Mathematica Pannonica 23/2 (2012), 235–256

HERZ SPACES AND POINTWISE SUM-MABILITY OF FOURIER SERIES

Ference Weisz

Department of Numerical Analysis, Eötvös L. University, H-1117 Budapest, Pázmány P. sétány 1/C, Hungary

Dedicated to the memory of Professor Gyula I. Maurer (1927-2012)

Received: March 2012

MSC 2010: Primary 42 B 08, 42 A 38, 42 A 24; secondary 42 B 30

Keywords: Wiener algebra, cone-like sets, Hardy–Littlewood maximal function, θ -summation of Fourier series, restricted convergence, Herz spaces, Lebesgue points.

Abstract: A general summability method, the so-called θ -summability is considered for multi-dimensional Fourier series. It is proved that if the kernel functions are uniformly bounded in a Herz space then the restricted maximal operator of the θ -means of a distribution is of weak type (1, 1), provided that the supremum in the maximal operator is taken over a cone-like set. From this it follows that $\sigma_n^{\theta} f \to f$ a.e. for all $f \in L_1(\mathbb{T}^d)$. Moreover, $\sigma_n^{\theta} f(x)$ converges to f(x) over a cone-like set at each Lebesgue point of $f \in L_1(\mathbb{T}^d)$ if and only if the kernel functions are uniformly bounded in a suitable Herz space. The Cesàro, Riesz and Weierstrass summations are investigated as special cases of the θ -summation.

1. Introduction

The well-known Lebesgue [8] theorem says that for every integrable function f the Fejér means $\sigma_n f(x) = \frac{1}{n} \sum_{k=0}^{n-1} s_k f(x)$ converge to f(x) as $n \to \infty$ at each Lebesgue point of f, where $s_k f$ denotes the kth partial sum of the Fourier series of f. Almost every point is a Lebesgue point

E-mail address: weisz@inf.elte.hu

of f. Later Alexits [1] generalized this result and gave a sufficient and necessary condition such that the singular integrals converge at every Lebesgue point.

For multi-dimensional trigonometric-Fourier series Marcinkievicz and Zygmund [9, 17] proved that the Fejér means $\sigma_n f$ of a function $f \in L_1(\mathbb{T}^d)$ converge a.e. to f as $n \to \infty$ provided that n is in a cone, i.e., $\tau^{-1} \leq n_k/n_j \leq \tau$ for every $k, j = 1, \ldots, d$ and for some $\tau \geq 1$ $(n = (n_1, \ldots, n_d) \in \mathbb{N}^d)$. We have extended this result to the θ -summation in [14]. The so called θ -summation is a general method of summation and it is intensively studied in the literature (see e.g. Butzer and Nessel [3], Trigub and Belinsky [13] and Weisz [14, 4, 5] and the references therein). Similar results for so-called cone-like sets can be found in Gát [6] and Weisz [15, 16].

In this paper we extend the results concerning the Lebesgue points to cone-like sets defined by a function γ . We introduce a new version of the Hardy–Littlewood maximal function depending on γ and show that if the kernel functions of the θ -summation are uniformly bounded in a modified Herz space, then the maximal function $\sigma^{\theta}_{\gamma} f$ can be estimated by the Hardy–Littlewood maximal function $M_p^{\gamma} f$, provided that the supremum in the maximal operator is taken over a cone-like set. Since M_p^{γ} is of weak type (p,p) we obtain $\sigma_n^{\theta} f \to f$ a.e. over a cone-like set for all $f \in L_p(\mathbb{T}^d)$. The set of convergence is also characterized, the convergence holds at every p-Lebesgue point of f. The converse holds also, more exactly, $\sigma_n^{\theta} f(x) \to f(x)$ over a cone-like set at each p-Lebesgue point of $f \in L_p(\mathbb{T}^d)$ if and only if the kernel functions are uniformly bounded in the Herz space. As special cases five examples of the θ -summation are considered, amongst others the Cesàro, Riesz and Weierstrass summations. Similar results for Fourier transforms can be found in Feichtinger and Weisz [5, 15].

2. Wiener algebra

Let us fix $d \ge 1$, $d \in \mathbb{N}$. For a set $\mathbb{Y} \neq \emptyset$ let \mathbb{Y}^d be its Cartesian product $\mathbb{Y} \times \ldots \times \mathbb{Y}$ taken with itself d-times. For $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$ and $u = (u_1, \ldots, u_d) \in \mathbb{R}^d$ set $u \cdot x := \sum_{k=1}^d u_k x_k$.

We briefly write L_p or $L_p(\mathbb{T}^d)$ instead of $L_p(\mathbb{T}^d, \lambda)$ space equipped with the norm (or quasi-norm) $||f||_p := (\int_{\mathbb{T}^d} |f|^p d\lambda)^{1/p}$ (0), $where <math>\mathbb{T} = [-\pi, \pi]$ is the torus and λ is the Lebesgue measure.

The weak L_p space, $L_{p,\infty}(\mathbb{T}^d)$ (0 consists of all measurable functions <math>f for which

$$||f||_{p,\infty} := \sup_{\rho>0} \rho \lambda (|f| > \rho)^{1/p} < \infty,$$

while we set $L_{\infty,\infty}(\mathbb{T}^d) = L_{\infty}(\mathbb{T}^d)$. Note that $L_{p,\infty}(\mathbb{T}^d)$ is a quasi-normed space (see Bergh and Löfström [2]). It is easy to see that for each 0 ,

$$L_p(\mathbb{T}^d) \subset L_{p,\infty}(\mathbb{T}^d)$$
 and $\|\cdot\|_{p,\infty} \le \|\cdot\|_p$.

The space of continuous functions with the supremum norm is denoted by $C(\mathbb{T}^d)$.

A measurable function f belongs to the Wiener amalgam space $W(L_{\infty}, \ell_1)(\mathbb{R}^d)$ if

$$||f||_{W(L_{\infty},\ell_1)} := \sum_{k \in \mathbb{Z}^d} \sup_{x \in [0,1)^d} |f(x+k)| < \infty.$$

It is easy to see that $W(L_{\infty}, \ell_1)(\mathbb{R}^d) \subset L_p(\mathbb{R}^d)$ for all $1 \leq p \leq \infty$. The closed subspace of $W(L_{\infty}, \ell_1)(\mathbb{R}^d)$ containing continuous functions is denoted by $W(C, \ell_1)(\mathbb{R}^d)$ and is called *Wiener algebra*. It is used quite often in Gabor analysis, because it provides a convenient and general class of windows (see e.g. Gröchenig [7]). It turned out in Feichtinger and Weisz [4, 5] that it can be well applied in summability theory, too.

3. θ -summability of Fourier series

We will consider the $\theta\mbox{-summation}$ defined by a multi-parameter sequence. Let

(1)
$$\theta = \left(\theta(k, n), k \in \mathbb{Z}^d, n \in \mathbb{N}^d\right)$$

be a 2d-parameter sequence of real numbers satisfying

(2)
$$\theta(0,\ldots,0,n) = 1, \quad \lim_{n \to \infty} \theta(k,n) = 1 \quad (\theta(k,n))_{k \in \mathbb{Z}^d} \in \ell_1$$

for each $n \in \mathbb{N}^d$. Recall that for a distribution $f \in \mathcal{S}'(\mathbb{T}^d)$ the *n*th Fourier coefficient is defined by $\widehat{f}(n) := f(e^{-in \cdot x})$ $(n \in \mathbb{Z}^d, i = \sqrt{-1})$. In special case, if $f \in L_1(\mathbb{T}^d)$ then

$$\widehat{f}(n) = \frac{1}{(2\pi)^d} \int_{\mathbb{T}^d} f(t) e^{-in \cdot t} dt \quad (n \in \mathbb{Z}^d).$$

The θ -means of a distribution $f \in \mathcal{S}'(\mathbb{T}^d)$ are defined by (3)

$$\sigma_n^{\theta} f(x) := \sum_{k_1 = -\infty}^{\infty} \dots \sum_{k_d = -\infty}^{\infty} \theta(-k, n) \widehat{f}(k) e^{ik \cdot x} = \frac{1}{(2\pi)^d} \int_{\mathbb{T}} f(x - t) K_n^{\theta}(t) dt$$

 $(x \in \mathbb{T}^d, n \in \mathbb{N}^d)$, where K_n^{θ} denotes the θ -kernel ∞

$$K_n^{\theta}(t) := \sum_{k_1 = -\infty}^{\infty} \dots \sum_{k_d = -\infty}^{\infty} \theta(-k, n) e^{ik \cdot t} \qquad (t \in \mathbb{T}^d).$$

Observe that (2) ensures that $K_n^{\theta} \in L_1(\mathbb{T})$.

We can also define a θ -summation by one single function θ defined on \mathbb{R}^d . In this case we define the sequence in (1) by

$$\theta(k,n) := \theta\left(\frac{k_1}{n_1}, \dots, \frac{k_d}{n_d}\right) \qquad (k \in \mathbb{Z}^d, n \in \mathbb{N}^d).$$

If $\theta(0) = 1$ and $\theta \in W(C, \ell_1)(\mathbb{R}^d)$ then (2) is satisfied, because

$$\sum_{k_1=-\infty}^{\infty} \dots \sum_{k_d=-\infty}^{\infty} \left| \theta\left(\frac{k_1}{n_1}, \dots, \frac{k_d}{n_d}\right) \right| \le \sum_{l_1=-\infty}^{\infty} \dots \sum_{l_d=-\infty}^{\infty} \left(\prod_{j=1}^d n_j\right) \sup_{x \in [0,1)} |\theta(x+l)| =$$
$$= \left(\prod_{j=1}^d n_j\right) \|\theta\|_{W(C,\ell_1)} < \infty.$$

The Fourier transform of $f \in L_1(\mathbb{R}^d)$ is given by

$$\widehat{f}(x) := \int_{\mathbb{R}^d} f(t) e^{-2\pi i x \cdot t} dt \qquad (x \in \mathbb{R}^d).$$

If θ is a function and $\hat{\theta} \in L_1(\mathbb{R}^d)$ then

(4)
$$\sigma_n^{\theta} f(x) = \left(\prod_{j=1}^d n_j\right) \int_{\mathbb{R}^d} f(x-t)\widehat{\theta}(n_1 t_1, \dots, n_d t_d) dt$$

for all $x \in \mathbb{T}^d$, $n \in \mathbb{N}^d$ and $f \in L_1(\mathbb{T}^d)$, where f is extended periodically to \mathbb{R}^d (see Feichtinger and Weisz [4]).

4. Hardy–Littlewood inequality and cone-like sets

Suppose that for all $j = 2, ..., d, \gamma_j : \mathbb{R}_+ \to \mathbb{R}_+$ are strictly increasing and continuous functions such that $\gamma_j(1) = 1$, $\lim_{\infty} \gamma_j = \infty$ and $\lim_{i \to 0} \gamma_j = 0$. Moreover, suppose that there exist $c_{j,1}, c_{j,2}, \xi > 1$ such that

(5)
$$c_{j,1}\gamma_j(x) \le \gamma_j(\xi x) \le c_{j,2}\gamma_j(x) \qquad (x>0).$$

Note that this is satisfied if γ_j is a power function. For convenience we extend the notations for j = 1 by $\gamma_1 := \mathcal{I}$ and $c_{1,1} = c_{1,2} = \xi$. Here \mathcal{I} denotes the identity function $\mathcal{I}(x) = x$. Let $\gamma = (\gamma_1, \ldots, \gamma_d)$ and $\tau = (\tau_1, \ldots, \tau_d)$ with $\tau_1 = 1$ and fixed $\tau_j \ge 1$ $(j = 2, \ldots, d)$. We will investigate the Hardy–Littlewood maximal operator and later the maximal operator of the θ -summation over a *cone-like set* (with respect to the first dimension)

(6)
$$\mathbb{R}^{d}_{\tau,\gamma} := \left\{ x \in \mathbb{R}^{d}_{+} : \tau_{j}^{-1} \gamma_{j}(n_{1}) \le n_{j} \le \tau_{j} \gamma_{j}(n_{1}), j = 2, \dots, d \right\}.$$

If each γ_j is the identity, $j = 2, \ldots, d$, then we get the cone defined by τ . The condition on γ_j seems to be natural, because Gát [6] proved in the two-dimensional case that to each cone-like set with respect to the first dimension there exists a larger cone-like set with respect to the second dimension and reversely, if and only if (5) holds.

 $L_p^{loc}(\mathbb{T}^d)$ $(1 \le p \le \infty)$ denotes the space of measurable functions f for which $|f|^p$ is locally integrable, resp. f is locally bounded if $p = \infty$. In [15] we have introduced the *Hardy–Littlewood maximal function* on a cone-like set by

$$M_p^{\tau,\gamma}f(x) := \sup_{x \in I, (|I_1|, \dots, |I_d|) \in \mathbb{R}^d_{\tau,\gamma}} \left(\frac{1}{|I|} \int_I |f|^p \, d\lambda\right)^{1/p} \qquad (x \in \mathbb{T}^d)$$

with the usual modification for $p = \infty$, where $f \in L_1^{loc}(\mathbb{T}^d)$ and the supremum is taken over all rectangles $I := I_1 \times \cdots \times I_d \subset \mathbb{T}^d$ with sides parallel to the axes. Taking the supremum over rectangles with $|I_j| = \gamma_j(|I_1|), j = 2, \ldots, d$, (i.e. $\tau_j = 1, j = 1, \ldots, d$), we obtain the maximal operator M_p^{γ} . The inequality

$$M_p^{\gamma} f \le M_p^{\tau,\gamma} f \le C M_p^{\gamma} f$$

was shown in Weisz [15]. In case p = 1 we write simply $M^{\tau,\gamma}$ and M^{γ} . If each γ_j is the identity function then we get back the classical Hardy– Littlewood maximal function defined on a cone. The following theorem was proved in [15].

Theorem 1. The maximal operator $M_p^{\tau,\gamma}$ $(1 \le p \le \infty)$ is of weak type (p,p), *i.e.*

$$\|M_{p}^{\tau,\gamma}f\|_{p,\infty} = \sup_{\rho>0} \rho\lambda (M_{p}^{\tau,\gamma}f > \rho)^{1/p} \le C_{p}\|f\|_{p} \qquad (f \in L_{p}(\mathbb{T}^{d})).$$

Moreover, if $1 \leq p < r \leq \infty$ then

$$\|M_p^{\tau,\gamma}f\|_r \le C_r \|f\|_r \qquad (f \in L_r(\mathbb{T}^d)).$$

Since the set of continuous functions are dense in $L_1(\mathbb{T}^d)$, the usual density argument due to Marcinkiewicz and Zygmund [9] implies **Corollary 1.** If $f \in L_1(\mathbb{T}^d)$ then

$$\lim_{\substack{x \in I, (|I_1|, \dots, |I_d|) \in \mathbb{R}^d_{\tau, \gamma} \\ |I_j| \to 0, j=1, \dots, d}} \frac{1}{|I|} \int_I f \, d\lambda = f(x) \quad for \ a.e. \ x \in \mathbb{T}^d.$$

5. Herz spaces

The $E_q(\mathbb{R}^d)$ $(1 \le q \le \infty)$ spaces were used recently by Feichtinger and Weisz [5] in the summability theory of Fourier transforms. A function belongs to the *(homogeneous) Herz space* $E_q(\mathbb{R}^d)$ $(1 \le q \le \infty)$ if

$$\|f\|_{E_q} := \sum_{k=-\infty}^{\infty} 2^{kd(1-1/q)} \|f\mathbf{1}_{\{x \in \mathbb{R}^d : 2^{k-1}\pi \le \|x\|_{\infty} < 2^k\pi\}} \|_q < \infty.$$

Here we introduce a generalization of the $E_q(\mathbb{R}^d)$ spaces depending on the function γ (see [15]). A function $f \in L_q^{loc}(\mathbb{R}^d)$ is in the space $E_q^{\gamma}(\mathbb{R}^d)$ $(1 \leq q \leq \infty)$ if

(7)
$$\|f\|_{E_q^{\gamma}} := \sum_{k=-\infty}^{\infty} \left(\prod_{j=1}^d \gamma_j(\xi^k)\right)^{1-1/q} \|f\mathbf{1}_{P_k}\|_q < \infty,$$

where ξ and γ_j are defined in (5) and

$$P_k := \prod_{j=1}^d \left(-\gamma_j(\xi^k)\pi, \gamma_j(\xi^k)\pi \right) \setminus \prod_{j=1}^d \left(-\gamma_j(\xi^{k-1})\pi, \gamma_j(\xi^{k-1})\pi \right) \quad (k \in \mathbb{Z}).$$

If $\gamma_j = \mathcal{I}$ for all $j = 1, \ldots, d$ and $\xi = 2$ then we get back the original spaces $E_q(\mathbb{R}^d)$. However, it is easy to see that the spaces are equivalent for all $\xi > 1$, whenever each γ_j is the identity function. If we modify the definition of P_k ,

$$P'_{k} = \prod_{j=1}^{d} \left(-\gamma_{j}(\xi^{k})\pi, \gamma_{j}(\xi^{k})\pi \right) \setminus \prod_{j=1}^{d} \left(-\gamma_{j}(\xi^{k-1})\pi, \gamma_{j}(\xi^{k-1})\pi \right) \bigcap \mathbb{T}^{d} \quad (k \in \mathbb{Z}),$$

then we get the definition of the space $E_q^{\gamma}(\mathbb{T}^d)$. This means that we have to take the sum in (7) for $k \leq 0$, only, because $\gamma_j(1) = 1$ for all $j = 1, \ldots, d$. Observe that

$$|P_k| \sim \prod_{j=1}^d \gamma_j(\xi^k) \qquad (k \in \mathbb{Z}).$$

Indeed,

$$|P_k| = (2\pi)^d \left(\prod_{j=1}^d \gamma_j(\xi^k)\right) \left(1 - \prod_{j=1}^d \frac{\gamma_j(\xi^{k-1})}{\gamma_j(\xi^k)}\right)$$

and

$$\frac{1}{c_{j,2}}\gamma_j(\xi^k) \le \gamma_j(\xi^{k-1}) \le \frac{1}{c_{j,1}}\gamma_j(\xi^k)$$

because of (5). Thus

$$(2\pi)^d \Big(\prod_{j=1}^d \gamma_j(\xi^k)\Big) \Big(1 - \prod_{j=1}^d \frac{1}{c_{j,1}}\Big) \le |P_k| \le (2\pi)^d \Big(\prod_{j=1}^d \gamma_j(\xi^k)\Big) \Big(1 - \prod_{j=1}^d \frac{1}{c_{j,2}}\Big) \le |P_k| \le (2\pi)^d \Big(\prod_{j=1}^d \gamma_j(\xi^k)\Big) \Big(1 - \prod_{j=1}^d \frac{1}{c_{j,2}}\Big) \le |P_k| \le (2\pi)^d \Big(\prod_{j=1}^d \gamma_j(\xi^k)\Big) \Big(1 - \prod_{j=1}^d \frac{1}{c_{j,2}}\Big) \le |P_k| \le (2\pi)^d \Big(\prod_{j=1}^d \gamma_j(\xi^k)\Big) \Big(1 - \prod_{j=1}^d \frac{1}{c_{j,2}}\Big) \le |P_k| \le (2\pi)^d \Big(\prod_{j=1}^d \gamma_j(\xi^k)\Big) \Big(1 - \prod_{j=1}^d \frac{1}{c_{j,2}}\Big) \le |P_k| \le (2\pi)^d \Big(\prod_{j=1}^d \gamma_j(\xi^k)\Big) \Big(1 - \prod_{j=1}^d \frac{1}{c_{j,2}}\Big) \le |P_k| \le (2\pi)^d \Big(\prod_{j=1}^d \gamma_j(\xi^k)\Big) \Big(1 - \prod_{j=1}^d \frac{1}{c_{j,2}}\Big) \le |P_k| \le (2\pi)^d \Big(\prod_{j=1}^d \gamma_j(\xi^k)\Big) \Big(1 - \prod_{j=1}^d \frac{1}{c_{j,2}}\Big) \le |P_k| \le (2\pi)^d \Big(\prod_{j=1}^d \gamma_j(\xi^k)\Big) \Big(1 - \prod_{j=1}^d \frac{1}{c_{j,2}}\Big) \le |P_k| \le (2\pi)^d \Big(\prod_{j=1}^d \gamma_j(\xi^k)\Big) \Big(1 - \prod_{j=1}^d \frac{1}{c_{j,2}}\Big) \le |P_k| \le (2\pi)^d \Big(\prod_{j=1}^d \gamma_j(\xi^k)\Big) \Big(1 - \prod_{j=1}^d \frac{1}{c_{j,2}}\Big) \le |P_k| \le (2\pi)^d \Big(\prod_{j=1}^d \gamma_j(\xi^k)\Big) \Big(1 - \prod_{j=1}^d \frac{1}{c_{j,2}}\Big) \le |P_k| \le (2\pi)^d \Big(\prod_{j=1}^d \gamma_j(\xi^k)\Big) \Big(1 - \prod_{j=1}^d \frac{1}{c_{j,2}}\Big) \le |P_k| \le (2\pi)^d \Big(\prod_{j=1}^d \gamma_j(\xi^k)\Big) \Big(1 - \prod_{j=1}^d \frac{1}{c_{j,2}}\Big) \le |P_k| \le (2\pi)^d \Big(\prod_{j=1}^d \gamma_j(\xi^k)\Big) \Big(1 - \prod_{j=1}^d \frac{1}{c_{j,2}}\Big) = |P_k| \le (2\pi)^d \Big(\prod_{j=1}^d \gamma_j(\xi^k)\Big) = |P_k| \ge (2\pi)^d \Big(\prod_{$$

This implies easily that

$$L_1(\mathbb{X}^d) = E_1^{\gamma}(\mathbb{X}^d) \longleftrightarrow E_q^{\gamma}(\mathbb{X}^d) \longleftrightarrow E_{q'}^{\gamma}(\mathbb{X}^d) \longleftrightarrow E_{\infty}^{\gamma}(\mathbb{X}^d) \quad (1 < q < q' < \infty),$$

where \mathbb{X} denotes either \mathbb{R} or \mathbb{T} . Moreover.

(8)
$$E_q^{\gamma}(\mathbb{T}^d) \hookrightarrow L_q(\mathbb{T}^d) \quad (1 \le q \le \infty).$$

Indeed, we have

$$\gamma_j(\xi^k) \le \frac{1}{c_{j,1}} \gamma_j(\xi^{k+1}) \le \dots \le \frac{1}{c_{j,1}^{|k|}}$$

and

$$\begin{split} \|f\|_{E_q^{\gamma}(\mathbb{T}^d)} &\leq \sum_{k=-\infty}^0 \left(\prod_{j=1}^d \gamma_j(\xi^k)\right)^{1-1/q} \|f\mathbf{1}_{P_k}\|_q \leq \\ &\leq \sum_{k=-\infty}^0 \left(\prod_{j=1}^d \frac{1}{c_{j,1}}\right)^{|k|(1-1/q)} \|f\mathbf{1}_{P_k}\|_q \leq C_q \|f\|_q. \end{split}$$

6. Convergence of the θ -means of Fourier transforms

For a given τ, γ satisfying the above conditions the *restricted maximal* θ -operator are defined by

$$\sigma_{\gamma}^{\theta}f:=\sup_{n\in\mathbb{R}^{d}_{\tau,\gamma}}|\sigma_{n}^{\theta}f|.$$

If $\gamma_j = \mathcal{I}$ for all $j = 2, \ldots, d$ then we get a cone. This case was considered in Marcinkiewicz and Zygmund [9, 17] and more recently by the author [14]. Obviously, $\sigma_n^{\theta} f \to f$ in L_1 - or C-norm if and only if the numbers

 $||K_n^{\theta}||_1$ are uniformly bounded $(n \in \mathbb{R}^d_{\tau,\gamma})$. In [4, 15] we have proved if θ is a function then this condition is equivalent to $\hat{\theta} \in L_1(\mathbb{R}^d)$.

Here we consider the pointwise convergence of the θ -means. In the one-dimensional case Alexits [1] and Torchinsky [12] proved that if there exists an even function η such that η is non-increasing on \mathbb{R}_+ , $|\hat{\theta}| \leq \eta$, $\eta \in L_1(\mathbb{R})$ then the maximal operator of the θ -means is of weak type (1, 1). This condition is equivalent to $\hat{\theta} \in E_{\infty}(\mathbb{R})$ (see [5]). Now we generalize this theorem as follows.

Theorem 2. Let θ satisfy (2), $1 \le p \le \infty$ and 1/p + 1/q = 1. If

(9)
$$\sup_{n \in \mathbb{R}^d_{\tau,\gamma}} \|K_n^{\theta}\|_{E_q^{\gamma}(\mathbb{T}^d)} \le C$$

then

$$\sigma_{\gamma}^{\theta} f \le C \Big(\sup_{n \in \mathbb{R}^{d}_{\tau,\gamma}} \| K_{n}^{\theta} \|_{E_{q}^{\gamma}(\mathbb{T}^{d})} \Big) M_{p}^{\tau,\gamma} f \qquad a.e.$$

for all $f \in L_p(\mathbb{T}^d)$.

Proof. By (3),

$$|\sigma_n^{\theta} f(x)| = \frac{1}{(2\pi)^d} \left| \int_{\mathbb{T}^d} f(x-t) K_n^{\theta}(t) \, dt \right| \le \frac{1}{(2\pi)^d} \sum_{k=-\infty}^0 \int_{P_k} |f(x-t)| |K_n^{\theta}(t)| \, dt$$

Then

$$|\sigma_n^{\theta} f(x)| \le \frac{1}{(2\pi)^d} \sum_{k=-\infty}^0 \left(\int_{P_k} |K_n^{\theta}(t)|^q \, dt \right)^{1/q} \left(\int_{P_k} |f(x-t)|^p \, dt \right)^{1/p}.$$

It is easy to see that if

$$G(u) := \left(\int_{|t_j| < u_j, j=1, \dots, d} |f(x-t)|^p \, dt \right)^{1/p} \qquad (u \in \mathbb{R}^d_+)$$

then

$$\frac{G^p(u)}{\prod_{j=1}^d u_j} \le C(M_p^{\tau,\gamma}f)^p(x) \qquad (u \in \mathbb{R}^d_{\tau,\gamma})$$

Therefore

$$\begin{aligned} |\sigma_n^{\theta} f(x)| &\leq C \sum_{k=-\infty}^0 \left(\int_{P_k} |K_n^{\theta}(t)|^q dt \right)^{1/q} G(\gamma_1(\xi^k)\pi, \dots, \gamma_d(\xi^k)\pi) \leq \\ &\leq C \sum_{k=-\infty}^0 \left(\prod_{j=1}^d \gamma_j(\xi^k) \right)^{1/p} \left(\int_{P_k} |K_n^{\theta}(t)|^q dt \right)^{1/q} M_p^{\tau,\gamma} f(x) = \\ &= C ||K_n^{\theta}||_{E_q(\mathbb{T}^d)} M_p^{\tau,\gamma} f(x), \end{aligned}$$

which shows the theorem. \Diamond

Note that (2) implies $K_n^{\theta} \in L_{\infty}(\mathbb{T}^d) \subset L_q(\mathbb{T}^d) \subset E_q^{\gamma}(\mathbb{T}^d)$ for all $n \in \mathbb{N}^d$. Th. 1 implies immediately

Theorem 3. Let θ satisfy (2), $1 \le p \le \infty$ and 1/p + 1/q = 1. If $\sup_{n \in \mathbb{R}^{d}_{r,\gamma}} \|K^{\theta}_{n}\|_{E^{\gamma}_{q}(\mathbb{T}^{d})} \le C,$

then

$$\|\sigma_{\gamma}^{\theta}f\|_{p,\infty} \leq C_p \Big(\sup_{n \in \mathbb{R}^d_{\tau,\gamma}} \|K_n^{\theta}\|_{E_q^{\gamma}(\mathbb{T}^d)}\Big) \|f\|_p \qquad (f \in L_p(\mathbb{T}^d)).$$

Moreover, for every $p < r \leq \infty$

$$\|\sigma_{\gamma}^{\theta}f\|_{r} \leq C\Big(\sup_{n \in \mathbb{R}^{d}_{\tau,\gamma}} \|K_{n}^{\theta}\|_{E_{q}^{\gamma}(\mathbb{T}^{d})}\Big)\|f\|_{r} \qquad (f \in L_{r}(\mathbb{T}^{d})).$$

These inequalities and the usual density theorem due to Marcinkiewicz–Zygmund [9] imply

Corollary 2. Let θ satisfy (2), $1 \le p \le \infty$ and 1/p + 1/q = 1. If $\sup_{n \in \mathbb{R}^d_{\tau,\gamma}} \|K^{\theta}_n\|_{E^{\gamma}_q(\mathbb{T}^d)} \le C,$

then

$$\lim_{n \to \infty, n \in \mathbb{R}^d_{\tau, \gamma}} \sigma_n^{\theta} f = f \qquad a.e.$$

for all $f \in L_p(\mathbb{T}^d)$ whenever $1 \leq p < \infty$ and for all $f \in C(\mathbb{T}^d)$ whenever $p = \infty$.

In case the summability method is defined by a function θ and $\widehat{\theta} \in E_q^{\gamma}(\mathbb{R}^d)$ then the preceding theorems hold.

Theorem 4. Suppose that $c_j = c_{j,1} = c_{j,2}$ for all $j = 1, \ldots, d$. Let $\theta \in W(C, \ell_1)(\mathbb{R}^d), 1 \leq p \leq \infty$ and 1/p + 1/q = 1. If $\widehat{\theta} \in E_q^{\gamma}(\mathbb{R}^d)$ then

$$\sigma_{\gamma}^{\theta} f \le C \|\widehat{\theta}\|_{E_{q}^{\gamma}(\mathbb{R}^{d})} M_{p}^{\tau,\gamma} f \qquad a.e$$

for all $f \in L_p(\mathbb{T}^d)$. **Proof.** Since by (4)

$$\sigma_n^{\theta} f(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{T}^d} f(x-t) K_n^{\theta}(t) dt =$$
$$= \left(\prod_{j=1}^d n_j\right) \int_{\mathbb{R}^d} f(x-t) \widehat{\theta}(n_1 t_1, \dots, n_d t_d) dt,$$

we can see that

$$K_{n}^{\theta}(t) = (2\pi)^{d} \Big(\prod_{j=1}^{d} n_{j}\Big) \sum_{j \in \mathbb{Z}^{d}} \widehat{\theta}(n_{1}(t_{1}+2j_{1}\pi), \dots, n_{d}(t_{d}+2j_{d}\pi)).$$

We will prove that $\widehat{\theta} \in E_q^{\gamma}(\mathbb{R}^d)$ implies

(10)
$$||K_n^{\theta}||_{E_q^{\gamma}(\mathbb{T}^d)} \le C_q ||\widehat{\theta}||_{E_q^{\gamma}(\mathbb{R}^d)}$$
 for all $n \in \mathbb{R}^d_{\tau,\gamma}$.

Since $n \in \mathbb{R}^d_{\tau,\gamma}$ we have $\tau_j^{-1}\gamma_j(n_1) \leq n_j \leq \tau_j\gamma_j(n_1)$ for all $j = 1, \ldots, d$. For the term j = 0 of the norm we observe by (6) that

$$\left\| \left(\prod_{j=1}^{d} n_{j}\right) \widehat{\theta}(n_{1}t_{1}, \dots, n_{d}t_{d}) \right\|_{E_{q}^{\gamma}(\mathbb{T}^{d})} = \\ = \sum_{k=-\infty}^{0} \left(\prod_{j=1}^{d} \gamma_{j}(\xi^{k})\right)^{1-1/q} \left(\prod_{j=1}^{d} n_{j}\right) \left(\int_{P_{k}} |\widehat{\theta}(n_{1}t_{1}, \dots, n_{d}t_{d})|^{q} dt\right)^{1/q} \leq \\ \leq C_{q} \sum_{k=-\infty}^{0} \left(\prod_{j=1}^{d} \gamma_{j}(\xi^{k})\right)^{1-1/q} \left(\prod_{j=1}^{d} \gamma_{j}(n_{1})\right)^{1-1/q} \left(\int_{Q_{k}} |\widehat{\theta}(t_{1}, \dots, t_{d})|^{q} dt\right)^{1/q},$$

where

$$Q_k := \prod_{j=1}^d \left(-\tau_j \gamma_j(n_1) \gamma_j(\xi^k) \pi, \tau_j \gamma_j(n_1) \gamma_j(\xi^k) \pi \right) \setminus \\ \left(\prod_{j=1}^d \left(-\tau_j^{-1} \gamma_j(n_1) \gamma_j(\xi^{k-1}) \pi, \tau_j^{-1} \gamma_j(n_1) \gamma_j(\xi^{k-1}) \pi \right) \right).$$

Suppose that $\xi^{l-1} \leq n_1 < \xi^l$ for some $l \in \mathbb{N}$. Then by (5), $c_j^{l-1} = \gamma_j(\xi^{l-1}) \leq \gamma_j(n_1) \leq \gamma_j(\xi^l) = c_j^l$.

We can choose $r, s \in \mathbb{N}$ such that $\tau_j/c_j^r \leq 1$ and $c_j^s/\tau_j \geq 1$ for all $j = 1, \ldots, d$. This and (5) imply that

$$\tau_j \gamma_j(n_1) \gamma_j(\xi^k) \le \tau_j \gamma_j(\xi^l) \gamma_j(\xi^k) = \tau_j c_j^l \gamma_j(\xi^k) = \frac{\tau_j}{c_j^r} \gamma_j(\xi^{k+l+r}) \le \gamma_j(\xi^{k+l+r})$$

and

$$\frac{1}{\tau_j} \gamma_j(n_1) \gamma_j(\xi^{k-1}) \ge \frac{1}{\tau_j} \gamma_j(\xi^{l-1}) \gamma_j(\xi^{k-1}) = \\
= \frac{1}{\tau_j} c_j^{l-1} \gamma_j(\xi^{k-1}) = \frac{c_j^s}{\tau_j} \gamma_j(\xi^{k+l-s-2}) \ge \gamma_j(\xi^{k+l-s-2}).$$

If

$$Q_{k,l} := \prod_{j=1}^{d} (-\gamma_j(\xi^{k+l+r})\pi, \gamma_j(\xi^{k+l+r})\pi) \setminus \prod_{j=1}^{d} (-\gamma_j(\xi^{k+l-s-2})\pi, \gamma_j(\xi^{k+l-s-2})\pi),$$

then

$$\begin{aligned} &(11) \\ &\left\| \left(\prod_{j=1}^{d} n_{j}\right) \widehat{\theta}(n_{1}t_{1}, \dots, n_{d}t_{d}) \right\|_{E_{q}^{\gamma}(\mathbb{T}^{d})} \leq \\ &\leq C_{q} \sum_{k=-\infty}^{0} \left(\prod_{j=1}^{d} \gamma_{j}(\xi^{k})\right)^{1-1/q} \left(\prod_{j=1}^{d} \gamma_{j}(\xi^{l})\right)^{1-1/q} \left(\int_{Q_{k,l}} |\widehat{\theta}(t_{1}, \dots, t_{d})|^{q} dt\right)^{1/q} \leq \\ &\leq C_{q} \sum_{k=-\infty}^{0} \left(\prod_{j=1}^{d} c_{j}^{s+1}\right)^{1-1/q} \left(\prod_{j=1}^{d} \gamma_{j}(\xi^{k+l-s-1})\right)^{1-1/q} \times \\ &\times \left(\sum_{i=k+l-s-1}^{k+l+r} \int_{P_{i}} |\widehat{\theta}(t_{1}, \dots, t_{d})|^{q} dt\right)^{1/q} \leq \\ &\leq C_{q} \sum_{k=-\infty}^{0} \sum_{i=k+l-s-1}^{k+l+r} \left(\prod_{j=1}^{d} \gamma_{j}(\xi^{i})\right)^{1-1/q} \left(\int_{P_{i}} |\widehat{\theta}(t_{1}, \dots, t_{d})|^{q} dt\right)^{1/q} \leq \\ &\leq C_{q} \sum_{i=-\infty}^{1-r} \left(\prod_{j=1}^{d} \gamma_{j}(\xi^{i})\right)^{1-1/q} \left(\int_{P_{i}} |\widehat{\theta}(t_{1}, \dots, t_{d})|^{q} dt\right)^{1/q} \leq \\ &\leq C_{q} \|\widehat{\theta}\|_{E_{q}^{\gamma}(\mathbb{R}^{d})}. \end{aligned}$$

Moreover,

$$\begin{split} \left\| \left(\prod_{j=1}^{d} n_{j}\right) \sum_{j \in \mathbb{Z}^{d}, j \neq 0} \widehat{\theta}(n_{1}(t_{1}+2j_{1}\pi), \dots, n_{d}(t_{d}+2j_{d}\pi))) \right\|_{E_{q}^{\gamma}(\mathbb{T}^{d})} = \\ &= \sum_{k=-\infty}^{0} \left(\prod_{j=1}^{d} \gamma_{j}(\xi^{k})\right)^{1-1/q} \left(\prod_{j=1}^{d} n_{j}\right) \times \\ & \times \left(\int_{P_{k}} \left|\sum_{j \in \mathbb{Z}^{d}, j \neq 0} \widehat{\theta}(n_{1}(t_{1}+2j_{1}\pi), \dots, n_{d}(t_{d}+2j_{d}\pi))\right|^{q} dt\right)^{1/q} \leq \\ &\leq \sum_{k=-\infty}^{0} \left(\prod_{j=1}^{d} c_{j}\right)^{k(1-1/q)} \left(\prod_{j=1}^{d} n_{j}\right) \times \end{split}$$

$$\times \left(\int_{\mathbb{T}^d} \left| \sum_{j \in \mathbb{Z}^d, j \neq 0} \widehat{\theta}(n_1(t_1 + 2j_1\pi), \dots, n_d(t_d + 2j_d\pi)) \right|^q dt \right)^{1/q} \leq \\ \leq C_q \Big(\prod_{j=1}^d n_j \Big) \Big(\int_{\mathbb{T}^d} \left| \sum_{j \in \mathbb{Z}^d, j \neq 0} \widehat{\theta}(n_1(t_1 + 2j_1\pi), \dots, n_d(t_d + 2j_d\pi)) \right|^q dt \Big)^{1/q}.$$

Let $R_i := \{ j \in \mathbb{Z}^d : j \neq 0, n_1(\mathbb{T} + 2j_1\pi) \times \ldots \times n_d(\mathbb{T} + 2j_d\pi) \cap P_i \neq 0 \}.$ Since

$$\begin{split} n_j(t_j + 2j_j\pi) &| \ge \frac{1}{\tau_j} \gamma_j(n_1)\pi \ge \frac{1}{\tau_j} \gamma_j(\xi^{l-1})\pi = \\ &= \frac{1}{\tau_j} c_j^{l-1}\pi = \frac{c_j^s}{\tau_j} \gamma_j(\xi^{l-s-1}) \ge \gamma_j(\xi^{l-s-1}), \end{split}$$

we conclude

$$\left\| \left(\prod_{j=1}^{d} n_{j}\right) \sum_{j \in \mathbb{Z}^{d}, j \neq 0} \widehat{\theta}(n_{1}(t_{1}+2j_{1}\pi), \dots, n_{d}(t_{d}+2j_{d}\pi)) \right\|_{E_{q}^{\gamma}(\mathbb{T}^{d})} \leq \\ \leq C_{q} \left(\prod_{j=1}^{d} n_{j}\right) \left(\int_{\mathbb{T}^{d}} \left|\sum_{i=(l-s)\vee 0}^{\infty} \sum_{j \in R_{i}} \widehat{\theta}(n_{1}(t_{1}+2j_{1}\pi), \dots, n_{d}(t_{d}+2j_{d}\pi))\right|^{q} dt\right)^{1/q} \leq \\ \leq C_{q} \sum_{i=(l-s)\vee 0}^{\infty} \left(\prod_{j=1}^{d} n_{j}\right) \left(\int_{\mathbb{T}^{d}} \left|\sum_{j \in R_{i}} \widehat{\theta}(n_{1}(t_{1}+2j_{1}\pi), \dots, n_{d}(t_{d}+2j_{d}\pi))\right|^{q} dt\right)^{1/q} \leq \\$$

Since R_i has at most $C \prod_{j=1}^d \frac{\gamma_j(\xi^i)}{n_j}$ members, we get that

$$(12) \qquad \left\| \left(\prod_{j=1}^{d} n_{j} \right) \sum_{j \in \mathbb{Z}^{d}, j \neq 0} \widehat{\theta}(n_{1}(t_{1}+2j_{1}\pi), \dots, n_{d}(t_{d}+2j_{d}\pi)) \right\|_{E_{q}^{\gamma}(\mathbb{T}^{d})} \leq \\ \leq C_{q} \sum_{i=(l-s)\vee 0}^{\infty} \left(\prod_{j=1}^{d} n_{j} \right) \left(\sum_{j \in R_{i}} \left(\prod_{m=1}^{d} \frac{\gamma_{m}(\xi^{i})}{n_{m}} \right)^{q-1} \times \\ \times \int_{\mathbb{T}^{d}} \left| \widehat{\theta}(n_{1}(t_{1}+2j_{1}\pi), \dots, n_{d}(t_{d}+2j_{d}\pi)) \right|^{q} dt \right)^{1/q} \leq \\ \leq C_{q} \sum_{i=(l-s)\vee 0}^{\infty} \left(\prod_{j=1}^{d} \gamma_{j}(\xi^{i}) \right)^{1-1/q} \left(\prod_{j=1}^{d} n_{j} \right) \left(\sum_{j \in R_{i}} \left(\prod_{m=1}^{d} n_{m} \right)^{-q} \times \right)^{1/q}$$

Herz spaces and pointwise summability of Fourier series

$$\times \int_{n_1(\mathbb{T}+2j_1\pi)\times\ldots\times n_d(\mathbb{T}+2j_d\pi)} |\widehat{\theta}(t_1,\ldots,t_d)|^q dt \Big)^{1/q} \leq \\ \leq C_q \sum_{i=(l-s)\vee 0}^{\infty} \left(\prod_{j=1}^d \gamma_j(\xi^i)\right)^{1-1/q} \left(\int_{P_i} |\widehat{\theta}(t_1,\ldots,t_d)|^q dt\right)^{1/q} \leq \\ \leq C_q \|\widehat{\theta}\|_{E_q^{\gamma}(\mathbb{R}^d)},$$

which proves (10). The theorem follows from Th. 2. \Diamond **Theorem 5.** Let $\theta \in W(C, \ell_1)(\mathbb{R}^d)$, $1 \leq p \leq \infty$ and 1/p + 1/q = 1. If $\widehat{\theta} \in E_q^{\gamma}(\mathbb{R}^d)$, then

$$\|\sigma_{\gamma}^{\theta}f\|_{p,\infty} \leq C_p \|\widehat{\theta}\|_{E_q^{\gamma}(\mathbb{R}^d)} \|f\|_p \qquad (f \in L_p(\mathbb{T}^d)).$$

Moreover, for every $p < r \leq \infty$

$$\|\sigma_{\gamma}^{\theta}f\|_{r} \leq C \|\widehat{\theta}\|_{E_{q}^{\gamma}(\mathbb{R}^{d})} \|f\|_{r} \qquad (f \in L_{r}(\mathbb{T}^{d})).$$

Corollary 3. Let $\theta \in W(C, \ell_1)(\mathbb{R}^d)$, $\theta(0) = 1, 1 \leq p \leq \infty$ and 1/p + 1/q = 1. If $\hat{\theta} \in E_q^{\gamma}(\mathbb{R}^d)$, then

$$\lim_{n \to \infty, n \in \mathbb{R}^d_{\tau, \gamma}} \sigma_n^{\theta} f = f \quad a.e.$$

for all $f \in L_p(\mathbb{T}^d)$ whenever $1 \leq p < \infty$ and for all $f \in C(\mathbb{T}^d)$ whenever $p = \infty$.

If $f \in L_p(\mathbb{T}^d)$ $(1 \le p \le 2)$ implies the a.e. convergence of Cor. 2, then σ_{γ}^{θ} is bounded from $L_p(\mathbb{T}^d)$ to $L_{p,\infty}(\mathbb{T}^d)$, as in Th. 3 (see Stein [10]). The partial converse of Th. 2 is given in the next result. More exactly, if $\sigma_{\gamma}^{\theta} f$ can be estimated pointwise by $M_p^{\tau,\gamma} f$, then (9) holds.

Theorem 6. Let θ satisfy (2), $1 \le p \le \infty$ and 1/p + 1/q = 1. Suppose that

(13)
$$\sigma_{\gamma}^{\theta} f(x) \le C M_p^{\tau,\gamma} f(x)$$

for all $x \in \mathbb{T}^d$ and for all $f \in L_p(\mathbb{T}^d)$. Then $\sup_{n \in \mathbb{R}^d_{\tau,\gamma}} \|K^{\theta}_n\|_{E^{\gamma}_q(\mathbb{T}^d)} \leq C.$

Proof. Let us define the space $D_p^{\gamma}(\mathbb{T}^d)$ $(1 \leq p \leq \infty)$ by the norm

(14)
$$||f||_{D_p^{\gamma}(\mathbb{T}^d)} := \sup_{0 < r \le 1} \left(\frac{1}{\prod_{j=1}^d \gamma_j(r)} \int_{\prod_{j=1}^d (-\gamma_j(r)\pi, \gamma_j(r)\pi)} |f|^p d\lambda \right)^{1/p}.$$

Observe that the norm

(15)
$$||f||_* = \sup_{k \le 0} \left(\prod_{j=1}^d \gamma_j(\xi^k) \right)^{-1/p} ||f\mathbf{1}_{P_k}||_p$$

is an equivalent norm on $D_p^{\gamma}(\mathbb{T}^d)$. Indeed, choosing $r = \xi^k$ $(k \leq 0)$ we conclude $||f||_* \leq C ||f||_{D_p^{\gamma}}$. On the other hand, if $\xi^{n-1} < r \leq \xi^n$ for some $n \leq 0$ then

$$\frac{1}{\prod_{j=1}^{d} \gamma_j(r)} \int_{\prod_{j=1}^{d} (-\gamma_j(r)\pi, \gamma_j(r)\pi)} |f|^p d\lambda \leq \\ \leq \left(\prod_{j=1}^{d} \gamma_j(\xi^{n-1})\right)^{-1} \int_{\prod_{j=1}^{d} (-\gamma_j(\xi^n)\pi, \gamma_j(\xi^n)\pi)} |f|^p d\lambda = \\ = \left(\prod_{j=1}^{d} \gamma_j(\xi^{n-1})\right)^{-1} \sum_{k=-\infty}^{n} \int_{P_k} |f|^p d\lambda \leq \\ \leq \left(\prod_{j=1}^{d} \gamma_j(\xi^{n-1})\right)^{-1} \sum_{k=-\infty}^{n} \left(\prod_{j=1}^{d} \gamma_j(\xi^k)\right) \|f\|_*^p.$$

Note that

$$\gamma_j(\xi^k) \le \frac{1}{c_{j,1}} \gamma_j(\xi^{k+1}) \le \dots \le \frac{1}{c_{j,1}^{n-k}} \gamma_j(\xi^n) \text{ and } \gamma_j(\xi^{n-1}) \ge \frac{1}{c_{j,2}} \gamma_j(\xi^n).$$

Hence

$$\frac{1}{\prod_{j=1}^{d} \gamma_j(r)} \int_{\prod_{j=1}^{d} (-\gamma_j(r)\pi, \gamma_j(r)\pi)} |f|^p d\lambda \le \left(\prod_{j=1}^{d} c_{j,2}\right) \sum_{k=-\infty}^{n} \left(\prod_{j=1}^{d} \frac{1}{c_{j,1}}\right)^{n-k} ||f||_*^p \le \le C ||f||_*^p,$$

or, in other words $||f||_{D_p^{\gamma}(\mathbb{T}^d)} \leq C||f||_*$. Choosing r = 1 we can see that $D_p^{\gamma}(\mathbb{T}^d) \subset L_p(\mathbb{T}^d)$ and $||f||_p \leq C||f||_{D_p^{\gamma}(\mathbb{T}^d)}$. Taking the supremums in (14) and (15) for all $0 < r < \infty$ and $k \in \mathbb{Z}$ then we obtain the space $D_p^{\gamma}(\mathbb{R}^d)$.

It is easy to see by (15) that

(16)
$$\sup_{\|f\|_{D_{p}^{\gamma}(\mathbb{T}^{d})} \leq 1} \left| \int_{\mathbb{T}^{d}} f(-t) K_{n}^{\theta}(t) \, dt \right| = \|K_{n}^{\theta}\|_{E_{q}^{\gamma}(\mathbb{T}^{d})}.$$

There exists a function $f \in D_p^{\gamma}(\mathbb{T}^d)$ with $\|f\|_{D_p^{\gamma}} \leq 1$ such that

Herz spaces and pointwise summability of Fourier series

$$\frac{\|K_n^{\theta}\|_{E_q^{\gamma}(\mathbb{T}^d)}}{2} \le \Big| \int_{\mathbb{T}^d} f(-t) K_n^{\theta}(t) \, dt \Big|.$$

Since $f \in L_p(\mathbb{R}^d)$, by (13), $|\sigma_n^{\theta} f(0)| = \left| \int_{\mathbb{T}^d} f(-t) K_n^{\theta}(t) dt \right| \le C M_p^{\tau,\gamma} f(0) \qquad (n \in \mathbb{R}^d_{\tau,\gamma}),$

which implies

$$\|K_n^{\theta}\|_{E_q^{\gamma}(\mathbb{T}^d)} \le CM_p^{\tau,\gamma}f(0) \le CM_p^{\gamma}f(0) \le C\|f\|_{D_p^{\gamma}} \le C.$$

This proves the result. \Diamond

Note that the norm of $D_p^{\gamma}(\mathbb{T}^d)$ in (14) is equivalent to

$$||f|| = \sup_{r \in (0,1]^d, r \in \mathbb{R}^d_{\tau,\gamma}} \left(\frac{1}{\prod_{j=1}^d r_j} \int_{\prod_{j=1}^d (-r_j \pi, r_j \pi)} |f|^p \, d\lambda \right)^{1/p}.$$

We will characterize the points of convergence. To this end we generalize the concept of Lebesgue points. By Cor. 1,

$$\lim_{\substack{0 \in I, (|I_1|, \dots, |I_d|) \in \mathbb{R}^d_{\tau, \gamma} \\ |I_j| \to 0, j=1, \dots, d}} \frac{1}{|I|} \int_I f(x+u) \, du = f(x) \quad \text{for a.e. } x \in \mathbb{T}^d,$$

where $f \in L_1^{loc}(\mathbb{T}^d)$. A point $x \in \mathbb{T}^d$ is called a *p*-Lebesgue point (or a Lebesgue point of order p) of $f \in L_p^{loc}(\mathbb{T}^d)$ if

$$\lim_{\substack{j,(|I_1|,\dots,|I_d|)\in\mathbb{R}^d_{\tau,\gamma}\\I_j|\to 0,j=1,\dots,d}} \left(\frac{1}{|I|} \int_I |f(x+u) - f(x)|^p \, du\right)^{1/p} = 0 \qquad (1 \le p < \infty)$$

resp.

 $0 \!\in\! I$

$$\lim_{\substack{0 \in I, (|I_1|, \dots, |I_d|) \in \mathbb{R}^d_{\tau, \gamma} \\ |I_i| \to 0, i=1,\dots, d}} \sup_{u \in I} |f(x+u) - f(x)| = 0 \qquad (p = \infty).$$

1 /

One can see that this definition is equivalent to

$$\lim_{r \to 0} \left(\frac{1}{\prod_{j=1}^{d} \gamma_j(r)} \int_{\prod_{j=1}^{d} (-\gamma_j(r)\pi, \gamma_j(r)\pi)} |f(x+u) - f(x)|^p \, du \right)^{1/p} = 0 \quad (1 \le p < \infty)$$

resp. to

$$\lim_{r \to 0} \sup_{u \in \prod_{j=1}^{d} (-\gamma_j(r)\pi, \gamma_j(r)\pi)} |f(x+u) - f(x)| = 0 \qquad (p = \infty).$$

Usually the 1-Lebesgue points are considered in the case if each γ_j is the identity function (cf. Stein and Weiss [11] or Butzer and Nessel [3]). One can show in the usual way that almost every point $x \in \mathbb{T}^d$ is a *p*-Lebesgue point of $f \in L_p(\mathbb{T}^d)$ if $1 \leq p < \infty$. $x \in \mathbb{T}^d$ is an ∞ -Lebesgue point of

 $f\in L^{loc}_\infty(\mathbb{T}^d)$ if and only if f is continuous at x. Moreover, all r-Lebesguepoints are *p*-Lebesgue points, whenever p < r.

The next theorem generalizes Lebesgue's theorem.

Theorem 7. Let θ satisfy (2), $1 \le p \le \infty$, 1/p + 1/q = 1 and $\sup_{n \in \mathbb{R}^d_{\tau,\gamma}} \|K_n^{\theta}\|_{E_q^{\gamma}(\mathbb{T}^d)} \le C.$

If for all $\delta > 0$

(17)
$$\lim_{n \to \infty, n \in \mathbb{R}^d_{\tau, \gamma}} \|K_n^{\theta}\|_{L_q(\mathbb{T}^d \setminus (-\delta, \delta)^d)} = 0,$$

then

$$\lim_{n\to\infty,n\in\mathbb{R}^d_{\tau,\gamma}}\sigma^\theta_nf(x)=f(x)$$

for all p-Lebesgue points of $f \in L_p(\mathbb{T}^d)$. **Proof.** Now denote by

$$G(u) := \left(\int_{|t_j| < u_j, j=1, \dots, d} |f(x-t) - f(x)|^p \, dt \right)^{1/p} \qquad (u \in \mathbb{R}_+).$$

Since x is a p-Lebesgue point of f, for all $\epsilon > 0$ there exists $m \in \mathbb{Z}$, $m \leq 0$ such that

(18)
$$\frac{G(\gamma_1(r)\pi,\ldots,\gamma_d(r)\pi)}{\left(\prod_{j=1}^d \gamma_j(r)\right)^{1/p}} \le \epsilon \quad \text{if} \quad 0 < r \le \xi^m.$$

Note that

$$\sigma_n^{\theta} f(x) - f(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{T}^d} (f(x-t) - f(x)) K_n^{\theta}(t) \, dt.$$

Thus

We estimate $A_0(x)$ by

$$A_{0}(x) = C \sum_{k=-\infty}^{m} \int_{P_{k}} |f(x-t) - f(x)| |K_{n}^{\theta}(t)| dt \leq \\ \leq C \sum_{k=-\infty}^{m} \left(\int_{P_{k}} |K_{n}^{\theta}(t)|^{q} dt \right)^{1/q} \left(\int_{P_{k}} |f(x-t) - f(x)|^{p} dt \right)^{1/p} \leq \\ \leq C \sum_{k=-\infty}^{m} \left(\int_{P_{k}} |K_{n}^{\theta}(t)|^{q} dt \right)^{1/q} G(\gamma_{1}(\xi^{k})\pi, \dots, \gamma_{d}(\xi^{k})\pi).$$

Then, by (18),

$$A_0(x) \le C_q \epsilon \sum_{k=-\infty}^m \left(\prod_{j=1}^d \gamma_j(\xi^k)\right)^{1/p} \left(\int_{P_k} |K_n^\theta(t)|^q \, dt\right)^{1/q} \le C_q \epsilon \|K_n^\theta\|_{E_q^\gamma(\mathbb{T}^d)}.$$

There exists $\delta > 0$ such that $(-\delta, \delta)^d \subset \prod_{j=1}^d (-\gamma_j(\xi^m)\pi, \gamma_j(\xi^m)\pi)$. Then

$$A_1(x) \le C \int_{\mathbb{T}^d \setminus (-\delta,\delta)^d} |f(x-t) - f(x)| |K_n^{\theta}(t)| \, dt \le$$
$$\le C \Big(\int_{\mathbb{T}^d \setminus (-\delta,\delta)^d} |K_n^{\theta}(t)|^q \, dt \Big)^{1/q} (||f||_p + |f(x)|),$$

which tends to 0 as $n \to \infty, n \in \mathbb{R}^d_{\tau,\gamma}$. This completes the proof of the theorem. \Diamond

Observe that (8) and
$$(-\delta', \delta')^d \subset \prod_{j=1}^d (-\gamma_j(\xi^k)\pi, \gamma_j(\xi^k)\pi) \subset (-\delta, \delta)^d$$

imply

$$(19) \quad \|K_{n}^{\theta}\|_{E_{q}^{\gamma}(\mathbb{T}^{d}\setminus(-\delta,\delta)^{d})} \leq \|K_{n}^{\theta}\|_{L_{q}(\mathbb{T}^{d}\setminus\prod_{j=1}^{d}(-\gamma_{j}(\xi^{k})\pi,\gamma_{j}(\xi^{k})\pi))} \leq \\ \leq \left(\sum_{l=k+1}^{0}\int_{P_{l}}|K_{n}^{\theta}(t)|^{q} dt\right)^{1/q} \leq \\ \leq C_{\delta}\sum_{l=k+1}^{0}\left(\prod_{j=1}^{d}\gamma_{j}(\xi^{k})\right)^{1-1/q}\left(\int_{P_{l}}|K_{n}^{\theta}(t)|^{q} dt\right)^{1/q} \leq \\ \leq C_{\delta}\|K_{n}^{\theta}\|_{E_{q}^{\gamma}(\mathbb{T}^{d}\setminus\prod_{j=1}^{d}(-\gamma_{j}(\xi^{k})\pi,\gamma_{j}(\xi^{k})\pi))} \leq \\ \leq C_{\delta}\|K_{n}^{\theta}\|_{E_{q}^{\gamma}(\mathbb{T}^{d}\setminus(-\delta',\delta')^{d})}.$$

Condition (17) is trivially equivalent to

$$\lim_{n \to \infty, n \in \mathbb{R}^d_{\tau, \gamma}} \|K_n^{\theta}\|_{L_q(\mathbb{T}^d \setminus \prod_{j=1}^d (-\gamma_j(\xi^k)\pi, \gamma_j(\xi^k)\pi))} = 0$$

and hence to

$$\lim_{n \to \infty, n \in \mathbb{R}^d_{\tau, \gamma}} \| K_n^{\theta} \|_{E_q^{\gamma}(\mathbb{T}^d \setminus (-\delta, \delta)^d)} = 0.$$

In case $\widehat{\theta} \in E_q^{\gamma}(\mathbb{R}^d)$ we can formulate a little bit simpler version of the preceding theorem.

Theorem 8. Suppose that $c_j = c_{j,1} = c_{j,2}$ for all j = 1, ..., d. Let $\theta \in W(C, \ell_1)(\mathbb{R}^d), \ \theta(0) = 1, \ \widehat{\theta} \in E_q^{\gamma}(\mathbb{R}^d), \ 1 \le p \le \infty \text{ and } 1/p + 1/q = 1.$ Then

$$\lim_{n \to \infty, n \in \mathbb{R}^d_{\tau, \gamma}} \sigma_n^{\theta} f(x) = f(x)$$

for all p-Lebesgue points of $f \in L_p(\mathbb{T}^d)$.

r

Proof. By (10) the first condition of Th. 7 is satisfied. On the other hand, let

$$\prod_{j=1}^{a} (-\gamma_j(\xi^{k_0})\pi, \gamma_j(\xi^{k_0})\pi) \subset (-\delta, \delta)^d, \qquad \tau_j/c_j^r \le 1, \qquad c_j^s/\tau_j \ge 1$$

and $\xi^{l-1} \leq n_1 < \xi^l$ as in the proof of Th. 4. Obviously, if $n \to \infty, n \in \mathbb{R}^d_{\tau,\gamma}$ then $l \to \infty$. We get similarly to (11) and (12) that

$$\begin{split} \|K_{n}^{\theta}\|_{E_{q}^{\gamma}(\mathbb{T}^{d}\setminus(-\delta,\delta)^{d})} &\leq \\ &\leq C_{q} \sum_{i=k_{0}+l-s-1}^{\infty} \left(\prod_{j=1}^{d} \gamma_{j}(\xi^{i})\right)^{1-1/q} \left(\int_{P_{i}} |\widehat{\theta}(t_{1},\ldots,t_{d})|^{q} dt\right)^{1/q} + \\ &+ C_{q} \sum_{i=(l-s)\vee 0}^{\infty} \left(\prod_{j=1}^{d} \gamma_{j}(\xi^{i})\right)^{1-1/q} \left(\int_{P_{i}} |\widehat{\theta}(t_{1},\ldots,t_{d})|^{q} dt\right)^{1/q}, \end{split}$$

which tends to 0 as $n \to \infty, n \in \mathbb{R}^d_{\tau,\gamma}$, since $\widehat{\theta} \in E^{\gamma}_q(\mathbb{R}^d)$. Then (17) follows by (19), which finishes the proof of our theorem. \Diamond

Since each point of continuity is a *p*-Lebesgue point, we have **Corollary 4.** If the conditions of Th. 7 or Th. 8 are satisfied and if $f \in L_1(\mathbb{T}^d)$ is continuous at a point x, then

$$\lim_{n \to \infty, n \in \mathbb{R}^d_{\tau, \gamma}} \sigma^{\theta}_n f(x) = f(x)$$

The converse of Th. 7 holds also.

Theorem 9. Suppose that $1 \le p \le \infty$, 1/p + 1/q = 1 and (2) and (17) hold. If

$$\lim_{n \to \infty, n \in \mathbb{R}^d_{\tau,\gamma}} \sigma_n^{\theta} f(x) = f(x)$$

for all p-Lebesgue points of $f \in L_p(\mathbb{T}^d)$, then
$$\sup_{n \in \mathbb{R}^d_{\tau,\gamma}} \|K_n^{\theta}\|_{E_q^{\gamma}(\mathbb{T}^d)} \leq C.$$

Proof. The space $D_p^{\gamma,0}(\mathbb{T}^d)$ consists of all functions $f \in D_p^{\gamma}(\mathbb{T}^d)$ for which f(0) = 0 and 0 is a *p*-Lebesgue point of f, in other words

$$\lim_{r \to 0} \left(\frac{1}{\prod_{j=1}^{d} \gamma_j(r)} \int_{\prod_{j=1}^{d} (-\gamma_j(r)\pi, \gamma_j(r)\pi)} |f(u)|^p \, du \right)^{1/p} = 0$$

with the usual modification for $p = \infty$. We can easily show that $D_p^{\gamma,0}(\mathbb{T}^d)$ is a Banach space. We get from the conditions of the theorem that

$$\lim_{n \to \infty, n \in \mathbb{R}^d_{\tau, \gamma}} \sigma_n^{\theta} f(0) = 0 \quad \text{for all} \quad f \in D_p^{\gamma, 0}(\mathbb{T}^d).$$

Thus the operators

$$U_n: D_p^{\gamma,0}(\mathbb{T}^d) \to \mathbb{R}, \qquad U_n f := \sigma_n^{\theta} f(0) \qquad (n \in \mathbb{R}^d_{\tau,\gamma})$$

are uniformly bounded by the Banach–Steinhaus theorem. Observe that

in (16) we may suppose that f is 0 in a neighborhood of 0. Then

$$C \ge \|U_n\| =$$

$$= \sup_{\|f\|_{D_p^{\gamma,0}(\mathbb{T}^d)} \le 1} \left| \int_{\mathbb{T}^d} f(-t) K_n^{\theta}(t) dt \right| =$$

$$= \sup_{\|f\|_{D_p^{\gamma}(\mathbb{T}^d)} \le 1} \left| \int_{\mathbb{T}^d} f(-t) K_n^{\theta}(t) dt \right| =$$

$$= \|K_n^{\theta}\|_{E_q^{\gamma}(\mathbb{T}^d)}$$

for all $n \in \mathbb{R}^d_{\tau,\gamma}$.

Corollary 5. Suppose that $1 \le p \le \infty$, 1/p + 1/q = 1 and (2) and (17) holds. Then

$$\lim_{n \to \infty, n \in \mathbb{R}^{d}_{\tau,\gamma}} \sigma^{\theta}_{n} f(x) = f(x)$$

for all p-Lebesgue points of $f \in L_p(\mathbb{T}^d)$ if and only if $\sup_{n \in \mathbb{R}^d_{\tau,\gamma}} \|K^{\theta}_n\|_{E^{\gamma}_q(\mathbb{T}^d)} \leq C.$

A one-dimensional version of this theorem can be found in the book of Alexits [1].

7. Some summability methods

In this section we consider some summability methods as special cases of the θ -summation. The details can be found in [15]. Note that $q = \infty$ is the most important case in the results of Sec. 6. Let $\gamma_j(\xi x) = \xi^{\omega_j} \gamma_j(x)$ (x > 0) and $\omega_1 = 1$.

Example 1 ((C, α) or Cesàro summation). Let d = 1 and

$$\theta(k,n) = \begin{cases} \frac{A_{n-1-|k|}^{\alpha}}{A_{n-1}^{\alpha}} & \text{if } |k| \le n-1, \\ 0 & \text{if } |k| \ge n \end{cases}$$

for some $0 < \alpha < \infty$, where

$$A_k^{\alpha} := \binom{k+\alpha}{k} = \frac{(\alpha+1)(\alpha+2)\dots(\alpha+k)}{k!} = O(k^{\alpha}) \qquad (k \in \mathbb{N}).$$

The Cesàro means are given by

$$\sigma_n^{\theta} f(x) := \frac{1}{A_{n-1}^{\alpha}} \sum_{k=-n+1}^{n-1} A_{n-1-|k|}^{\alpha} \hat{f}(k) e^{ikx}.$$

In case $\alpha = 1$ we get the *Fejér means*, i.e.

$$\sigma_n^1 f(x) = \sum_{k=-n+1}^{n-1} \left(1 - \frac{|k|}{n} \right) \hat{f}(k) e^{ikx} = \frac{1}{n} \sum_{k=0}^{n-1} s_k f(x).$$

It is known that the kernel functions satisfy

$$|K_n^{\theta}(u)| \le C \min(n, n^{-\alpha} u^{-\alpha-1}) \qquad (n \in \mathbb{N}, \ u \ne 0)$$

(see Zygmund [17]). It is easy to see that (9) and (17) holds as well as all theorems of this paper.

Example 2 (Riesz summation). Let

$$\theta(x) := \begin{cases} (1 - |x|^2)^{\alpha} & \text{if } |x| \le 1, \\ 0 & \text{if } |x| > 1 \end{cases} \quad (x \in \mathbb{R}^d).$$

Then

$$|\widehat{\theta}(x)| \le C|x|^{-d/2 - \alpha - 1/2} \qquad (x \ne 0).$$

If

(20)
$$\frac{\sum_{j=1}^{d} \omega_j}{\omega_i} - \frac{d}{2} - \frac{1}{2} < \alpha < \infty \quad \text{for all } i = 1, \dots, d,$$

then $\widehat{\theta} \in E^{\gamma}_{\infty}(\mathbb{R}^d)$. Here $|\cdot|$ denotes the Euclidean norm.

Note that for cones, i.e. $\omega_j = 1, j = 1, \ldots, d$, we get the well known parameter (d-1)/2 on the left hand side of (20). In case d = 2 we obtain the condition $(1/\omega_2 - 1/2) \vee (\omega_2 - 1/2) < \alpha < \infty$.

Example 3 (Weierstrass summation). If $\theta(x) = e^{-2\pi |x|^2}$ $(x \in \mathbb{R}^d)$, then $\hat{\theta}(x) = e^{-2\pi |x|^2}$ and $\hat{\theta} \in E_{\infty}^{\gamma}(\mathbb{R}^d)$.

Example 4. If $\theta(x) = e^{-2\pi|x|}$ $(x \in \mathbb{R}^d)$ then $\widehat{\theta}(x) = c_d/(1+|x|^2)^{(d+1)/2}$. Suppose that $\omega_d \leq \omega_j$ for all $j = 2, \ldots, d$. If $\omega_d \leq 1$ and $\sum_{j=1}^{d-1} \omega_j < d\omega_d$ or if $\omega_d > 1$ and $\sum_{j=2}^d \omega_j < d$ then $\widehat{\theta} \in E_{\infty}^{\gamma}(\mathbb{R}^d)$. If d = 2 then we obtain $1/2 < \omega_2 < 2$.

Example 5 (Picard and Bessel summation). In case

$$\theta(x) = 1/(1+|x|^2)^{(d+1)/2}$$
 $(x \in \mathbb{R}^d)$

we have $\widehat{\theta}(x) = c_d e^{-2\pi|x|}$ and $\widehat{\theta} \in E^{\gamma}_{\infty}(\mathbb{R}^d)$.

References

- ALEXITS, G.: Konvergenzprobleme der Orthogonalreihen, Akadémiai Kiadó, Budapest, 1960.
- [2] BERGH, J. and LÖFSTRÖM, J.: Interpolation Spaces, an Introduction, Springer, Berlin, 1976.
- [3] BUTZER, P. L. and NESSEL, R. J.: Fourier Analysis and Approximation, Birkhäuser Verlag, Basel, 1971.
- [4] FEICHTINGER, H. G. and WEISZ, F.: The Segal algebra S₀(ℝ^d) and norm summability of Fourier series and Fourier transforms, *Monatshefte Math.* 148 (2006), 333–349.
- [5] FEICHTINGER, H. G. and WEISZ, F.: Wiener amalgams and pointwise summability of Fourier transforms and Fourier series, *Math. Proc. Camb. Phil. Soc.* 140 (2006), 509–536.
- [6] GÁT. G.: Pointwise convergence of cone-like restricted two-dimensional (C, 1) means of trigonometric Fourier series, J. Appr. Theory. 149 (2007), 74–102.
- [7] GRÖCHENIG, K.: Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.
- [8] LEBESGUE, H.: Recherches sur la convergence des séries de Fourier, Math. Annalen 61 (1905), 251–280.
- [9] MARCINKIEWICZ, J. and ZYGMUND, A.: On the summability of double Fourier series, *Fund. Math.* 32 (1939), 122–132.
- [10] STEIN, E. M.: On limits of sequences of operators, Ann. of Math. 74 (1961), 140–170.
- [11] STEIN, E. M. and WEISS, G.: Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N. J., 1971.

- [12] TORCHINSKY, A.: Real-variable Methods in Harmonic Analysis, Academic Press, New York, 1986.
- [13] TRIGUB, R. M. and BELINSKY, E. S.: Fourier Analysis and Approximation of Functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2004.
- [14] WEISZ, F.: Summability of Multi-dimensional Fourier Series and Hardy Spaces, Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.
- [15] WEISZ, F.: Herz spaces and restricted summability of Fourier transforms and Fourier series, J. Math. Anal. Appl. 344 (2008), 42–54.
- [16] WEISZ, F.: Restricted summability of Fourier series and Hardy spaces, Acta Sci. Math. (Szeged) 75 (2009), 219–231.
- [17] ZYGMUND, A.: Trigonometric Series, Cambridge Press, London, 3rd edition, 2002.