j}(\xi x) \leq c_{j, 2} \gamma_{j}(x) \quad(x>0) \tag{5}
\end{equation*}
$$

Note that this is satisfied if γ_{j} is a power function. For convenience we extend the notations for $j=1$ by $\gamma_{1}:=\mathcal{I}$ and $c_{1,1}=c_{1,2}=\xi$. Here \mathcal{I} denotes the identity function $\mathcal{I}(x)=x$. Let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{d}\right)$ and $\tau=\left(\tau_{1}, \ldots, \tau_{d}\right)$ with $\tau_{1}=1$ and fixed $\tau_{j} \geq 1(j=2, \ldots, d)$. We will investigate the Hardy-Littlewood maximal operator and later the maximal operator of the θ-summation over a cone-like set (with respect to the first dimension)

$$
\begin{equation*}
\mathbb{R}_{\tau, \gamma}^{d}:=\left\{x \in \mathbb{R}_{+}^{d}: \tau_{j}^{-1} \gamma_{j}\left(n_{1}\right) \leq n_{j} \leq \tau_{j} \gamma_{j}\left(n_{1}\right), j=2, \ldots, d\right\} . \tag{6}
\end{equation*}
$$

If each γ_{j} is the identity, $j=2, \ldots, d$, then we get the cone defined by τ. The condition on γ_{j} seems to be natural, because Gát [6] proved in the two-dimensional case that to each cone-like set with respect to the first dimension there exists a larger cone-like set with respect to the second dimension and reversely, if and only if (5) holds.
$L_{p}^{\text {loc }}\left(\mathbb{T}^{d}\right)(1 \leq p \leq \infty)$ denotes the space of measurable functions f for which $|f|^{p}$ is locally integrable, resp. f is locally bounded if $p=\infty$. In [15] we have introduced the Hardy-Littlewood maximal function on a cone-like set by

$$
M_{p}^{\tau, \gamma} f(x):=\sup _{x \in I,\left(\left|I_{1}\right|, \ldots,\left|I_{d}\right|\right) \in \mathbb{R}_{\tau, \gamma}^{d}}\left(\frac{1}{|I|} \int_{I}|f|^{p} d \lambda\right)^{1 / p} \quad\left(x \in \mathbb{T}^{d}\right)
$$

with the usual modification for $p=\infty$, where $f \in L_{1}^{\text {loc }}\left(\mathbb{T}^{d}\right)$ and the supremum is taken over all rectangles $I:=I_{1} \times \cdots \times I_{d} \subset \mathbb{T}^{d}$ with sides parallel to the axes. Taking the supremum over rectangles with $\left|I_{j}\right|=\gamma_{j}\left(\left|I_{1}\right|\right), j=2, \ldots, d$, (i.e. $\tau_{j}=1, j=1, \ldots, d$), we obtain the maximal operator M_{p}^{γ}. The inequality

$$
M_{p}^{\gamma} f \leq M_{p}^{\tau, \gamma} f \leq C M_{p}^{\gamma} f
$$

was shown in Weisz [15]. In case $p=1$ we write simply $M^{\tau, \gamma}$ and M^{γ}. If each γ_{j} is the identity function then we get back the classical HardyLittlewood maximal function defined on a cone. The following theorem was proved in [15].
Theorem 1. The maximal operator $M_{p}^{\tau, \gamma}(1 \leq p \leq \infty)$ is of weak type (p, p), i.e.

$$
\left\|M_{p}^{\tau, \gamma} f\right\|_{p, \infty}=\sup _{\rho>0} \rho \lambda\left(M_{p}^{\tau, \gamma} f>\rho\right)^{1 / p} \leq C_{p}\|f\|_{p} \quad\left(f \in L_{p}\left(\mathbb{T}^{d}\right)\right) .
$$

Moreover, if $1 \leq p<r \leq \infty$ then

$$
\left\|M_{p}^{\tau, \gamma} f\right\|_{r} \leq C_{r}\|f\|_{r} \quad\left(f \in L_{r}\left(\mathbb{T}^{d}\right)\right)
$$

Since the set of continuous functions are dense in $L_{1}\left(\mathbb{T}^{d}\right)$, the usual density argument due to Marcinkiewicz and Zygmund [9] implies
Corollary 1. If $f \in L_{1}\left(\mathbb{T}^{d}\right)$ then

$$
\lim _{\substack{x \in I I,\left(\left|I_{1}\right|, \ldots,\left|I_{d}\right|\right) \in \mathbb{R}_{d, \gamma}^{d} \\\left|I_{j}\right| \rightarrow 0, j=1, \ldots, d}} \frac{1}{|I|} \int_{I} f d \lambda=f(x) \quad \text { for } \text { a.e. } x \in \mathbb{T}^{d} \text {. }
$$

5. Herz spaces

The $E_{q}\left(\mathbb{R}^{d}\right)(1 \leq q \leq \infty)$ spaces were used recently by Feichtinger and Weisz [5] in the summability theory of Fourier transforms. A function belongs to the (homogeneous) Herz space $E_{q}\left(\mathbb{R}^{d}\right)(1 \leq q \leq \infty)$ if

$$
\|f\|_{E_{q}}:=\sum_{k=-\infty}^{\infty} 2^{k d(1-1 / q)}\left\|f \mathbf{1}_{\left\{x \in \mathbb{R}^{d}: 2^{k-1} \pi \leq\|x\|_{\infty}<2^{k} \pi\right\}}\right\|_{q}<\infty
$$

Here we introduce a generalization of the $E_{q}\left(\mathbb{R}^{d}\right)$ spaces depending on the function γ (see [15]). A function $f \in L_{q}^{l o c}\left(\mathbb{R}^{d}\right)$ is in the space $E_{q}^{\gamma}\left(\mathbb{R}^{d}\right)(1 \leq q \leq \infty)$ if

$$
\begin{equation*}
\|f\|_{E_{q}^{\gamma}}:=\sum_{k=-\infty}^{\infty}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{k}\right)\right)^{1-1 / q}\left\|f \mathbf{1}_{P_{k}}\right\|_{q}<\infty \tag{7}
\end{equation*}
$$

where ξ and γ_{j} are defined in (5) and
$P_{k}:=\prod_{j=1}^{d}\left(-\gamma_{j}\left(\xi^{k}\right) \pi, \gamma_{j}\left(\xi^{k}\right) \pi\right) \backslash \prod_{j=1}^{d}\left(-\gamma_{j}\left(\xi^{k-1}\right) \pi, \gamma_{j}\left(\xi^{k-1}\right) \pi\right) \quad(k \in \mathbb{Z})$. If $\gamma_{j}=\mathcal{I}$ for all $j=1, \ldots, d$ and $\xi=2$ then we get back the original spaces $E_{q}\left(\mathbb{R}^{d}\right)$. However, it is easy to see that the spaces are equivalent for all $\xi>1$, whenever each γ_{j} is the identity function. If we modify the definition of P_{k},
$P_{k}^{\prime}=\prod_{j=1}^{d}\left(-\gamma_{j}\left(\xi^{k}\right) \pi, \gamma_{j}\left(\xi^{k}\right) \pi\right) \backslash \prod_{j=1}^{d}\left(-\gamma_{j}\left(\xi^{k-1}\right) \pi, \gamma_{j}\left(\xi^{k-1}\right) \pi\right) \bigcap \mathbb{T}^{d} \quad(k \in \mathbb{Z})$,
then we get the definition of the space $E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)$. This means that we have to take the sum in (7) for $k \leq 0$, only, because $\gamma_{j}(1)=1$ for all $j=1, \ldots, d$. Observe that

$$
\left|P_{k}\right| \sim \prod_{j=1}^{d} \gamma_{j}\left(\xi^{k}\right) \quad(k \in \mathbb{Z})
$$

Indeed,

$$
\left|P_{k}\right|=(2 \pi)^{d}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{k}\right)\right)\left(1-\prod_{j=1}^{d} \frac{\gamma_{j}\left(\xi^{k-1}\right)}{\gamma_{j}\left(\xi^{k}\right)}\right)
$$

and

$$
\frac{1}{c_{j, 2}} \gamma_{j}\left(\xi^{k}\right) \leq \gamma_{j}\left(\xi^{k-1}\right) \leq \frac{1}{c_{j, 1}} \gamma_{j}\left(\xi^{k}\right)
$$

because of (5). Thus

$$
(2 \pi)^{d}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{k}\right)\right)\left(1-\prod_{j=1}^{d} \frac{1}{c_{j, 1}}\right) \leq\left|P_{k}\right| \leq(2 \pi)^{d}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{k}\right)\right)\left(1-\prod_{j=1}^{d} \frac{1}{c_{j, 2}}\right) .
$$

This implies easily that

$$
L_{1}\left(\mathbb{X}^{d}\right)=E_{1}^{\gamma}\left(\mathbb{X}^{d}\right) \hookleftarrow E_{q}^{\gamma}\left(\mathbb{X}^{d}\right) \hookleftarrow E_{q^{\prime}}^{\gamma}\left(\mathbb{X}^{d}\right) \hookleftarrow E_{\infty}^{\gamma}\left(\mathbb{X}^{d}\right) \quad\left(1<q<q^{\prime}<\infty\right)
$$

where \mathbb{X} denotes either \mathbb{R} or \mathbb{T}. Moreover,

$$
\begin{equation*}
E_{q}^{\gamma}\left(\mathbb{T}^{d}\right) \hookleftarrow L_{q}\left(\mathbb{T}^{d}\right) \quad(1 \leq q \leq \infty) \tag{8}
\end{equation*}
$$

Indeed, we have

$$
\gamma_{j}\left(\xi^{k}\right) \leq \frac{1}{c_{j, 1}} \gamma_{j}\left(\xi^{k+1}\right) \leq \ldots \leq \frac{1}{c_{j, 1}^{|k|}}
$$

and

$$
\begin{aligned}
\|f\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)} & \leq \sum_{k=-\infty}^{0}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{k}\right)\right)^{1-1 / q}\left\|f \mathbf{1}_{P_{k}}\right\|_{q} \leq \\
& \leq \sum_{k=-\infty}^{0}\left(\prod_{j=1}^{d} \frac{1}{c_{j, 1}}\right)^{|k|(1-1 / q)}\left\|f \mathbf{1}_{P_{k}}\right\|_{q} \leq C_{q}\|f\|_{q}
\end{aligned}
$$

6. Convergence of the $\boldsymbol{\theta}$-means of Fourier transforms

For a given τ, γ satisfying the above conditions the restricted maximal θ-operator are defined by

$$
\sigma_{\gamma}^{\theta} f:=\sup _{n \in \mathbb{R}_{\gamma, \gamma}^{d}}\left|\sigma_{n}^{\theta} f\right|
$$

If $\gamma_{j}=\mathcal{I}$ for all $j=2, \ldots, d$ then we get a cone. This case was considered in Marcinkiewicz and Zygmund $[9,17]$ and more recently by the author [14]. Obviously, $\sigma_{n}^{\theta} f \rightarrow f$ in L_{1} - or C-norm if and only if the numbers
$\left\|K_{n}^{\theta}\right\|_{1}$ are uniformly bounded $\left(n \in \mathbb{R}_{\tau, \gamma}^{d}\right)$. In $[4,15]$ we have proved if θ is a function then this condition is equivalent to $\widehat{\theta} \in L_{1}\left(\mathbb{R}^{d}\right)$.

Here we consider the pointwise convergence of the θ-means. In the one-dimensional case Alexits [1] and Torchinsky [12] proved that if there exists an even function η such that η is non-increasing on $\mathbb{R}_{+},|\widehat{\theta}| \leq \eta$, $\eta \in L_{1}(\mathbb{R})$ then the maximal operator of the θ-means is of weak type $(1,1)$. This condition is equivalent to $\widehat{\theta} \in E_{\infty}(\mathbb{R})$ (see [5]). Now we generalize this theorem as follows.
Theorem 2. Let θ satisfy (2), $1 \leq p \leq \infty$ and $1 / p+1 / q=1$. If

$$
\begin{equation*}
\sup _{n \in \mathbb{R}_{r, \gamma}^{d}}\left\|K_{n}^{\theta}\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)} \leq C, \tag{9}
\end{equation*}
$$

then

$$
\sigma_{\gamma}^{\theta} f \leq C\left(\sup _{n \in \mathbb{R}_{r, \gamma}^{d}}\left\|K_{n}^{\theta}\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)}\right) M_{p}^{\tau, \gamma} f \quad \text { a.e. }
$$

for all $f \in L_{p}\left(\mathbb{T}^{d}\right)$.
Proof. By (3),
$\left|\sigma_{n}^{\theta} f(x)\right|=\frac{1}{(2 \pi)^{d}}\left|\int_{\mathbb{T}^{d}} f(x-t) K_{n}^{\theta}(t) d t\right| \leq \frac{1}{(2 \pi)^{d}} \sum_{k=-\infty}^{0} \int_{P_{k}}|f(x-t)|\left|K_{n}^{\theta}(t)\right| d t$.
Then

$$
\left|\sigma_{n}^{\theta} f(x)\right| \leq \frac{1}{(2 \pi)^{d}} \sum_{k=-\infty}^{0}\left(\int_{P_{k}}\left|K_{n}^{\theta}(t)\right|^{q} d t\right)^{1 / q}\left(\int_{P_{k}}|f(x-t)|^{p} d t\right)^{1 / p}
$$

It is easy to see that if

$$
G(u):=\left(\int_{\left|t_{j}\right|<u_{j}, j=1, \ldots, d}|f(x-t)|^{p} d t\right)^{1 / p} \quad\left(u \in \mathbb{R}_{+}^{d}\right)
$$

then

$$
\frac{G^{p}(u)}{\prod_{j=1}^{d} u_{j}} \leq C\left(M_{p}^{\tau, \gamma} f\right)^{p}(x) \quad\left(u \in \mathbb{R}_{\tau, \gamma}^{d}\right)
$$

Therefore

$$
\begin{aligned}
\left|\sigma_{n}^{\theta} f(x)\right| & \leq C \sum_{k=-\infty}^{0}\left(\int_{P_{k}}\left|K_{n}^{\theta}(t)\right|^{q} d t\right)^{1 / q} G\left(\gamma_{1}\left(\xi^{k}\right) \pi, \ldots, \gamma_{d}\left(\xi^{k}\right) \pi\right) \leq \\
& \leq C \sum_{k=-\infty}^{0}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{k}\right)\right)^{1 / p}\left(\int_{P_{k}}\left|K_{n}^{\theta}(t)\right|^{q} d t\right)^{1 / q} M_{p}^{\tau, \gamma} f(x)= \\
& =C\left\|K_{n}^{\theta}\right\|_{E_{q}\left(\mathbb{T}^{d}\right)} M_{p}^{\tau, \gamma} f(x)
\end{aligned}
$$

which shows the theorem. \diamond
Note that (2) implies $K_{n}^{\theta} \in L_{\infty}\left(\mathbb{T}^{d}\right) \subset L_{q}\left(\mathbb{T}^{d}\right) \subset E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)$ for all $n \in \mathbb{N}^{d}$. Th. 1 implies immediately
Theorem 3. Let θ satisfy (2), $1 \leq p \leq \infty$ and $1 / p+1 / q=1$. If

$$
\sup _{n \in \mathbb{R}_{r, \gamma}^{d}}\left\|K_{n}^{\theta}\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)} \leq C
$$

then

$$
\left\|\sigma_{\gamma}^{\theta} f\right\|_{p, \infty} \leq C_{p}\left(\sup _{n \in \mathbb{R}_{r, \gamma}^{d}}\left\|K_{n}^{\theta}\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)}\right)\|f\|_{p} \quad\left(f \in L_{p}\left(\mathbb{T}^{d}\right)\right)
$$

Moreover, for every $p<r \leq \infty$

$$
\left\|\sigma_{\gamma}^{\theta} f\right\|_{r} \leq C\left(\sup _{n \in \mathbb{R}_{r, \gamma}^{d}}\left\|K_{n}^{\theta}\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)}\right)\|f\|_{r} \quad\left(f \in L_{r}\left(\mathbb{T}^{d}\right)\right)
$$

These inequalities and the usual density theorem due to Marcinkie-wicz-Zygmund [9] imply
Corollary 2. Let θ satisfy (2), $1 \leq p \leq \infty$ and $1 / p+1 / q=1$. If

$$
\sup _{n \in \mathbb{R}_{r, \gamma}^{d}}\left\|K_{n}^{\theta}\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)} \leq C
$$

then

$$
\lim _{n \rightarrow \infty, n \in \mathbb{R}_{r, \gamma}^{d}} \sigma_{n}^{\theta} f=f \quad \text { a.e. }
$$

for all $f \in L_{p}\left(\mathbb{T}^{d}\right)$ whenever $1 \leq p<\infty$ and for all $f \in C\left(\mathbb{T}^{d}\right)$ whenever $p=\infty$.

In case the summability method is defined by a function θ and $\widehat{\theta} \in E_{q}^{\gamma}\left(\mathbb{R}^{d}\right)$ then the preceding theorems hold.
Theorem 4. Suppose that $c_{j}=c_{j, 1}=c_{j, 2}$ for all $j=1, \ldots, d$. Let $\theta \in W\left(C, \ell_{1}\right)\left(\mathbb{R}^{d}\right), 1 \leq p \leq \infty$ and $1 / p+1 / q=1$. If $\widehat{\theta} \in E_{q}^{\gamma}\left(\mathbb{R}^{d}\right)$ then

$$
\sigma_{\gamma}^{\theta} f \leq C\|\widehat{\theta}\|_{E_{q}^{\gamma}\left(\mathbb{R}^{d}\right)} M_{p}^{\tau, \gamma} f \quad \text { a.e. }
$$

for all $f \in L_{p}\left(\mathbb{T}^{d}\right)$.
Proof. Since by (4)

$$
\begin{aligned}
\sigma_{n}^{\theta} f(x) & =\frac{1}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}} f(x-t) K_{n}^{\theta}(t) d t= \\
& =\left(\prod_{j=1}^{d} n_{j}\right) \int_{\mathbb{R}^{d}} f(x-t) \widehat{\theta}\left(n_{1} t_{1}, \ldots, n_{d} t_{d}\right) d t
\end{aligned}
$$

we can see that

$$
K_{n}^{\theta}(t)=(2 \pi)^{d}\left(\prod_{j=1}^{d} n_{j}\right) \sum_{j \in \mathbb{Z}^{d}} \widehat{\theta}\left(n_{1}\left(t_{1}+2 j_{1} \pi\right), \ldots, n_{d}\left(t_{d}+2 j_{d} \pi\right)\right)
$$

We will prove that $\hat{\theta} \in E_{q}^{\gamma}\left(\mathbb{R}^{d}\right)$ implies

$$
\begin{equation*}
\left\|K_{n}^{\theta}\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)} \leq C_{q}\|\widehat{\theta}\|_{E_{q}^{\gamma}\left(\mathbb{R}^{d}\right)} \quad \text { for all } \quad n \in \mathbb{R}_{\tau, \gamma}^{d} \tag{10}
\end{equation*}
$$

Since $n \in \mathbb{R}_{\tau, \gamma}^{d}$ we have $\tau_{j}^{-1} \gamma_{j}\left(n_{1}\right) \leq n_{j} \leq \tau_{j} \gamma_{j}\left(n_{1}\right)$ for all $j=1, \ldots, d$. For the term $j=0$ of the norm we observe by (6) that

$$
\begin{aligned}
& \left\|\left(\prod_{j=1}^{d} n_{j}\right) \widehat{\theta}\left(n_{1} t_{1}, \ldots, n_{d} t_{d}\right)\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)}= \\
& \quad=\sum_{k=-\infty}^{0}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{k}\right)\right)^{1-1 / q}\left(\prod_{j=1}^{d} n_{j}\right)\left(\int_{P_{k}}\left|\widehat{\theta}\left(n_{1} t_{1}, \ldots, n_{d} t_{d}\right)\right|^{q} d t\right)^{1 / q} \leq \\
& \quad \leq C_{q} \sum_{k=-\infty}^{0}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{k}\right)\right)^{1-1 / q}\left(\prod_{j=1}^{d} \gamma_{j}\left(n_{1}\right)\right)^{1-1 / q}\left(\int_{Q_{k}}\left|\widehat{\theta}\left(t_{1}, \ldots, t_{d}\right)\right|^{q} d t\right)^{1 / q}
\end{aligned}
$$

where

$$
\begin{aligned}
& Q_{k}:= \prod_{j=1}^{d}\left(-\tau_{j} \gamma_{j}\left(n_{1}\right) \gamma_{j}\left(\xi^{k}\right) \pi, \tau_{j} \gamma_{j}\left(n_{1}\right) \gamma_{j}\left(\xi^{k}\right) \pi\right) \backslash \\
& \backslash \\
& \prod_{j=1}^{d}\left(-\tau_{j}^{-1} \gamma_{j}\left(n_{1}\right) \gamma_{j}\left(\xi^{k-1}\right) \pi, \tau_{j}^{-1} \gamma_{j}\left(n_{1}\right) \gamma_{j}\left(\xi^{k-1}\right) \pi\right)
\end{aligned}
$$

Suppose that $\xi^{l-1} \leq n_{1}<\xi^{l}$ for some $l \in \mathbb{N}$. Then by (5),

$$
c_{j}^{l-1}=\gamma_{j}\left(\xi^{l-1}\right) \leq \gamma_{j}\left(n_{1}\right) \leq \gamma_{j}\left(\xi^{l}\right)=c_{j}^{l}
$$

We can choose $r, s \in \mathbb{N}$ such that $\tau_{j} / c_{j}^{r} \leq 1$ and $c_{j}^{s} / \tau_{j} \geq 1$ for all $j=1, \ldots, d$. This and (5) imply that

$$
\tau_{j} \gamma_{j}\left(n_{1}\right) \gamma_{j}\left(\xi^{k}\right) \leq \tau_{j} \gamma_{j}\left(\xi^{l}\right) \gamma_{j}\left(\xi^{k}\right)=\tau_{j} c_{j}^{l} \gamma_{j}\left(\xi^{k}\right)=\frac{\tau_{j}}{c_{j}^{r}} \gamma_{j}\left(\xi^{k+l+r}\right) \leq \gamma_{j}\left(\xi^{k+l+r}\right)
$$

and

$$
\begin{aligned}
\frac{1}{\tau_{j}} \gamma_{j}\left(n_{1}\right) \gamma_{j}\left(\xi^{k-1}\right) & \geq \frac{1}{\tau_{j}} \gamma_{j}\left(\xi^{l-1}\right) \gamma_{j}\left(\xi^{k-1}\right)= \\
& =\frac{1}{\tau_{j}} c_{j}^{l-1} \gamma_{j}\left(\xi^{k-1}\right)=\frac{c_{j}^{s}}{\tau_{j}} \gamma_{j}\left(\xi^{k+l-s-2}\right) \geq \gamma_{j}\left(\xi^{k+l-s-2}\right)
\end{aligned}
$$

If

$$
Q_{k, l}:=\prod_{j=1}^{d}\left(-\gamma_{j}\left(\xi^{k+l+r}\right) \pi, \gamma_{j}\left(\xi^{k+l+r}\right) \pi\right) \backslash \prod_{j=1}^{d}\left(-\gamma_{j}\left(\xi^{k+l-s-2}\right) \pi, \gamma_{j}\left(\xi^{k+l-s-2}\right) \pi\right)
$$

then
(11)

$$
\begin{aligned}
& \left\|\left(\prod_{j=1}^{d} n_{j}\right) \widehat{\theta}\left(n_{1} t_{1}, \ldots, n_{d} t_{d}\right)\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)} \leq \\
& \leq C_{q} \sum_{k=-\infty}^{0}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{k}\right)\right)^{1-1 / q}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{l}\right)\right)^{1-1 / q}\left(\int_{Q_{k, l}}\left|\widehat{\theta}\left(t_{1}, \ldots, t_{d}\right)\right|^{q} d t\right)^{1 / q} \leq \\
& \leq C_{q} \sum_{k=-\infty}^{0}\left(\prod_{j=1}^{d} c_{j}^{s+1}\right)^{1-1 / q}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{k+l-s-1}\right)\right)^{1-1 / q} \times \\
& \quad \times\left(\sum_{i=k+l-s-1}^{k+l+r} \int_{P_{i}}\left|\widehat{\theta}\left(t_{1}, \ldots, t_{d}\right)\right|^{q} d t\right)^{1 / q} \leq \\
& \leq C_{q} \sum_{k=-\infty}^{0} \sum_{i=k+l-s-1}^{k+l+r}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{i}\right)\right)^{1-1 / q}\left(\int_{P_{i}}\left|\widehat{\theta}\left(t_{1}, \ldots, t_{d}\right)\right|^{q} d t\right)^{1 / q} \leq \\
& \leq C_{q} \sum_{i=-\infty}^{l+r}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{i}\right)\right)^{1-1 / q}\left(\int_{P_{i}}\left|\widehat{\theta}\left(t_{1}, \ldots, t_{d}\right)\right|^{q} d t\right)^{1 / q} \leq \\
& \leq C_{q} \mid \widehat{\theta} \|_{E_{q}^{\gamma}\left(\mathbb{R}^{d}\right)} .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\| & \left(\prod_{j=1}^{d} n_{j}\right) \sum_{j \in \mathbb{Z}^{d}, j \neq 0} \widehat{\theta}\left(n_{1}\left(t_{1}+2 j_{1} \pi\right), \ldots, n_{d}\left(t_{d}+2 j_{d} \pi\right)\right) \|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)}= \\
= & \sum_{k=-\infty}^{0}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{k}\right)\right)^{1-1 / q}\left(\prod_{j=1}^{d} n_{j}\right) \times \\
& \times\left(\left.\int_{P_{k}} \sum_{j \in \mathbb{Z}^{d}, j \neq 0} \widehat{\theta}\left(n_{1}\left(t_{1}+2 j_{1} \pi\right), \ldots, n_{d}\left(t_{d}+2 j_{d} \pi\right)\right)\right|^{q} d t\right)^{1 / q} \leq \\
\leq & \sum_{k=-\infty}^{0}\left(\prod_{j=1}^{d} c_{j}\right)^{k(1-1 / q)}\left(\prod_{j=1}^{d} n_{j}\right) \times
\end{aligned}
$$

$$
\begin{aligned}
& \times\left(\int_{\mathbb{T}^{d}}\left|\sum_{j \in \mathbb{Z}^{d}, j \neq 0} \widehat{\theta}\left(n_{1}\left(t_{1}+2 j_{1} \pi\right), \ldots, n_{d}\left(t_{d}+2 j_{d} \pi\right)\right)\right|^{q} d t\right)^{1 / q} \leq \\
\leq & C_{q}\left(\prod_{j=1}^{d} n_{j}\right)\left(\int_{\mathbb{T}^{d}}\left|\sum_{j \in \mathbb{Z}^{d}, j \neq 0} \widehat{\theta}\left(n_{1}\left(t_{1}+2 j_{1} \pi\right), \ldots, n_{d}\left(t_{d}+2 j_{d} \pi\right)\right)\right|^{q} d t\right)^{1 / q} .
\end{aligned}
$$

Let

$$
R_{i}:=\left\{j \in \mathbb{Z}^{d}: j \neq 0, n_{1}\left(\mathbb{T}+2 j_{1} \pi\right) \times \ldots \times n_{d}\left(\mathbb{T}+2 j_{d} \pi\right) \cap P_{i} \neq 0\right\}
$$

Since

$$
\begin{aligned}
\left|n_{j}\left(t_{j}+2 j_{j} \pi\right)\right| & \geq \frac{1}{\tau_{j}} \gamma_{j}\left(n_{1}\right) \pi \geq \frac{1}{\tau_{j}} \gamma_{j}\left(\xi^{l-1}\right) \pi= \\
& =\frac{1}{\tau_{j}} c_{j}^{l-1} \pi=\frac{c_{j}^{s}}{\tau_{j}} \gamma_{j}\left(\xi^{l-s-1}\right) \geq \gamma_{j}\left(\xi^{l-s-1}\right)
\end{aligned}
$$

we conclude

$$
\begin{aligned}
& \left\|\left(\prod_{j=1}^{d} n_{j}\right) \sum_{j \in \mathbb{Z}^{d}, j \neq 0} \widehat{\theta}\left(n_{1}\left(t_{1}+2 j_{1} \pi\right), \ldots, n_{d}\left(t_{d}+2 j_{d} \pi\right)\right)\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)} \leq \\
& \leq C_{q}\left(\prod_{j=1}^{d} n_{j}\right)\left(\int_{\mathbb{T}^{d}}\left|\sum_{i=(l-s) \vee 0}^{\infty} \sum_{j \in R_{i}} \widehat{\theta}\left(n_{1}\left(t_{1}+2 j_{1} \pi\right), \ldots, n_{d}\left(t_{d}+2 j_{d} \pi\right)\right)\right|^{q} d t\right)^{1 / q} \leq \\
& \leq C_{q} \sum_{i=(l-s) \vee 0}^{\infty}\left(\prod_{j=1}^{d} n_{j}\right)\left(\int_{\mathbb{T}^{d}}\left|\sum_{j \in R_{i}} \widehat{\theta}\left(n_{1}\left(t_{1}+2 j_{1} \pi\right), \ldots, n_{d}\left(t_{d}+2 j_{d} \pi\right)\right)\right|^{q} d t\right)^{1 / q} .
\end{aligned}
$$

Since R_{i} has at most $C \prod_{j=1}^{d} \frac{\gamma_{j}\left(\xi^{i}\right)}{n_{j}}$ members, we get that

$$
\begin{align*}
& \|\left(\prod_{j=1}^{d} n_{j}\right) \sum_{j \in \mathbb{Z}^{d}, j \neq 0} \tag{12}\\
& \theta\left(n_{1}\left(t_{1}+2 j_{1} \pi\right), \ldots, n_{d}\left(t_{d}+2 j_{d} \pi\right)\right) \|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)} \leq \\
& \leq C_{q} \sum_{i=(l-s) \vee 0}^{\infty}\left(\prod_{j=1}^{d} n_{j}\right)\left(\sum_{j \in R_{i}}\left(\prod_{m=1}^{d} \frac{\gamma_{m}\left(\xi^{i}\right)}{n_{m}}\right)^{q-1} \times\right. \\
&\left.\quad \times \int_{\mathbb{T}^{d}}\left|\widehat{\theta}\left(n_{1}\left(t_{1}+2 j_{1} \pi\right), \ldots, n_{d}\left(t_{d}+2 j_{d} \pi\right)\right)\right|^{q} d t\right)^{1 / q} \leq \\
& \leq C_{q} \sum_{i=(l-s) \vee 0}^{\infty}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{i}\right)\right)^{1-1 / q}\left(\prod_{j=1}^{d} n_{j}\right)\left(\sum_{j \in R_{i}}\left(\prod_{m=1}^{d} n_{m}\right)^{-q} \times\right.
\end{align*}
$$

$$
\begin{aligned}
& \left.\times \int_{n_{1}\left(\mathbb{T}+2 j_{1} \pi\right) \times \ldots \times n_{d}\left(\mathbb{T}+2 j_{d} \pi\right)}\left|\widehat{\theta}\left(t_{1}, \ldots, t_{d}\right)\right|^{q} d t\right)^{1 / q} \leq \\
\leq & C_{q} \sum_{i=(l-s) \vee 0}^{\infty}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{i}\right)\right)^{1-1 / q}\left(\int_{P_{i}}\left|\widehat{\theta}\left(t_{1}, \ldots, t_{d}\right)\right|^{q} d t\right)^{1 / q} \leq \\
\leq & C_{q}\|\widehat{\theta}\|_{E_{q}^{\gamma}\left(\mathbb{R}^{d}\right)}
\end{aligned}
$$

which proves (10). The theorem follows from Th. $2 . \diamond$
Theorem 5. Let $\theta \in W\left(C, \ell_{1}\right)\left(\mathbb{R}^{d}\right), 1 \leq p \leq \infty$ and $1 / p+1 / q=1$. If $\widehat{\theta} \in E_{q}^{\gamma}\left(\mathbb{R}^{d}\right)$, then

$$
\left\|\sigma_{\gamma}^{\theta} f\right\|_{p, \infty} \leq C_{p}\|\widehat{\theta}\|_{E_{q}^{\gamma}\left(\mathbb{R}^{d}\right)}\|f\|_{p} \quad\left(f \in L_{p}\left(\mathbb{T}^{d}\right)\right) .
$$

Moreover, for every $p<r \leq \infty$

$$
\left\|\sigma_{\gamma}^{\theta} f\right\|_{r} \leq C\|\widehat{\theta}\|_{E_{q}^{\gamma}\left(\mathbb{R}^{d}\right)}\|f\|_{r} \quad\left(f \in L_{r}\left(\mathbb{T}^{d}\right)\right) .
$$

Corollary 3. Let $\theta \in W\left(C, \ell_{1}\right)\left(\mathbb{R}^{d}\right), \theta(0)=1,1 \leq p \leq \infty$ and $1 / p+1 / q=1$. If $\widehat{\theta} \in E_{q}^{\gamma}\left(\mathbb{R}^{d}\right)$, then

$$
\lim _{n \rightarrow \infty, n \in \mathbb{R}_{,, \gamma}^{d}} \sigma_{n}^{\theta} f=f \quad \text { a.e. }
$$

for all $f \in L_{p}\left(\mathbb{T}^{d}\right)$ whenever $1 \leq p<\infty$ and for all $f \in C\left(\mathbb{T}^{d}\right)$ whenever $p=\infty$.

If $f \in L_{p}\left(\mathbb{T}^{d}\right)(1 \leq p \leq 2)$ implies the a.e. convergence of Cor. 2, then σ_{γ}^{θ} is bounded from $L_{p}\left(\mathbb{T}^{d}\right)$ to $L_{p, \infty}\left(\mathbb{T}^{d}\right)$, as in Th. 3 (see Stein [10]). The partial converse of Th. 2 is given in the next result. More exactly, if $\sigma_{\gamma}^{\theta} f$ can be estimated pointwise by $M_{p}^{\tau, \gamma} f$, then (9) holds.
Theorem 6. Let θ satisfy (2), $1 \leq p \leq \infty$ and $1 / p+1 / q=1$. Suppose that

$$
\begin{equation*}
\sigma_{\gamma}^{\theta} f(x) \leq C M_{p}^{\tau, \gamma} f(x) \tag{13}
\end{equation*}
$$

for all $x \in \mathbb{T}^{d}$ and for all $f \in L_{p}\left(\mathbb{T}^{d}\right)$. Then

$$
\sup _{n \in \mathbb{R}_{, \gamma}^{d}}\left\|K_{n}^{\theta}\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)} \leq C .
$$

Proof. Let us define the space $D_{p}^{\gamma}\left(\mathbb{T}^{d}\right)(1 \leq p \leq \infty)$ by the norm

$$
\begin{equation*}
\|f\|_{D_{p}^{\gamma}\left(\mathbb{T}^{d}\right)}:=\sup _{0<r \leq 1}\left(\frac{1}{\prod_{j=1}^{d} \gamma_{j}(r)} \int_{\prod_{j=1}^{d}\left(-\gamma_{j}(r) \pi, \gamma_{j}(r) \pi\right)}|f|^{p} d \lambda\right)^{1 / p} . \tag{14}
\end{equation*}
$$

Observe that the norm

$$
\begin{equation*}
\|f\|_{*}=\sup _{k \leq 0}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{k}\right)\right)^{-1 / p}\left\|f \mathbf{1}_{P_{k}}\right\|_{p} \tag{15}
\end{equation*}
$$

is an equivalent norm on $D_{p}^{\gamma}\left(\mathbb{T}^{d}\right)$. Indeed, choosing $r=\xi^{k}(k \leq 0)$ we conclude $\|f\|_{*} \leq C\|f\|_{D_{p}^{\gamma}}$. On the other hand, if $\xi^{n-1}<r \leq \xi^{n}$ for some $n \leq 0$ then

$$
\begin{aligned}
& \frac{1}{\prod_{j=1}^{d} \gamma_{j}(r)} \int_{\prod_{j=1}^{d}\left(-\gamma_{j}(r) \pi, \gamma_{j}(r) \pi\right)}|f|^{p} d \lambda \leq \\
& \leq\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{n-1}\right)\right)^{-1} \int_{\prod_{j=1}^{d}\left(-\gamma_{j}\left(\xi^{n}\right) \pi, \gamma_{j}\left(\xi^{n}\right) \pi\right)}|f|^{p} d \lambda= \\
& =\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{n-1}\right)\right)^{-1} \sum_{k=-\infty}^{n} \int_{P_{k}}|f|^{p} d \lambda \leq \\
& \leq\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{n-1}\right)\right)^{-1} \sum_{k=-\infty}^{n}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{k}\right)\right)\|f\|_{*}^{p}
\end{aligned}
$$

Note that

$$
\gamma_{j}\left(\xi^{k}\right) \leq \frac{1}{c_{j, 1}} \gamma_{j}\left(\xi^{k+1}\right) \leq \ldots \leq \frac{1}{c_{j, 1}^{n-k}} \gamma_{j}\left(\xi^{n}\right) \text { and } \gamma_{j}\left(\xi^{n-1}\right) \geq \frac{1}{c_{j, 2}} \gamma_{j}\left(\xi^{n}\right)
$$

Hence

$$
\begin{aligned}
\frac{1}{\prod_{j=1}^{d} \gamma_{j}(r)} \int_{\prod_{j=1}^{d}\left(-\gamma_{j}(r) \pi, \gamma_{j}(r) \pi\right)}|f|^{p} d \lambda & \leq\left(\prod_{j=1}^{d} c_{j, 2}\right) \sum_{k=-\infty}^{n}\left(\prod_{j=1}^{d} \frac{1}{c_{j, 1}}\right)^{n-k}\|f\|_{*}^{p} \leq \\
& \leq C\|f\|_{*}^{p}
\end{aligned}
$$

or, in other words $\|f\|_{D_{p}^{\gamma}\left(\mathbb{T}^{d}\right)} \leq C\|f\|_{*}$. Choosing $r=1$ we can see that $D_{p}^{\gamma}\left(\mathbb{T}^{d}\right) \subset L_{p}\left(\mathbb{T}^{d}\right)$ and $\|f\|_{p} \leq C\|f\|_{D_{p}^{\gamma}\left(\mathbb{T}^{d}\right)}$. Taking the supremums in (14) and (15) for all $0<r<\infty$ and $k \in \mathbb{Z}$ then we obtain the space $D_{p}^{\gamma}\left(\mathbb{R}^{d}\right)$.

It is easy to see by (15) that

$$
\begin{equation*}
\sup _{\|f\|_{D_{p}^{\gamma}\left(\mathbb{T}^{d}\right)} \leq 1}\left|\int_{\mathbb{T}^{d}} f(-t) K_{n}^{\theta}(t) d t\right|=\left\|K_{n}^{\theta}\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)} \tag{16}
\end{equation*}
$$

There exists a function $f \in D_{p}^{\gamma}\left(\mathbb{T}^{d}\right)$ with $\|f\|_{D_{p}^{\gamma}} \leq 1$ such that

$$
\frac{\left\|K_{n}^{\theta}\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)}}{2} \leq\left|\int_{\mathbb{T}^{d}} f(-t) K_{n}^{\theta}(t) d t\right|
$$

Since $f \in L_{p}\left(\mathbb{R}^{d}\right)$, by (13),

$$
\left|\sigma_{n}^{\theta} f(0)\right|=\left|\int_{\mathbb{T}^{d}} f(-t) K_{n}^{\theta}(t) d t\right| \leq C M_{p}^{\tau, \gamma} f(0) \quad\left(n \in \mathbb{R}_{\tau, \gamma}^{d}\right)
$$

which implies

$$
\left\|K_{n}^{\theta}\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)} \leq C M_{p}^{\tau, \gamma} f(0) \leq C M_{p}^{\gamma} f(0) \leq C\|f\|_{D_{p}^{\gamma}} \leq C
$$

This proves the result. \diamond
Note that the norm of $D_{p}^{\gamma}\left(\mathbb{T}^{d}\right)$ in (14) is equivalent to

$$
\|f\|=\sup _{r \in(0,1]^{d}, r \in \mathbb{R}_{T, \gamma}^{d}}\left(\frac{1}{\prod_{j=1}^{d} r_{j}} \int_{\prod_{j=1}^{d}\left(-r_{j} \pi, r_{j} \pi\right)}|f|^{p} d \lambda\right)^{1 / p}
$$

We will characterize the points of convergence. To this end we generalize the concept of Lebesgue points. By Cor. 1,

$$
\lim _{\substack{0 \in I,\left(\left|I_{1}\right|, \ldots,\left|I_{d}\right|\right) \in \mathbb{R}_{d, \gamma}^{d} \\\left|I_{j}\right| \rightarrow 0, j=1, \ldots, d}} \frac{1}{|I|} \int_{I} f(x+u) d u=f(x) \quad \text { for a.e. } x \in \mathbb{T}^{d}
$$

where $f \in L_{1}^{\text {loc }}\left(\mathbb{T}^{d}\right)$. A point $x \in \mathbb{T}^{d}$ is called a p-Lebesgue point (or a Lebesgue point of order p) of $f \in L_{p}^{\text {loc }}\left(\mathbb{T}^{d}\right)$ if

$$
\lim _{\substack{0 \in I,\left(\left|I_{1}\right|, \ldots,\left|I_{d}\right||\in \mathbb{R} d, \gamma\\| I_{j} \mid \rightarrow 0, j=1, \ldots, d\right.}}\left(\frac{1}{|I|} \int_{I}|f(x+u)-f(x)|^{p} d u\right)^{1 / p}=0 \quad(1 \leq p<\infty)
$$

resp.

$$
\lim _{\substack{0 \in I,\left(\left|I_{1}\right|, \ldots, I_{d} \mid\right) \in \mathbb{R}_{d, \gamma}^{d} \\\left|I_{j}\right| \rightarrow 0, j=1, \ldots, d}} \sup _{u \in I}|f(x+u)-f(x)|=0 \quad(p=\infty) .
$$

One can see that this definition is equivalent to
$\lim _{r \rightarrow 0}\left(\frac{1}{\prod_{j=1}^{d} \gamma_{j}(r)} \int_{\prod_{j=1}^{d}\left(-\gamma_{j}(r) \pi, \gamma_{j}(r) \pi\right)}|f(x+u)-f(x)|^{p} d u\right)^{1 / p}=0 \quad(1 \leq p<\infty)$
resp. to

$$
\lim _{r \rightarrow 0} \sup _{u \in \prod_{j=1}^{d}\left(-\gamma_{j}(r) \pi, \gamma_{j}(r) \pi\right)}|f(x+u)-f(x)|=0 \quad(p=\infty)
$$

Usually the 1-Lebesgue points are considered in the case if each γ_{j} is the identity function (cf. Stein and Weiss [11] or Butzer and Nessel [3]). One can show in the usual way that almost every point $x \in \mathbb{T}^{d}$ is a p-Lebesgue point of $f \in L_{p}\left(\mathbb{T}^{d}\right)$ if $1 \leq p<\infty . x \in \mathbb{T}^{d}$ is an ∞-Lebesgue point of
$f \in L_{\infty}^{\text {loc }}\left(\mathbb{T}^{d}\right)$ if and only if f is continuous at x. Moreover, all r-Lebesgue points are p-Lebesgue points, whenever $p<r$.

The next theorem generalizes Lebesgue's theorem.
Theorem 7. Let θ satisfy (2), $1 \leq p \leq \infty, 1 / p+1 / q=1$ and

$$
\sup _{n \in \mathbb{R}_{T, \gamma}^{d}}\left\|K_{n}^{\theta}\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)} \leq C
$$

If for all $\delta>0$

$$
\begin{equation*}
\lim _{n \rightarrow \infty, n \in \mathbb{R}_{\tau, \gamma}^{d}}\left\|K_{n}^{\theta}\right\|_{L_{q}\left(\mathbb{T}^{d} \backslash(-\delta, \delta)^{d}\right)}=0 \tag{17}
\end{equation*}
$$

then

$$
\lim _{n \rightarrow \infty, n \in \mathbb{R}_{r, \gamma}^{d}} \sigma_{n}^{\theta} f(x)=f(x)
$$

for all p-Lebesgue points of $f \in L_{p}\left(\mathbb{T}^{d}\right)$.
Proof. Now denote by

$$
G(u):=\left(\int_{\left|t_{j}\right|<u_{j}, j=1, \ldots, d}|f(x-t)-f(x)|^{p} d t\right)^{1 / p} \quad\left(u \in \mathbb{R}_{+}\right)
$$

Since x is a p-Lebesgue point of f, for all $\epsilon>0$ there exists $m \in \mathbb{Z}$, $m \leq 0$ such that

$$
\begin{equation*}
\frac{G\left(\gamma_{1}(r) \pi, \ldots, \gamma_{d}(r) \pi\right)}{\left(\prod_{j=1}^{d} \gamma_{j}(r)\right)^{1 / p}} \leq \epsilon \quad \text { if } \quad 0<r \leq \xi^{m} \tag{18}
\end{equation*}
$$

Note that

$$
\sigma_{n}^{\theta} f(x)-f(x)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}}(f(x-t)-f(x)) K_{n}^{\theta}(t) d t
$$

Thus

$$
\begin{aligned}
\left|\sigma_{n}^{\theta} f(x)-f(x)\right| & \leq C \int_{\mathbb{T}^{d}}|f(x-t)-f(x)|\left|K_{n}^{\theta}(t)\right| d t= \\
& =C \int_{\prod_{j=1}^{d}\left(-\gamma_{j}\left(\xi^{m}\right) \pi, \gamma_{j}\left(\xi^{m}\right) \pi\right)}|f(x-t)-f(x)|\left|K_{n}^{\theta}(t)\right| d t+ \\
& +C \int_{\mathbb{T}^{d} \backslash \prod_{j=1}^{d}\left(-\gamma_{j}\left(\xi^{m}\right) \pi, \gamma_{j}\left(\xi^{m}\right) \pi\right)}|f(x-t)-f(x)|\left|K_{n}^{\theta}(t)\right| d t=: \\
& =: A_{0}(x)+A_{1}(x) .
\end{aligned}
$$

We estimate $A_{0}(x)$ by

$$
\begin{aligned}
A_{0}(x) & =C \sum_{k=-\infty}^{m} \int_{P_{k}}|f(x-t)-f(x)|\left|K_{n}^{\theta}(t)\right| d t \leq \\
& \leq C \sum_{k=-\infty}^{m}\left(\int_{P_{k}}\left|K_{n}^{\theta}(t)\right|^{q} d t\right)^{1 / q}\left(\int_{P_{k}}|f(x-t)-f(x)|^{p} d t\right)^{1 / p} \leq \\
& \leq C \sum_{k=-\infty}^{m}\left(\int_{P_{k}}\left|K_{n}^{\theta}(t)\right|^{q} d t\right)^{1 / q} G\left(\gamma_{1}\left(\xi^{k}\right) \pi, \ldots, \gamma_{d}\left(\xi^{k}\right) \pi\right)
\end{aligned}
$$

Then, by (18),

$$
A_{0}(x) \leq C_{q} \epsilon \sum_{k=-\infty}^{m}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{k}\right)\right)^{1 / p}\left(\int_{P_{k}}\left|K_{n}^{\theta}(t)\right|^{q} d t\right)^{1 / q} \leq C_{q} \epsilon\left\|K_{n}^{\theta}\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)}
$$

There exists $\delta>0$ such that $(-\delta, \delta)^{d} \subset \prod_{j=1}^{d}\left(-\gamma_{j}\left(\xi^{m}\right) \pi, \gamma_{j}\left(\xi^{m}\right) \pi\right)$. Then

$$
\begin{aligned}
A_{1}(x) & \leq C \int_{\mathbb{T}^{d} \backslash(-\delta, \delta)^{d}}\left|f(x-t)-f(x) \| K_{n}^{\theta}(t)\right| d t \leq \\
& \leq C\left(\int_{\mathbb{T}^{d} \backslash(-\delta, \delta)^{d}}\left|K_{n}^{\theta}(t)\right|^{q} d t\right)^{1 / q}\left(\|f\|_{p}+|f(x)|\right)
\end{aligned}
$$

which tends to 0 as $n \rightarrow \infty, n \in \mathbb{R}_{\tau, \gamma}^{d}$. This completes the proof of the theorem. \diamond

Observe that (8) and $\left(-\delta^{\prime}, \delta^{\prime}\right)^{d} \subset \prod_{j=1}^{d}\left(-\gamma_{j}\left(\xi^{k}\right) \pi, \gamma_{j}\left(\xi^{k}\right) \pi\right) \subset(-\delta, \delta)^{d}$ imply

$$
\begin{align*}
\left\|K_{n}^{\theta}\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d} \backslash(-\delta, \delta)^{d}\right)} & \leq\left\|K_{n}^{\theta}\right\|_{L_{q}\left(\mathbb{T}^{d} \backslash \prod_{j=1}^{d}\left(-\gamma_{j}\left(\xi^{k}\right) \pi, \gamma_{j}\left(\xi^{k}\right) \pi\right)\right)} \leq \tag{19}\\
& \leq\left(\sum_{l=k+1}^{0} \int_{P_{l}}\left|K_{n}^{\theta}(t)\right|^{q} d t\right)^{1 / q} \leq \\
& \leq C_{\delta} \sum_{l=k+1}^{0}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{k}\right)\right)^{1-1 / q}\left(\int_{P_{l}}\left|K_{n}^{\theta}(t)\right|^{q} d t\right)^{1 / q} \leq \\
& \leq C_{\delta}\left\|K_{n}^{\theta}\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d} \backslash \prod_{j=1}^{d}\left(-\gamma_{j}\left(\xi^{k}\right) \pi, \gamma_{j}\left(\xi^{k}\right) \pi\right)\right)} \leq \\
& \leq C_{\delta}\left\|K_{n}^{\theta}\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d} \backslash\left(-\delta^{\prime}, \delta^{\prime}\right)^{d}\right)} .
\end{align*}
$$

Condition (17) is trivially equivalent to

$$
\lim _{n \rightarrow \infty, n \in \mathbb{R}_{r, \gamma}^{d}}\left\|K_{n}^{\theta}\right\|_{L_{q}\left(\mathbb{T}^{d} \backslash \prod_{j=1}^{d}\left(-\gamma_{j}\left(\xi^{k}\right) \pi, \gamma_{j}\left(\xi^{k}\right) \pi\right)\right)}=0
$$

and hence to

$$
\lim _{n \rightarrow \infty, n \in \mathbb{R}_{\tau, \gamma}^{d}}\left\|K_{n}^{\theta}\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d} \backslash(-\delta, \delta)^{d}\right)}=0 .
$$

In case $\widehat{\theta} \in E_{q}^{\gamma}\left(\mathbb{R}^{d}\right)$ we can formulate a little bit simpler version of the preceding theorem.
Theorem 8. Suppose that $c_{j}=c_{j, 1}=c_{j, 2}$ for all $j=1, \ldots, d$. Let $\theta \in W\left(C, \ell_{1}\right)\left(\mathbb{R}^{d}\right), \theta(0)=1, \widehat{\theta} \in E_{q}^{\gamma}\left(\mathbb{R}^{d}\right), 1 \leq p \leq \infty$ and $1 / p+1 / q=1$. Then

$$
\lim _{n \rightarrow \infty, n \in \mathbb{R}_{r, \gamma}^{d}} \sigma_{n}^{\theta} f(x)=f(x)
$$

for all p-Lebesgue points of $f \in L_{p}\left(\mathbb{T}^{d}\right)$.
Proof. By (10) the first condition of Th. 7 is satisfied. On the other hand, let

$$
\prod_{j=1}^{d}\left(-\gamma_{j}\left(\xi^{k 0}\right) \pi, \gamma_{j}\left(\xi^{k_{0}}\right) \pi\right) \subset(-\delta, \delta)^{d}, \quad \tau_{j} / c_{j}^{r} \leq 1, \quad c_{j}^{s} / \tau_{j} \geq 1
$$

and $\xi^{l-1} \leq n_{1}<\xi^{l}$ as in the proof of Th. 4. Obviously, if $n \rightarrow \infty, n \in \mathbb{R}_{\tau, \gamma}^{d}$ then $l \rightarrow \infty$. We get similarly to (11) and (12) that

$$
\begin{aligned}
& \left\|K_{n}^{\theta}\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d} \backslash(-\delta, \delta)^{d}\right)} \leq \\
& \leq \\
& \leq C_{q} \sum_{i=k_{0}+l-s-1}^{\infty}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{i}\right)\right)^{1-1 / q}\left(\int_{P_{i}}\left|\widehat{\theta}\left(t_{1}, \ldots, t_{d}\right)\right|^{q} d t\right)^{1 / q}+ \\
& \quad+C_{q} \sum_{i=(l-s) \vee 0}^{\infty}\left(\prod_{j=1}^{d} \gamma_{j}\left(\xi^{i}\right)\right)^{1-1 / q}\left(\int_{P_{i}}\left|\widehat{\theta}\left(t_{1}, \ldots, t_{d}\right)\right|^{q} d t\right)^{1 / q}
\end{aligned}
$$

which tends to 0 as $n \rightarrow \infty, n \in \mathbb{R}_{\tau, \gamma}^{d}$, since $\widehat{\theta} \in E_{q}^{\gamma}\left(\mathbb{R}^{d}\right)$. Then (17) follows by (19), which finishes the proof of our theorem. \diamond

Since each point of continuity is a p-Lebesgue point, we have
Corollary 4. If the conditions of Th. 7 or Th. 8 are satisfied and if $f \in L_{1}\left(\mathbb{T}^{d}\right)$ is continuous at a point x, then

$$
\lim _{n \rightarrow \infty, n \in \mathbb{R}_{r, \gamma}^{d}} \sigma_{n}^{\theta} f(x)=f(x) .
$$

The converse of Th. 7 holds also.

Theorem 9. Suppose that $1 \leq p \leq \infty, 1 / p+1 / q=1$ and (2) and (17) hold. If

$$
\lim _{n \rightarrow \infty, n \in \mathbb{R}_{\tau, \gamma}^{d}} \sigma_{n}^{\theta} f(x)=f(x)
$$

for all p-Lebesgue points of $f \in L_{p}\left(\mathbb{T}^{d}\right)$, then

$$
\sup _{n \in \mathbb{R}_{,, \gamma}^{d}}\left\|K_{n}^{\theta}\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)} \leq C .
$$

Proof. The space $D_{p}^{\gamma, 0}\left(\mathbb{T}^{d}\right)$ consists of all functions $f \in D_{p}^{\gamma}\left(\mathbb{T}^{d}\right)$ for which $f(0)=0$ and 0 is a p-Lebesgue point of f, in other words

$$
\lim _{r \rightarrow 0}\left(\frac{1}{\prod_{j=1}^{d} \gamma_{j}(r)} \int_{\prod_{j=1}^{d}\left(-\gamma_{j}(r) \pi, \gamma_{j}(r) \pi\right)}|f(u)|^{p} d u\right)^{1 / p}=0
$$

with the usual modification for $p=\infty$. We can easily show that $D_{p}^{\gamma, 0}\left(\mathbb{T}^{d}\right)$ is a Banach space. We get from the conditions of the theorem that

$$
\lim _{n \rightarrow \infty, n \in \mathbb{R}_{\pi, \gamma}^{d}} \sigma_{n}^{\theta} f(0)=0 \quad \text { for all } \quad f \in D_{p}^{\gamma, 0}\left(\mathbb{T}^{d}\right)
$$

Thus the operators

$$
U_{n}: D_{p}^{\gamma, 0}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}, \quad U_{n} f:=\sigma_{n}^{\theta} f(0) \quad\left(n \in \mathbb{R}_{\tau, \gamma}^{d}\right)
$$

are uniformly bounded by the Banach-Steinhaus theorem. Observe that in (16) we may suppose that f is 0 in a neighborhood of 0 . Then

$$
\begin{aligned}
C & \geq\left\|U_{n}\right\|= \\
& =\sup _{\|f\|_{D_{p}^{\gamma, 0}\left(\mathbb{T}^{d}\right)} \leq 1}\left|\int_{\mathbb{T}^{d}} f(-t) K_{n}^{\theta}(t) d t\right|= \\
& =\sup _{\|f\|_{D_{p}^{\gamma}\left(\mathbb{T}^{d}\right)} \leq 1}\left|\int_{\mathbb{T}^{d}} f(-t) K_{n}^{\theta}(t) d t\right|= \\
& =\left\|K_{n}^{\theta}\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)}
\end{aligned}
$$

for all $n \in \mathbb{R}_{\tau, \gamma}^{d} . \diamond$
Corollary 5. Suppose that $1 \leq p \leq \infty, 1 / p+1 / q=1$ and (2) and (17) holds. Then

$$
\lim _{n \rightarrow \infty, n \in \mathbb{R}_{\tau, \gamma}^{d}} \sigma_{n}^{\theta} f(x)=f(x)
$$

for all p-Lebesgue points of $f \in L_{p}\left(\mathbb{T}^{d}\right)$ if and only if

$$
\sup _{n \in \mathbb{R}_{,, \gamma}^{d}}\left\|K_{n}^{\theta}\right\|_{E_{q}^{\gamma}\left(\mathbb{T}^{d}\right)} \leq C
$$

A one-dimensional version of this theorem can be found in the book of Alexits [1].

7. Some summability methods

In this section we consider some summability methods as special cases of the θ-summation. The details can be found in [15]. Note that $q=\infty$ is the most important case in the results of Sec. 6. Let $\gamma_{j}(\xi x)=$ $=\xi^{\omega_{j}} \gamma_{j}(x)(x>0)$ and $\omega_{1}=1$.
Example $1((C, \alpha)$ or Cesàro summation). Let $d=1$ and

$$
\theta(k, n)= \begin{cases}\frac{A_{n-1-|k|}^{\alpha}}{A_{n-1}^{\alpha}} & \text { if }|k| \leq n-1 \\ 0 & \text { if }|k| \geq n\end{cases}
$$

for some $0<\alpha<\infty$, where

$$
A_{k}^{\alpha}:=\binom{k+\alpha}{k}=\frac{(\alpha+1)(\alpha+2) \ldots(\alpha+k)}{k!}=O\left(k^{\alpha}\right) \quad(k \in \mathbb{N}) .
$$

The Cesàro means are given by

$$
\sigma_{n}^{\theta} f(x):=\frac{1}{A_{n-1}^{\alpha}} \sum_{k=-n+1}^{n-1} A_{n-1-|k|}^{\alpha} \hat{f}(k) e^{\imath k x}
$$

In case $\alpha=1$ we get the Fejér means, i.e.

$$
\sigma_{n}^{1} f(x)=\sum_{k=-n+1}^{n-1}\left(1-\frac{|k|}{n}\right) \hat{f}(k) e^{\imath k x}=\frac{1}{n} \sum_{k=0}^{n-1} s_{k} f(x)
$$

It is known that the kernel functions satisfy

$$
\left|K_{n}^{\theta}(u)\right| \leq C \min \left(n, n^{-\alpha} u^{-\alpha-1}\right) \quad(n \in \mathbb{N}, u \neq 0)
$$

(see Zygmund [17]). It is easy to see that (9) and (17) holds as well as all theorems of this paper.
Example 2 (Riesz summation). Let

$$
\theta(x):=\left\{\begin{array}{ll}
\left(1-|x|^{2}\right)^{\alpha} & \text { if }|x| \leq 1, \\
0 & \text { if }|x|>1
\end{array} \quad\left(x \in \mathbb{R}^{d}\right)\right.
$$

Then

$$
|\widehat{\theta}(x)| \leq C|x|^{-d / 2-\alpha-1 / 2} \quad(x \neq 0)
$$

If

$$
\begin{equation*}
\frac{\sum_{j=1}^{d} \omega_{j}}{\omega_{i}}-\frac{d}{2}-\frac{1}{2}<\alpha<\infty \quad \text { for all } i=1, \ldots, d \tag{20}
\end{equation*}
$$

then $\widehat{\theta} \in E_{\infty}^{\gamma}\left(\mathbb{R}^{d}\right)$. Here $|\cdot|$ denotes the Euclidean norm.

Note that for cones, i.e. $\omega_{j}=1, j=1, \ldots, d$, we get the well known parameter $(d-1) / 2$ on the left hand side of (20). In case $d=2$ we obtain the condition $\left(1 / \omega_{2}-1 / 2\right) \vee\left(\omega_{2}-1 / 2\right)<\alpha<\infty$.
Example 3 (Weierstrass summation). If $\theta(x)=e^{-2 \pi|x|^{2}}\left(x \in \mathbb{R}^{d}\right)$, then $\widehat{\theta}(x)=e^{-2 \pi|x|^{2}}$ and $\widehat{\theta} \in E_{\infty}^{\gamma}\left(\mathbb{R}^{d}\right)$.
Example 4. If $\theta(x)=e^{-2 \pi|x|}\left(x \in \mathbb{R}^{d}\right)$ then $\widehat{\theta}(x)=c_{d} /\left(1+|x|^{2}\right)^{(d+1) / 2}$. Suppose that $\omega_{d} \leq \omega_{j}$ for all $j=2, \ldots, d$. If $\omega_{d} \leq 1$ and $\sum_{j=1}^{d-1} \omega_{j}<d \omega_{d}$ or if $\omega_{d}>1$ and $\sum_{j=2}^{d} \omega_{j}<d$ then $\widehat{\theta} \in E_{\infty}^{\gamma}\left(\mathbb{R}^{d}\right)$. If $d=2$ then we obtain $1 / 2<\omega_{2}<2$.
Example 5 (Picard and Bessel summation). In case

$$
\theta(x)=1 /\left(1+|x|^{2}\right)^{(d+1) / 2} \quad\left(x \in \mathbb{R}^{d}\right)
$$

we have $\hat{\theta}(x)=c_{d} e^{-2 \pi|x|}$ and $\widehat{\theta} \in E_{\infty}^{\gamma}\left(\mathbb{R}^{d}\right)$.

References

[1] ALEXITS, G.: Konvergenzprobleme der Orthogonalreihen, Akadémiai Kiadó, Budapest, 1960.
[2] BERGH, J. and LÖFSTRÖM, J.: Interpolation Spaces, an Introduction, Springer, Berlin, 1976.
[3] BUTZER, P. L. and NESSEL, R. J.: Fourier Analysis and Approximation, Birkhäuser Verlag, Basel, 1971.
[4] FEICHTINGER, H. G. and WEISZ, F.: The Segal algebra $\mathbf{S}_{0}\left(\mathbb{R}^{d}\right)$ and norm summability of Fourier series and Fourier transforms, Monatshefte Math. 148 (2006), 333-349.
[5] FEICHTINGER, H. G. and WEISZ, F.: Wiener amalgams and pointwise summability of Fourier transforms and Fourier series, Math. Proc. Camb. Phil. Soc. 140 (2006), 509-536.
[6] GÁT. G.: Pointwise convergence of cone-like restricted two-dimensional $(C, 1)$ means of trigonometric Fourier series, J. Appr. Theory. 149 (2007), 74-102.
[7] GRÖCHENIG, K.: Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.
[8] LEBESGUE, H.: Recherches sur la convergence des séries de Fourier, Math. Annalen 61 (1905), 251-280.
[9] MARCINKIEWICZ, J. and ZYGMUND, A.: On the summability of double Fourier series, Fund. Math. 32 (1939), 122-132.
[10] STEIN, E. M.: On limits of sequences of operators, Ann. of Math. 74 (1961), 140-170.
[11] STEIN, E. M. and WEISS, G.: Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N. J., 1971.
[12] TORCHINSKY, A.: Real-variable Methods in Harmonic Analysis, Academic Press, New York, 1986.
[13] TRIGUB, R. M. and BELINSKY, E. S.: Fourier Analysis and Approximation of Functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2004.
[14] WEISZ, F.: Summability of Multi-dimensional Fourier Series and Hardy Spaces, Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.
[15] WEISZ, F.: Herz spaces and restricted summability of Fourier transforms and Fourier series, J. Math. Anal. Appl. 344 (2008), 42-54.
[16] WEISZ, F.: Restricted summability of Fourier series and Hardy spaces, Acta Sci. Math. (Szeged) 75 (2009), 219-231.
[17] ZYGMUND, A.: Trigonometric Series, Cambridge Press, London, 3rd edition, 2002.

[^0]: E-mail address: weisz@inf.elte.hu

